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Abstract 

 
While there has been significant growth in 2D image and 

video content generation, 3D image reconstruction from 
videos has achieved limited user adoption owing to 
difficulty in generating the videos and images required for 
3D reconstruction. In this paper we propose a novel 
pipeline that automates generation of images from a 
generic video stream for use by an SFM pipeline. The 
proposed approach uses tracking-learning-detection 
algorithm to generate patches that are then used as input to 
SFM pipeline to generate 3D images of object of interest. 
The proposed approach has been implemented in MATLAB 
and has been tested on a number of different videos to 
generate 3D models for objects of interest.  
 

1.  Introduction 
Recent advances in semiconductor technology have 

democratized access to cheap, high resolution, high quality 
cameras. Almost all cell-phones have multiple high 
resolution cameras embedded within them. This 
democratization of high quality cameras has led to a huge 
increase in the volume of photo and video content being 
generated. However, most of the content being generated 
today is still 2D, and very little 3D content is being created 
even today.  

Structure from Motion (SFM) is a well-studied problem 
in the field of computer vision and visual perception. SFM 
algorithms enable us to reconstruct 3D views of an object 
from multiple 2D views of the object of interest. Over the 
past few years SFM algorithms have advanced significantly 
and a number of groups have demonstrated the up-to large 
city scale 3D reconstruction using SFM algorithms. One 
such seminal example is ‘Reconstructing Rome in a day’ 
[1].  

However, despite these technological advances 3D 
image reconstruction has not been democratized yet, and 
the amount of 3D content being generated is still rather 
limited, especially relative to the amount of 2D data that is 
generated every-day. One potential reason for this is the 
difficulty in obtaining the large number of views of the 

object of interest.  A naïve way to obtain the different views 
requires the user to manually click a number of 2D images 
for the target of interest from different viewpoints. 
However, this requires care and precision on part of the 
user. The user has to focus on the required object and has to 
be careful to minimize the background noise. An alternate 
approach could be that the user creates a video of the target 
of interest while ensuring that he has captured multiple 
views of object and the background noise is minimized. 
However, even this method requires careful video 
generation on the user’s part.  

In this project we are trying to explore the possibility of 
generating 3D views for any object from a generic video 
stream. A generic video stream is being defined as any 
video captured by the user without paying special attention 
to the target object of interest, i.e. any frame in the video 
may contain multiple objects in addition to the particular 
target object of interest. If we can successfully generate 3D 
models for any object from generic video streams, it would 
significantly reduce the user effort required in generating 
3D models, and hence, could increase the user base for 3D 
model generation significantly.  

A naïve way of 3D reconstruction from generic video 
frames could be that the user manually identifies the 
patches with the target of interest, and then manually crops 
the image to generate the required multiple views for the 
SFM pipeline. However, this approach does not reduce user 
effort, but rather increases it.  

An alternative approach could be that the user uses an 
object detector to detect the target object of interest from 
each of the frames, which could then be used to generate 
the data for SFM pipeline. However, using object detectors 
requires prior knowledge of the object, and also needs a lot 
of training data. Further, most of the object detectors cannot 
distinguish very well between two objects that are similar 
and belong to the same broad category.  

Another alternative approach would be to use a tracker 
to track the target object of interest in each video frame. The 
output from the tracker could then be used to generate the 
data for SFM pipeline. However, most of the conventional 
tracking algorithms assume that the target is present in each 
video frame. If the object goes out of view even for a few 
frames, the tracking algorithm fails completely.  

Therefore, in this project we propose to use tracking-
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learning-detection (TLD) [2] based framework to obtain 
bounding boxes around the target object of interest from 
each video frame. The bounding boxes generated by TLD 
are then used to obtain image patches containing the target 
object, while eliminating the background noise such as 
other objects present in each video frame. These patches are 
then used as an input for SFM pipeline. The major 
advantage of using TLD based framework is that unlike 
object detectors it does not need prior training, and unlike 
trackers it has the ability to recover even if few frames in 
the image do not contain the target object of interest.  

