
1

Face Detection and Tracking Control with Omni Car

Jheng-Hao Chen, Tung-Yu Wu

CS 231A Final Report

June 31, 2016

Abstract

We present a combination of frontal and side face detection approach, using deep learning with Nvidia TX1 platform

and an embedded GPU, providing the Omni robot with an efficient deep model of face detection with low

computation and a provable detection accuracy for the robot’s motion planning. The similar pipeline and

framework is general and can also be applied to other object detection system for the robot usage. In addition, we

also provide a new method to control the Omni robot equipped with four Mecanum wheels. By using orientation

feedback and face’s position estimation, the robot is able to follow and point to human’s frontal face in any direction.

1. Introduction

Nowadays, most robots are able to follow the moving object indoor with camera already set in the environment.

Putting camera on the robot and track the moving object outside dynamically makes this problem hard to solve

since the vibration of the robot and noisy estimation of the object’s position in the real-time. We would like to

propose a proper control algorithm to solve this problem. Tracing human face becomes much more difficult since

robot needs to detect the human face on board and estimate the position of the face dynamically in the real time.

When people tend to turn around with the side face, the existing algorithm for the face detection fails to recognize

the face completely. As a result, we’d like to solve this problem with side face detection, estimation of the face

position in the world coordinate to make the robot track face outdoor successfully.

2.1 Review of previous work

For the autonomous robot, it is important that the robot can recognize things by its own device without any other

device apart from it. Running a recognition algorithm on an embedded system need a lot of trade-off. We need to

consider both computation limitation and recognition accuracy. There are lots work which using opencv face

recognition package for face detection and tracking on an embedded system. Even if the computational efficient is

good, the accuracy is too poor to provide accurate information to the robot’s control. It is also hard to detect the

side face with opencv package. Recently, some researches indicates that deep neural network provides the high

accuracy for face detection. Nevertheless, the computation resource cannot fit the requirement for the robot’s

tracking usage [1-3].

https://en.wikipedia.org/wiki/Mecanum_wheel
https://en.wikipedia.org/wiki/Mecanum_wheel

2

2.2 Contributions

We use deep learning approach for the robot detection. To overcome

the computation efficiency, we use Nvidia TX1 platform and port the

torch package and run our model on an embedded GPU. Furthermore,

we use a cascade model [3] in our deep neural network to speed up the

face detection. However, the performance for the pure cascade model

is still not good for our control scenario. To overcome this problem, we

use two kinds of cascade models and apply the boosting method to

increase the accuracy. Furthermore, we try to combine the weights of

two models ((1) Face labeled: true if the overlap between bounding box

and the face >50% and (2) Face labeled: true if the overlap between

bounding box and the face >80%) by transfer learning. It saves a lot of

memory usage and computation loading on an embedded system. The

following figure summarizes our deep architecture. By the above

approach, we provide an efficient deep model of face detection model

running on a computation limited platform and also provide a provable

accuracy for the robot control. The similar pipeline and framework is

general and can also be applied to other object recognition system for

the robot usage.

3.1 Summary of the technical solution

3.1.1 Face Detection:

We provide a deep learning approach to train the model. With this ensemble method, we try to deliver higher

accuracy to detect multi-face in the video. Collecting large amount of different angles of face, we can detect the

faces in different angles by the deep learning model and port this model on a small footprint (embedded system) to

make it run on real-time.

3.1.2 Position Estimation and Tracking Control:

Once we retrieve the face position in the camera coordinate, we are able to set a desired position of the human face

relative to the camera coordinate. When the face is moving, resulting in a position and velocity deviation between

the face and the desired face. With this information, we can use a linearization controller to design the proper control

input to eliminate the tracking error. As a result, we can make the robot follow the human face successfully in the

real time.

3.2 Technical Details

3.2.1 Omni Robot Hardware Design

1. Mechanical Design

3

The CAD design of the Omni Car with Solidworks 2015 is illustrated in Figure 3. The main material of our

mechanical system is made of acrylic, and cut by laser-cutter in the PRL. A rotary encoder is attached on each

wheel. The purchased 60mm Mecanum Wheel Set is mounted on the base plate to provide the agile movement

in any direction.

2. Mechatronic Design

For the electronic part, we use 2 packs of L298N as the motor driver to control 4 DC motors with 12 volts

input, and a 20 to 5 volts LM2596 digital voltage regulator to provide 5 volts to the Arduino mega micro

controller. Each Jameco DC motor can provide 300g-cm torque under 12 volts. Adafruit BNO055 Absolute

IMU Sensor is used to estimate the orientation of the robot for the navigation. We also used 11.1V LiPo Battery

(3S 5000mAh 50C) as the power supply for the whole system. The Jetson TX1, Logitech HD Webcam C615

are mounted on the upper plate.

