

 1

Abstract

While there has been significant growth in 2D image and

video content generation, 3D image reconstruction from
videos has achieved limited user adoption owing to
difficulty in generating the videos and images required for
3D reconstruction. In this paper we propose a novel
pipeline that automates generation of images from a
generic video stream for use by an SFM pipeline. The
proposed approach uses tracking-learning-detection
algorithm to generate patches that are then used as input to
SFM pipeline to generate 3D images of object of interest.
The proposed approach has been implemented in MATLAB
and has been tested on a number of different videos to
generate 3D models for objects of interest.

1. Introduction
Recent advances in semiconductor technology have

democratized access to cheap, high resolution, high quality
cameras. Almost all cell-phones have multiple high
resolution cameras embedded within them. This
democratization of high quality cameras has led to a huge
increase in the volume of photo and video content being
generated. However, most of the content being generated
today is still 2D, and very little 3D content is being created
even today.

Structure from Motion (SFM) is a well-studied problem
in the field of computer vision and visual perception. SFM
algorithms enable us to reconstruct 3D views of an object
from multiple 2D views of the object of interest. Over the
past few years SFM algorithms have advanced significantly
and a number of groups have demonstrated the up-to large
city scale 3D reconstruction using SFM algorithms. One
such seminal example is ‘Reconstructing Rome in a day’
[1].

However, despite these technological advances 3D
image reconstruction has not been democratized yet, and
the amount of 3D content being generated is still rather
limited, especially relative to the amount of 2D data that is
generated every-day. One potential reason for this is the
difficulty in obtaining the large number of views of the

object of interest. A naïve way to obtain the different views
requires the user to manually click a number of 2D images
for the target of interest from different viewpoints.
However, this requires care and precision on part of the
user. The user has to focus on the required object and has to
be careful to minimize the background noise. An alternate
approach could be that the user creates a video of the target
of interest while ensuring that he has captured multiple
views of object and the background noise is minimized.
However, even this method requires careful video
generation on the user’s part.

In this project we are trying to explore the possibility of
generating 3D views for any object from a generic video
stream. A generic video stream is being defined as any
video captured by the user without paying special attention
to the target object of interest, i.e. any frame in the video
may contain multiple objects in addition to the particular
target object of interest. If we can successfully generate 3D
models for any object from generic video streams, it would
significantly reduce the user effort required in generating
3D models, and hence, could increase the user base for 3D
model generation significantly.

A naïve way of 3D reconstruction from generic video
frames could be that the user manually identifies the
patches with the target of interest, and then manually crops
the image to generate the required multiple views for the
SFM pipeline. However, this approach does not reduce user
effort, but rather increases it.

An alternative approach could be that the user uses an
object detector to detect the target object of interest from
each of the frames, which could then be used to generate
the data for SFM pipeline. However, using object detectors
requires prior knowledge of the object, and also needs a lot
of training data. Further, most of the object detectors cannot
distinguish very well between two objects that are similar
and belong to the same broad category.

Another alternative approach would be to use a tracker
to track the target object of interest in each video frame. The
output from the tracker could then be used to generate the
data for SFM pipeline. However, most of the conventional
tracking algorithms assume that the target is present in each
video frame. If the object goes out of view even for a few
frames, the tracking algorithm fails completely.

Therefore, in this project we propose to use tracking-

3D Image Reconstruction from Videos Using Patches Generated from

Tracking-Learning-Detection Algorithm

Amandeep Singh
Stanford University
asingh@stanford.edu

 2

learning-detection (TLD) [2] based framework to obtain
bounding boxes around the target object of interest from
each video frame. The bounding boxes generated by TLD
are then used to obtain image patches containing the target
object, while eliminating the background noise such as
other objects present in each video frame. These patches are
then used as an input for SFM pipeline. The major
advantage of using TLD based framework is that unlike
object detectors it does not need prior training, and unlike
trackers it has the ability to recover even if few frames in
the image do not contain the target object of interest.