Therefore, the proposed pipeline essentially consists of 
two sequential steps, (a) Generate image patches showing 
multiple views for the target object of interest using TLD 
algorithm (b) Use SFM pipeline on the generated patches to 
obtain 3D model of the target object. The proposed pipeline 
is simple enough, and requires minimal manual 
intervention.  

The organization of the rest of paper is as follows. 
Section 2 below describes the problem formally. Section 3 
describes the proposed pipeline in more detail, together 
with implementation details of TLD algorithm, and SFM 
pipeline. The TLD algorithm was implemented using a 
starter code available from homework for CS231B website. 
The SFM pipeline was implemented as an extension from 
Problem Set 2 Question 4. Section 4 then describes the 
experimental setup and results, followed by Section 5 
which concludes the paper and gives ideas for further work 
on this project.  

2.  Problem Statement 
Given a generic video stream V extract multiple image 

patches P which contain the target object of interest using 
Tracking-Learning-Detection (TLD) framework. The set of 
generated patches P, act like inputs for a SFM pipeline and 
are used to generate the 3D model for the object of interest.  

3.  Technical Approach 
This section describes the technical details for the 

proposed pipeline. Section 3.1 below gives the details for 
the overall pipeline used. Section 3.2 and 3.3 give details 
for the implemented TLD framework and SFM pipeline.  

3.1.  Proposed Pipeline 
Figure 1 above describes the proposed pipeline. The 

system receives an input video from the user. The input 
video is read into MATLAB to transform the input video 

into a set of sequential frames. The user then draws a 
bounding box around the object of interest. The set of 
sequential frames, together with the bounding box drawn 
by the user become the input to the TLD algorithm. The 
TLD algorithm then tracks the object inside the bounding 
box, and outputs a bounding box in identifying the location 
of the object in each image frame. In-case the TLD 
algorithm does not detect the target object in a particular 
image frame it returns NaN as the bounding box for that 
frame. However, TLD is able to find the object again when 
it comes back in the frame of view. The bounding boxes 
generated from TLD are then used to generate 2D patches 
of the image. It may be noted that since the patches returned 
from TLD might be of slightly different sizes, the patch is 
first resized into a dimensions 640x480. The resized image 
is then fed to SFM pipeline. The SFM pipeline is then used 
to do 3D reconstruction. It may be noted that depending on 
the duration of the video frame, the number of patches 
being input to the SFM frame can be relatively large. While 
the large number of patches with different views help 
improve the quality of image reconstruction, the run-time 
for SFM pipeline increases with increasing number of input 
patches. Thus, the number of patches to be used for the 
SFM pipeline is a tradeoff between image reconstruction 
quality, and algorithm run-time.  

3.2.  Tracking-Learning-Detection (TLD) 
Algorithm 

 
Given the initial bounding box around the object of 

interest the goal of tracking algorithm is to be able to 
reliably track the object in subsequent frames, i.e. 
automatically detect the object’s bounding box in 
subsequent frames or indicate that the object is not present 
in the frame. The above problem is a commonly studied 
problem in computer vision community, and has been 
called as Long Term Tracking Problem. While a large 
number of approaches have been investigated, most of them 
can be summarized in the form of three broad categories: 
1.   Tracking based approaches 
These methods try to formulate the long term tracking 
problem as a tracking problem only. While these methods 
can be fast, they are accurate only till the time the object is 
in frame, and typically fail completely if the object 
disappears in the frame for a bit. Some of the common 
methods used in tracking are: Kalman filtering based 
approaches which try to formulate tracking problem as 
probabilistic graphical model, or template matching based 

 
Figure 1 : Overall Pipeline for 3D Image Reconstruction 
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methods such as Lucas-Kanade tracker [1].  
2.   Detection based approaches  

These methods try to detect the object in every frame 
independently. While, it is possible to do object detection, 
most of the detectors require a long offline training stage, 
and hence are not feasible for use in real-time tracking. 
3.   Tracking - Learning - Detection (TLD) 
TLD is a new framework that was proposed by Kalal et al 
[2] in 2010. This framework realizes that long term tracking 
cannot be solved by either tracking alone, or detection 
alone, but rather it decomposes the task of long term 
tracking into three sub-tasks: tracking, learning, and 
detection. The block diagram of the proposed approach is 
shown in Figure 2.  