Figure 3. CAD model and Omni Robot Car

3.2.2 Control Strategy

1. Lower Level Individual Wheel Control

The lower-level control block diagram is shown in Figure 6. Given a desired speed of the wheels (RPM) and

the wheel speed feedback from the encoder, the PID controller is able to compute the control input, which is

represented in PWM signal to control both the direction and magnitude of the motor’s rotational speed. We

can formulate the control law as 𝐹 = 𝑘𝑝(𝜔𝑑 − 𝜔) + 𝑘𝑑(𝛼𝑑 − 𝛼) + 𝑘𝑖(𝜃𝑑 − 𝜃), where F is the PWM signal

sent from the micro controller, 𝜔𝑑 is the desired rotational speed, and 𝜔 is the current rotational speed

measured from the encoder. 𝑘𝑝, 𝑘𝑑, 𝑘𝑖 are the proportional, derivate, integral gain respectively. Figure 6 shows

how the speed of the four wheels influences in the movement of the robot.

Figure 6. Individual Wheel Control Diagram

https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor/overview
https://learn.adafruit.com/adafruit-bno055-absolute-orientation-sensor/overview

4

2. Higher Level Motion Control

The Mecanum wheel enhances the mobility of the conventional four wheels’ car. The force from the wheel to

the robot is at a 45 degree angle which is shown in Figure7, meaning that we could manipulate and vary the

magnitude and direction of the force vectors to achieve the translation, rotational movement; therefore, the

robot could move in any direction while keeping the head of the robot in a specified direction. The most

different part between the Mecanum drive and conventional cart or tank drive is that it does not require the

robot to turn the head of the robot to travel in another direction.

The robot dynamic analysis is important for our controller design. Based on

the free body diagram analysis, we can formulate the Translational and

rotational dynamics of the robot.

 𝑥̈
𝐿 =

[

(𝐹1𝑥 − 𝐹2𝑥 + 𝐹3𝑥 − 𝐹4𝑥)

𝑀
(𝐹1𝑦 − 𝐹2𝑦 + 𝐹3𝑦 − 𝐹4𝑦)

𝑀
0]

, 𝑥̈
𝐺 = 𝑅 𝑥̈

𝐿
𝐿
𝐺

 𝜃̈ =
(−𝐹1𝑥 + 𝐹2𝑥 + 𝐹3𝑥 − 𝐹4𝑥)𝐼𝑥𝑥 + (−𝐹1𝑦 + 𝐹2𝑦 + 𝐹3𝑦 − 𝐹4𝑦)𝐼𝑦𝑦

𝐼𝑧𝑧

,where F is the force vector in each wheel represented in local frame{L}, M is the mass of the robot, 𝒙̈
𝑳 is the

acceleration of the robot represented in local frame{L}, 𝒙̈
𝑮 is the acceleration of the robot represented in global

frame{G}, 𝐑 𝐋
𝐆 is the rotation matrix that maps the local frame into global frame. I is the inertia of the robot

and 𝛉̈ is the angular acceleration of the robot.

The main idea of High Level Motion Control strategy is that we keep our face in the center of the image and

remain a fixed distance between the robots by controlling the wheels simultaneously, the idea is shown in

Figure 8. In addition, the robot keeps track of the human’s face orientation so that it is able to point right in

front of us.

Figure 8: Control Strategy

Figure 7: Free Body Diagram

of the robot

5

Based on the idea above and the observation, we could find out that the robot’s dynamics could be
decoupled and we can formulate the control algorithm as

[

𝐹1

𝐹2

𝐹3

𝐹4

] =

[

 𝑉𝑑𝑠𝑖𝑛 (𝜃 +

𝜋

4
) − 𝑉𝜃

𝑉𝑑𝑐𝑜𝑠 (𝜃 +
𝜋

4
) + 𝑉𝜃

𝑉𝑑𝑠𝑖𝑛 (𝜃 +
𝜋

4
) + 𝑉𝜃

𝑉𝑑𝑐𝑜𝑠 (𝜃 +
𝜋

4
) − 𝑉𝜃]

,where 𝑭 is the force vector in each wheel, 𝑽𝒅 is the robot’s desired translational speed, 𝜽 is the robot’s

desired translational angle and 𝑉𝜃 is a calibration factor that help the robot change its orientation to the

desired angle. The 𝜽 and 𝑽𝒅 can be calculated by the following equations:

𝑓

𝐺 = 𝑅𝐿
𝐺 𝑓

𝐿 = 𝑅𝐿
𝐺 (

𝑓𝑥
𝑓𝑦
1

)

 𝜃 = 𝑎𝑡𝑎𝑛2(𝑓𝑥
𝐺 , 𝑓𝑥

𝐺)

 𝑉𝑑 = √ 𝑓𝑥
𝐺 2

+ 𝑓𝑥
𝐺 2

,where 𝒇
𝑳 is the local total force vector exerted to the robot. We can use a simple transformation to map this

force vector to the global coordinate by using the rotation matrix 𝑹𝑳
𝑮 . The parameter of the rotation matrix can

be computed based on the information of the orientation from the IMU sensor.

But how to we decide the control input, global vector 𝒇𝒙 and 𝒇𝒚 and the calibration factor𝑽𝜽. The idea is

obvious and we could take advantage of the linearized control theorem. The problem can be simplified as a

linear control problem since there is no unknown dynamic term involved, which means the only thing we need

to control is the force vector. The larger deviation between the face’s image and the center of the camera, the

larger global force we need to provide to our system. The orientation control is based on the same idea

mentioned above.

[

𝑓𝑥
𝑓𝑦
𝑉𝜃

] = 𝐾𝑝𝑒 + 𝐾𝑑𝑒̇

, where error vector and its derivatives are 3 by 1 vector and 𝑲𝒑 and 𝑲𝒅 is 3 by 3 positive definite matrix. The

diagonal term is related to the x, y and orientation proportional/ derivative gain respectively. 𝒑𝒅 represents the

desired position in the image and the desired orientation we specify, 𝒑 denotes the current face’s center in the

image and the current orientation of our face.

 𝑒 = 𝑝𝑑 − 𝑝 = [
0
0
𝜃𝑑

] − [
𝑝𝑥

𝑐

𝑝𝑦
𝑐

𝜃

] , 𝑒̇ = 𝑝̇𝑑 − 𝑝̇ = [
0
0
0
] − [

𝑝𝑥
𝑐 ̇

𝑝𝑦
𝑐 ̇

𝜃

]

𝐾𝑝 = [

𝐾𝑝𝑥 0 0

0 𝐾𝑝𝑦 0

0 0 𝐾𝑝𝜃

] , 𝐾𝑑 = [

𝐾𝑑𝑥 0 0
0 𝐾𝑑𝑦 0

0 0 𝐾𝑑𝜃

]

6

3.2.3 Control Block Diagram

The high level control block diagram is shown in Figure 9. The Arduino Mega Controller is able to calculate

the desired speed of each wheel as our control input to the low-level controller. The IMU sensor is used as an

orientation estimator to provide the controller with the orientation and angular velocity feedback. Jetson TX1

runs the face detection algorithm and estimates the position of the human’s face, used as the position feedback

for the robot.

Figure 9: Control Block Diagram

3.2.4 Face Detection

1. Dataset Preparation

● Dataset

Annotated Facial Landmarks in the Wild [5]

● Data Description

25k annotated faces, a wide range of natural face poses is captured the database is not limited to frontal

or near frontal faces.

 Face NonFace

Training Set
90%

25% 75%

Testing Set
10%

25% 75%

Table 1: Positive & Negative Set

● Face Cutting
 Crop out the face pictures or non-face pictures from AFWL dataset.

 We revise the code from [2].

● Face Cutting Steps
1. Read one image and coordinates of bounding boxes.

2. Random shift around bounding box. (Shift Range: 0~ face width)

7

3. Compute the IOU with original bounding box.

4. If IOU is larger than threshold (Some Percentage), save the picture to the folder “face”.

5. If IOU is smaller than threshold, save the picture to the folder “non-face”.

2. CNN Model

3. Learning Phase

● Architecture

We will generate two training labeled data set from AFLW [5]. One is that we labeled the face if the overlap

between bounding box and the ground truth (face) > 50%. The other one is we labeled the face if the overlap

between bounding box and the ground truth (face) > 80%. We will not train two separated models for these

two data sets for our boosting approach due to the weights in these two model sharing similar weights

(filters). We combine two models in our architecture. That is, the two model share the layers (convolutional

layer, pooling, ReLu etc) before the fully connected layers in 12-net, 24-net and 48-net respectively. In the

final 48-net layer, we use a boosting algorithm to decide if a patch in the image is a face or not. This sharing

architecture reduces the memory usage (weights) and increase the utilization of GPU in the platform.