Therefore, the proposed pipeline essentially consists of
two sequential steps, (a) Generate image patches showing
multiple views for the target object of interest using TLD
algorithm (b) Use SFM pipeline on the generated patches to
obtain 3D model of the target object. The proposed pipeline
is simple enough, and requires minimal manual
intervention.

The organization of the rest of paper is as follows.
Section 2 below describes the problem formally. Section 3
describes the proposed pipeline in more detail, together
with implementation details of TLD algorithm, and SFM
pipeline. The TLD algorithm was implemented using a
starter code available from homework for CS231B website.
The SFM pipeline was implemented as an extension from
Problem Set 2 Question 4. Section 4 then describes the
experimental setup and results, followed by Section 5
which concludes the paper and gives ideas for further work
on this project.

2. Problem Statement
Given a generic video stream V extract multiple image

patches P which contain the target object of interest using
Tracking-Learning-Detection (TLD) framework. The set of
generated patches P, act like inputs for a SFM pipeline and
are used to generate the 3D model for the object of interest.

3. Technical Approach
This section describes the technical details for the

proposed pipeline. Section 3.1 below gives the details for
the overall pipeline used. Section 3.2 and 3.3 give details
for the implemented TLD framework and SFM pipeline.

3.1. Proposed Pipeline
Figure 1 above describes the proposed pipeline. The

system receives an input video from the user. The input
video is read into MATLAB to transform the input video

into a set of sequential frames. The user then draws a
bounding box around the object of interest. The set of
sequential frames, together with the bounding box drawn
by the user become the input to the TLD algorithm. The
TLD algorithm then tracks the object inside the bounding
box, and outputs a bounding box in identifying the location
of the object in each image frame. In-case the TLD
algorithm does not detect the target object in a particular
image frame it returns NaN as the bounding box for that
frame. However, TLD is able to find the object again when
it comes back in the frame of view. The bounding boxes
generated from TLD are then used to generate 2D patches
of the image. It may be noted that since the patches returned
from TLD might be of slightly different sizes, the patch is
first resized into a dimensions 640x480. The resized image
is then fed to SFM pipeline. The SFM pipeline is then used
to do 3D reconstruction. It may be noted that depending on
the duration of the video frame, the number of patches
being input to the SFM frame can be relatively large. While
the large number of patches with different views help
improve the quality of image reconstruction, the run-time
for SFM pipeline increases with increasing number of input
patches. Thus, the number of patches to be used for the
SFM pipeline is a tradeoff between image reconstruction
quality, and algorithm run-time.

3.2. Tracking-Learning-Detection (TLD)
Algorithm

Given the initial bounding box around the object of

interest the goal of tracking algorithm is to be able to
reliably track the object in subsequent frames, i.e.
automatically detect the object’s bounding box in
subsequent frames or indicate that the object is not present
in the frame. The above problem is a commonly studied
problem in computer vision community, and has been
called as Long Term Tracking Problem. While a large
number of approaches have been investigated, most of them
can be summarized in the form of three broad categories:
1. Tracking based approaches
These methods try to formulate the long term tracking
problem as a tracking problem only. While these methods
can be fast, they are accurate only till the time the object is
in frame, and typically fail completely if the object
disappears in the frame for a bit. Some of the common
methods used in tracking are: Kalman filtering based
approaches which try to formulate tracking problem as
probabilistic graphical model, or template matching based

Figure 1 : Overall Pipeline for 3D Image Reconstruction

 3

methods such as Lucas-Kanade tracker [1].
2. Detection based approaches

These methods try to detect the object in every frame
independently. While, it is possible to do object detection,
most of the detectors require a long offline training stage,
and hence are not feasible for use in real-time tracking.
3. Tracking - Learning - Detection (TLD)
TLD is a new framework that was proposed by Kalal et al
[2] in 2010. This framework realizes that long term tracking
cannot be solved by either tracking alone, or detection
alone, but rather it decomposes the task of long term
tracking into three sub-tasks: tracking, learning, and
detection. The block diagram of the proposed approach is
shown in Figure 2.