In this framework the tracker estimates the objects 
motion between consecutive frames under the assumption 
that the frame is visible. The detector treats every frame 
independently and performs full scanning of the image to 
localize all appearances that have been observed and 
learned in the past. Learning observes the performance of 
both, tracker and detector, estimates detectors errors, and 
generates training examples to avoid these errors in the 
future. Given the success of TLD framework in literature 
we decided to use this method as our preferred method of 
tracking in this project.  

 
3.2.1   Implementation Details of TLD 

Algorithm 
Figure 3 shows the block diagram representation of the 
TLD [2] algorithm. To better understand the functioning of 
the algorithm this algorithm was implemented using the 
starter code available from CS 231B (‘Stanford Class on 
Advanced Computer Vision’) homework Project. In effect, 
most of the detection, learning, and data augmentation part 
was written by us. This section summarizes the key building 
blocks of the algorithm, and highlights the specific sections 
where our implementation was different from the original 
paper [2].  

The TLD algorithm represents the object as a collection 
of size normalized positive and negative patches. By 

comparing patches in a new frame with patches in the object 
model, the algorithm detects the location of the object 
present in the new frame. Unlike the authors, where RAW 
pixel features were used for feature representation [2], we 
decided to use HoG features for feature representation. 
HoG features helps us to be more invariant to geometric and 
photometric transformations.    
Tracker: The tracker estimates the objects motion between 
frames under the assumption that the object is still visible. 
The authors use a modified version of Lucas-Kanade 
tracker as the tracking stage. We used the same strategy. 
Essentially, the tracker estimates motion of a number of 
points within objects bounding box and uses this 
information to estimate the motion of the object within 
consecutive frames. The algorithm estimates each point’s 
motion independently and subsequently uses all these 
predictions to estimate the median translation vector which 
is used to estimate the new transformed bounding box. 
Detector: The detector scans the input image by a sliding 
window and for each patch decides about presence or 
absence of the object. The authors propose a three state 
cascade object detector. In the first stage, a patch variance 
filter is applied which rejects all patches for which gray-
value variance is smaller than 50% of the variance of the 
patch that was selected for tracking. In the second stage, the 
authors used an ensemble classifier, and finally in the third 
stage a nearest neighbor classifier. In our implementation, 
we decided to use an SVM classifier as the detector, instead 
of using ensemble classifier. The SVM classifier is easy to 
implement and has been commonly used in Object 
Detectors. Additionally, we added few constraints to help 
the detector. Since, we know that the object cannot 
suddenly change its location and scales completely, we 
added maximum delta on how much the size of the 

 
Figure 2: TLD Framework 

  
Figure 3: Block Diagram of TLD Algorithm 
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bounding box can change from frame to frame. Similarly, 
maximum delta was added to specify the maximum change 
in object location positions.  
Learner: The learning strategy implemented was similar to 
the original implementation in [2]. The P-expert discovers 
new appearances of the object that could be used to improve 
the detector. The N-expert generates the negative training 
examples. It provides examples of the background to help 
detector better discriminate the background from object. 
Model was updated only for reliable appearances. An 
appearance was defined as Reliable as an appearance that 
agrees with both the detector and tracker (defined by 
thresholds).  
Integrator: Integrator combines the bounding box of the 
tracker and the bounding boxes of the detector into a single 
bounding box which is output from the TLD. The integrator 
implementation is similar to the one in the original paper.  

3.3.  Generating Patches from Bounding Boxes 
from TLD 

TLD outputs a list of bounding boxes, giving the location 
of bounding box in each frame, or NaN if the object was not 
detected in a particular frame. Given the co-ordinates of 
bounding box, patch was extracted from the original image. 
It may be noted that the patch was resized appropriately to 
ensure that all generated patches are of identical sizes.  

3.4.  SFM Pipeline 
Given the 2D generated patches, structure from motion 
pipeline was used to convert the set of 2D images to a 3D 

image. The pipeline used to implement this 2D to 3D 
generation process is shown in Figure 4 below.  

Given the images the first step for conversion from 2D to 
3D involves identifying the point correspondences amongst 
images. To do this we used the SIFT features. SIFT features 
were generated for each of the images, and SIFT matching 
was performed to identify the top few point 
correspondences. It may be noted that since our images are 
coming from a sequence of images generated from videos, 
we did not consider it necessary to identify point 
correspondences amongst all pairs of images. Instead point 
correspondences were identified only for neighboring 
image patches, i.e. for patches generated from next image 
frame. Given the point correspondences, we estimated the 
fundamental matrix using eight-point algorithm studied in 
class. To minimize the effect of outliers, RANSAC 
algorithm was used while estimating the fundamental 
matrix. Given the fundamental matrix F we can easily 
calculate the essential matrix E.  

𝐸 = 𝐾$ ∗ 𝐹 ∗ 𝐾 
Following the calculation of essential matrix E, we 
estimated the Rotation and Translation matrices, i.e. the 
[R|t] matrix using the instructions given in question 4 in 
problem set 2. Following the estimation of [R|t] matrix, 3D 
points were generated using triangulation (similar to what 
was done in Q4, in problem set 2). The above steps were 
carried out to generate 3D points from each pair of images. 
Non-linear optimization based bundle adjustment was then 
used to combine the outputs from each of the pair of images, 
and generate the final sparse 3D reconstruction for the 
images. Following the sparse reconstruction, a very simple 
dense reconstruction module was implemented to complete 
the SFM pipeline. The dense reconstruction algorithm was 
implemented using zero mean normalized cross-correlation 
based matching propagation method [4]. Given the 
complexity involved in implementing the dense 
reconstruction algorithm, a part of the code from [4] was 
adopted and integrated with our current pipeline to 
complete the implementation.  
 

4.  Experimental Setup and Results  

This section gives details of the various experiments we did 
and summarizes the results achieved. Section 4.1 outlines 
the summary of results for standalone TLD 
implementation.  Section 4.2 summarizes the results for 
standalone SFM implementation. Section 4.3 then 
describes the results and limitations of our proposed 
approach of using the patches from TLD algorithm to 
generate 3D model of object of interest.  
 
 
 

 
Figure 2 : SFM Pipeline 
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4.1.  Verification of Tracking-Learning-
Detection (TLD) Algorithm 

The TLD algorithm was implemented in MATLAB using 
starter code available from CS231B course website. To 
ensure the correctness of the implemented TLD algorithm 
two metrics were used:  Mean average precision, and 
average overlap. The TLD algorithm was verified on 
‘tiny_tracking_data’ dataset available from CS 231B. To 
ensure the correctness of operation we ensured that our 
mean average precision score was greater than 0.78, and 
average overlap greater than 0.68 when our code was run 
on full ‘Car4’ dataset. Car4 dataset is part of the 
tiny_tracking_data dataset, and the metric scores used for 
measuring correctness are based on values given on 

CS231B website. A screenshot of the output of our 
algorithm on ‘Car4’ dataset is shown in Figure 5.  

4.2.  Verification of SFM pipeline  
The SFM pipeline described in section 3.4 was 
implemented in MATLAB. The code written for Problem 
Set 2, Question 4 was used as a baseline code, and other 
necessary code was added to it to complete the pipeline. 
Most of the steps in the pipeline up-to sparse reconstruction 
were implemented from scratch or from Problem Sets. 
Given the complexity involved in implementation of a 
complete SFM pipeline, help was taken from [4] to 
implement the dense reconstruction.  
 To verify the correctness of implementation we used the 
image dataset provided in problem set 2, question 4. The 
input images given to the the SFM algorithm are shown in 
Figure 6 below. The output of the SFM pipeline showing 
the reconstructed 3D image is given in Figure 7 below.  