In this framework the tracker estimates the objects
motion between consecutive frames under the assumption
that the frame is visible. The detector treats every frame
independently and performs full scanning of the image to
localize all appearances that have been observed and
learned in the past. Learning observes the performance of
both, tracker and detector, estimates detectors errors, and
generates training examples to avoid these errors in the
future. Given the success of TLD framework in literature
we decided to use this method as our preferred method of
tracking in this project.

3.2.1 Implementation Details of TLD

Algorithm
Figure 3 shows the block diagram representation of the
TLD [2] algorithm. To better understand the functioning of
the algorithm this algorithm was implemented using the
starter code available from CS 231B (‘Stanford Class on
Advanced Computer Vision’) homework Project. In effect,
most of the detection, learning, and data augmentation part
was written by us. This section summarizes the key building
blocks of the algorithm, and highlights the specific sections
where our implementation was different from the original
paper [2].

The TLD algorithm represents the object as a collection
of size normalized positive and negative patches. By

comparing patches in a new frame with patches in the object
model, the algorithm detects the location of the object
present in the new frame. Unlike the authors, where RAW
pixel features were used for feature representation [2], we
decided to use HoG features for feature representation.
HoG features helps us to be more invariant to geometric and
photometric transformations.
Tracker: The tracker estimates the objects motion between
frames under the assumption that the object is still visible.
The authors use a modified version of Lucas-Kanade
tracker as the tracking stage. We used the same strategy.
Essentially, the tracker estimates motion of a number of
points within objects bounding box and uses this
information to estimate the motion of the object within
consecutive frames. The algorithm estimates each point’s
motion independently and subsequently uses all these
predictions to estimate the median translation vector which
is used to estimate the new transformed bounding box.
Detector: The detector scans the input image by a sliding
window and for each patch decides about presence or
absence of the object. The authors propose a three state
cascade object detector. In the first stage, a patch variance
filter is applied which rejects all patches for which gray-
value variance is smaller than 50% of the variance of the
patch that was selected for tracking. In the second stage, the
authors used an ensemble classifier, and finally in the third
stage a nearest neighbor classifier. In our implementation,
we decided to use an SVM classifier as the detector, instead
of using ensemble classifier. The SVM classifier is easy to
implement and has been commonly used in Object
Detectors. Additionally, we added few constraints to help
the detector. Since, we know that the object cannot
suddenly change its location and scales completely, we
added maximum delta on how much the size of the

Figure 2: TLD Framework

Figure 3: Block Diagram of TLD Algorithm

 4

bounding box can change from frame to frame. Similarly,
maximum delta was added to specify the maximum change
in object location positions.
Learner: The learning strategy implemented was similar to
the original implementation in [2]. The P-expert discovers
new appearances of the object that could be used to improve
the detector. The N-expert generates the negative training
examples. It provides examples of the background to help
detector better discriminate the background from object.
Model was updated only for reliable appearances. An
appearance was defined as Reliable as an appearance that
agrees with both the detector and tracker (defined by
thresholds).
Integrator: Integrator combines the bounding box of the
tracker and the bounding boxes of the detector into a single
bounding box which is output from the TLD. The integrator
implementation is similar to the one in the original paper.

3.3. Generating Patches from Bounding Boxes
from TLD

TLD outputs a list of bounding boxes, giving the location
of bounding box in each frame, or NaN if the object was not
detected in a particular frame. Given the co-ordinates of
bounding box, patch was extracted from the original image.
It may be noted that the patch was resized appropriately to
ensure that all generated patches are of identical sizes.

3.4. SFM Pipeline
Given the 2D generated patches, structure from motion
pipeline was used to convert the set of 2D images to a 3D

image. The pipeline used to implement this 2D to 3D
generation process is shown in Figure 4 below.

Given the images the first step for conversion from 2D to
3D involves identifying the point correspondences amongst
images. To do this we used the SIFT features. SIFT features
were generated for each of the images, and SIFT matching
was performed to identify the top few point
correspondences. It may be noted that since our images are
coming from a sequence of images generated from videos,
we did not consider it necessary to identify point
correspondences amongst all pairs of images. Instead point
correspondences were identified only for neighboring
image patches, i.e. for patches generated from next image
frame. Given the point correspondences, we estimated the
fundamental matrix using eight-point algorithm studied in
class. To minimize the effect of outliers, RANSAC
algorithm was used while estimating the fundamental
matrix. Given the fundamental matrix F we can easily
calculate the essential matrix E.

𝐸 = 𝐾$ ∗ 𝐹 ∗ 𝐾
Following the calculation of essential matrix E, we
estimated the Rotation and Translation matrices, i.e. the
[R|t] matrix using the instructions given in question 4 in
problem set 2. Following the estimation of [R|t] matrix, 3D
points were generated using triangulation (similar to what
was done in Q4, in problem set 2). The above steps were
carried out to generate 3D points from each pair of images.
Non-linear optimization based bundle adjustment was then
used to combine the outputs from each of the pair of images,
and generate the final sparse 3D reconstruction for the
images. Following the sparse reconstruction, a very simple
dense reconstruction module was implemented to complete
the SFM pipeline. The dense reconstruction algorithm was
implemented using zero mean normalized cross-correlation
based matching propagation method [4]. Given the
complexity involved in implementing the dense
reconstruction algorithm, a part of the code from [4] was
adopted and integrated with our current pipeline to
complete the implementation.

4. Experimental Setup and Results

This section gives details of the various experiments we did
and summarizes the results achieved. Section 4.1 outlines
the summary of results for standalone TLD
implementation. Section 4.2 summarizes the results for
standalone SFM implementation. Section 4.3 then
describes the results and limitations of our proposed
approach of using the patches from TLD algorithm to
generate 3D model of object of interest.

Figure 2 : SFM Pipeline

 5

4.1. Verification of Tracking-Learning-
Detection (TLD) Algorithm

The TLD algorithm was implemented in MATLAB using
starter code available from CS231B course website. To
ensure the correctness of the implemented TLD algorithm
two metrics were used: Mean average precision, and
average overlap. The TLD algorithm was verified on
‘tiny_tracking_data’ dataset available from CS 231B. To
ensure the correctness of operation we ensured that our
mean average precision score was greater than 0.78, and
average overlap greater than 0.68 when our code was run
on full ‘Car4’ dataset. Car4 dataset is part of the
tiny_tracking_data dataset, and the metric scores used for
measuring correctness are based on values given on

CS231B website. A screenshot of the output of our
algorithm on ‘Car4’ dataset is shown in Figure 5.

4.2. Verification of SFM pipeline
The SFM pipeline described in section 3.4 was
implemented in MATLAB. The code written for Problem
Set 2, Question 4 was used as a baseline code, and other
necessary code was added to it to complete the pipeline.
Most of the steps in the pipeline up-to sparse reconstruction
were implemented from scratch or from Problem Sets.
Given the complexity involved in implementation of a
complete SFM pipeline, help was taken from [4] to
implement the dense reconstruction.
 To verify the correctness of implementation we used the
image dataset provided in problem set 2, question 4. The
input images given to the the SFM algorithm are shown in
Figure 6 below. The output of the SFM pipeline showing
the reconstructed 3D image is given in Figure 7 below.