 

 
Figure 3 : Output of TLD algorithm on 'Car4' dataset 

 

                 
 

                   
Figure 4 : Sample 2D Images used for 3D reconstruction 

 
Figure 5 : Reconstructed 3D image using 2D images 

from Figure 6 
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4.3.  Verification of Proposed Pipeline 
This section describes the results achieved using the 
proposed pipeline. It may be noted that the dataset for this 
section was created on our own. We used an I-phone 6 
camera to capture videos of target of interest. Care was 
taken to ensure that we get enough noise in each video to 
replicate a natural scene, and demonstrate the effectiveness 
of the proposed approach.  
 The video inputs were converted first into a sequence of 
frames which were then sent as input to our TLD algorithm. 
Patches were generated using bounding boxes generated by 
TLD algorithm and then input to our SFM pipeline. 
However, we realized that our SFM was not scalable 
enough to handle the large number of frames coming from 
the output of TLD algorithm. We then tried to select a 
subset of patches from the output of TLD algorithm and use 
as input to SFM pipeline. While this ‘worked’, the 
reconstructed image quality was rather average. We 
postulate that this is because every time we take a patch, we 
effectively reduce the resolution of the image which makes 
it really difficult to produce a dense good quality 3D 
reconstruction. We had anticipated this problem initially, 
and we were hoping that increasing the number of frames 
would help us overcome this loss in resolution. Further, we 
also realized that extracting the patches using TLD, changes 
the effective focal length, and hence decreases the accuracy 
of our initial focal length estimate (based on public data 
available on I-phone 6 camera).  

 Therefore, to validate our idea we decided to input the 
2D patches generated from TLD algorithm to ‘VisualSFM’ 
[5] platform also in addition to our implemented SFM. 
VisualSFM essentially implements an SFM pipeline very 
similar to our proposed SFM pipeline, but has been 
optimized for speed using GPU based calculation of SIFT 
features, and GPU based SIFT matching. Further, 
VisualSFM has in-built algorithms which try to estimate the 
focal length also directly from the images, and do not rely 
on our initial guess estimate. This makes it a very good 
platform to test our overall pipeline. The figures given 
below demonstrate the effectiveness of our proposed 
pipeline in implementing a complete 3D reconstruction 
from videos using patches generated from Tracking-
Learning-Detection algorithm.  
 Figure 8 below shows the outcome of running our 
pipeline on a video to generate 3D image of a teddy bear. 
As is evident from the video, the proposed pipeline is able 
to successfully reconstruct the 3D image using our pipeline. 
Also, the advantage of the proposed methodology is evident 
from the videos, that if we had not selected the patches, the 
3D reconstructed image would have contained other objects 
in addition to the teddy bear. Figure 9 – 11 show the output 
of our proposed pipeline on other objects. Figure 9 shows 
the 3D reconstruction of a big printer, Figure 10 a flower, 
and Figure 11 shows the reconstruction of a helmet. It may 
be observed that since the helmet chosen had empty spaces 
in it, i.e. had air pockets on the surface, the reconstructed 
image for the helmet is not as good as the other objects.  

 
Figure 6  : 3D Reconstruction from videos of a Teddy Bear 
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Figure 9: 3D Reconstruction from videos of a big Printer 

 

 
Figure 10: 3D Reconstruction from videos of a Flower 
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5.   Conclusion 
In this paper we demonstrated an innovative approach that 
could be used to automatically generate 3D models from 
videos. The proposed pipeline of using a TLD based tracker 
to generate 2D patches for an SFM pipeline simplifies the 
3D model generation considerably. It significantly reduces 
the manual labor required to produce videos or set of 
images for input to an SFM pipeline.  
 While being an innovative and interesting approach, 
implementing the complete pipeline helped us further 
appreciate the computational complexity involved in full 
3D image reconstruction. To fully realize the full potential 
of our pipeline and reach the goal of democratizing 3D 
content generation a lot of work still needs to be done to 
improve SFM algorithms further to allow them to run in 
real-time on mobile devices in a power efficient manner.  
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Figure 11: 3D Reconstruction from videos of a Helmet 

 