Figure 3 : Output of TLD algorithm on 'Car4' dataset

Figure 4 : Sample 2D Images used for 3D reconstruction

Figure 5 : Reconstructed 3D image using 2D images

from Figure 6

 6

4.3. Verification of Proposed Pipeline
This section describes the results achieved using the
proposed pipeline. It may be noted that the dataset for this
section was created on our own. We used an I-phone 6
camera to capture videos of target of interest. Care was
taken to ensure that we get enough noise in each video to
replicate a natural scene, and demonstrate the effectiveness
of the proposed approach.
 The video inputs were converted first into a sequence of
frames which were then sent as input to our TLD algorithm.
Patches were generated using bounding boxes generated by
TLD algorithm and then input to our SFM pipeline.
However, we realized that our SFM was not scalable
enough to handle the large number of frames coming from
the output of TLD algorithm. We then tried to select a
subset of patches from the output of TLD algorithm and use
as input to SFM pipeline. While this ‘worked’, the
reconstructed image quality was rather average. We
postulate that this is because every time we take a patch, we
effectively reduce the resolution of the image which makes
it really difficult to produce a dense good quality 3D
reconstruction. We had anticipated this problem initially,
and we were hoping that increasing the number of frames
would help us overcome this loss in resolution. Further, we
also realized that extracting the patches using TLD, changes
the effective focal length, and hence decreases the accuracy
of our initial focal length estimate (based on public data
available on I-phone 6 camera).

 Therefore, to validate our idea we decided to input the
2D patches generated from TLD algorithm to ‘VisualSFM’
[5] platform also in addition to our implemented SFM.
VisualSFM essentially implements an SFM pipeline very
similar to our proposed SFM pipeline, but has been
optimized for speed using GPU based calculation of SIFT
features, and GPU based SIFT matching. Further,
VisualSFM has in-built algorithms which try to estimate the
focal length also directly from the images, and do not rely
on our initial guess estimate. This makes it a very good
platform to test our overall pipeline. The figures given
below demonstrate the effectiveness of our proposed
pipeline in implementing a complete 3D reconstruction
from videos using patches generated from Tracking-
Learning-Detection algorithm.
 Figure 8 below shows the outcome of running our
pipeline on a video to generate 3D image of a teddy bear.
As is evident from the video, the proposed pipeline is able
to successfully reconstruct the 3D image using our pipeline.
Also, the advantage of the proposed methodology is evident
from the videos, that if we had not selected the patches, the
3D reconstructed image would have contained other objects
in addition to the teddy bear. Figure 9 – 11 show the output
of our proposed pipeline on other objects. Figure 9 shows
the 3D reconstruction of a big printer, Figure 10 a flower,
and Figure 11 shows the reconstruction of a helmet. It may
be observed that since the helmet chosen had empty spaces
in it, i.e. had air pockets on the surface, the reconstructed
image for the helmet is not as good as the other objects.

Figure 6 : 3D Reconstruction from videos of a Teddy Bear

 7

Figure 9: 3D Reconstruction from videos of a big Printer

Figure 10: 3D Reconstruction from videos of a Flower

 8

5. Conclusion
In this paper we demonstrated an innovative approach that
could be used to automatically generate 3D models from
videos. The proposed pipeline of using a TLD based tracker
to generate 2D patches for an SFM pipeline simplifies the
3D model generation considerably. It significantly reduces
the manual labor required to produce videos or set of
images for input to an SFM pipeline.
 While being an innovative and interesting approach,
implementing the complete pipeline helped us further
appreciate the computational complexity involved in full
3D image reconstruction. To fully realize the full potential
of our pipeline and reach the goal of democratizing 3D
content generation a lot of work still needs to be done to
improve SFM algorithms further to allow them to run in
real-time on mobile devices in a power efficient manner.

Acknowledgements
We would like to thank Prof. Silvio, and the entire CS231A
course staff for their help with this project.

Code : The dropbox link to the code has been submitted via
the link given by TA’s on PIAZZA.

References
[1] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,

S Seitz, R Szeliski. Building Rome in a Day. In CACM Vol
54 (2011)

[2] Z. Kalal, K. Mikolajczyk, and J. Matas, “Tracking-Learning-
Detection,” Pattern Analysis and Machine Intelligence 2011.

[3] CS 231B: Stanford course on advanced computer vision.
[4] COS 429: Course on Computer Vision
[5] Changchang Wu, "Towards Linear-time Incremental

Structure from Motion", 3DV 2013

Figure 11: 3D Reconstruction from videos of a Helmet