● Dropout

Due to the limited amount of the data, we need to prevent the over-fitting issue in our training phase. We

apply the dropout method [7] to achieve this. This approach is similar to cross-validation in machine

learning. The following table shows the results.

Accuracy Training Testing

Without Dropout 97.2% 90.7%

With Dropout 96% 92.9%

● Batch Normalization Layer

Training a CNN model always takes time even using a powerful GPU. We apply the batch normalization

layer [8] to speed up the convergence rate in the training phase. However, we need to remove this layer

when we apply the trained model in testing phase. This is because this layer will slow down the testing

time. The following is the equations which are used to adjust the weights after removing the batch

normalization layers where x, y and w are input patch, output patch and the filer respectively. We have

added this feature in our torch platform for automatically removing this layer.

8

● Sliding Window in GPU

GPU is a SIMD architecture. If we apply the sliding window method in GPU, it always takes time and is

hard to meet the real-time requirement. It also will cause the utilization of GPU lower. To solve this

problem, we combine all the windows as an input image and create a bigger model by repeating our CNN

model. This idea is inspired by YOLO [9] which a grid-base CNN model. We also share the weights to

save the cache and memory usage since we copy them from the same model. This part can be done

because of the flexibility of Torch.

4.1 Control Simulation Results

The simulations result shows the main idea of the control strategy, which is shown in Figure 10. The Blue bars

represent human’s face with a certain orientation. The green bar indicates the orthogonal line between the

face’s position and its projection to the camera. The blue square represents the Omni robot car with four wheels.

And the dash blue line and red line represents the human’s face trajectory and robot’s trajectory respectively.

Figure 10: 2D Simulation results

Figure 11 shows that with a proper proportional and derivative gain about 40 and 20 for the orientation tracking,

the robot is able to follow both human’s face position and orientation successfully. The distance between the

robot is set as 150 cm. Due to the nonlinearity of dynamics and coupling effect, there is a little fluctuation

around the desired point. Figure 12 shows the robot without orientation controller; therefore, the robot can

only do the position tracking. Figure 13 illustrates that if we begin to increase the proportional and derivate

gain, the robot starts to point to the human’s frontal face with specified orientation.

9

Figure 11: Orientation and Position Controller

Figure 12: Position Controller

Figure 13: Orientation and Position Controller with lower gain

4.2 Face Detection Experiments and Results

Figure 14 shows the Face detection results with different side and frontal faces detection. Table2 illustrates

the computation and memory usage on the Embedded System (Jetson TX1). Table3 indicates the accuracy of

the training and testing set for CNN model.

Speed

20 fps

(800*600 resolution

from the camera)

Memory Usage 2GB

 Table 2:

 Computation and Memory Usage on

 the Embedded System

Accuracy Training Testing

Boosting 96% 95%

Model (50% overlap data) 94% 92.9%

Model (80% overlap data) 93.2% 92.5%

Table 3: CNN Figure 14: Face Detection Results

10

5. Conclusions

In this work, we provided a compact deep neural model for face detection. It can be executed on an embedded

platform for the autonomous robot’s control. The high accuracy and performance of this model can fit the real-

time computational requirement. This framework can be also applied to general object detection by changing

the training data for autonomous robots. The tracking control is able to make the robot do the motion planning

and point to the human’s frontal face in the real time even if people are trying to rotate their faces while

moving.

6. References

 [1] S. S. Farfade, Md. Saberian and Li-Jia Li, "Multi-view Face Detection Using Deep

 Convolutional Neural Networks," International Conference on Multimedia Retrieval (ICMR), 2015

 [2] S. Yang, P. Luo, C. C. Loy, and X. Tang. From facial parts responses to face detection: A deep

 learning approach. ICCV, 2015

 [3] Omkar M Parkhi, Andrea Vedaldi, and Andrew Zisserman, "Deep face recognition,"

 Proceedings of the British Machine Vision, 2015.

 [4] H. Li, Z. Lin, X. Shen, J. Brandt, and G. Hua. A convolutional neural network cascade for face

 detection. In CVPR, 2015.

 [5] https://lrs.icg.tugraz.at/research/aflw/

 [6] https://github.com/guoyilin/FaceDetection_CNN/blob/master/image_preprocess.py

7. Video Links:
 [1] Tracking Control with Face detection Demo: https://www.youtube.com/watch?v=x1YkVRYlOAw

 [2] Tracking Control Simulation with MATLAB: https://www.youtube.com/watch?v=RfqmdIC9LWk

8. Code Links:
 We train the model by Torch and use opencv to get image frames from camera.

 A robot control unit is also programmed by us.

https://drive.google.com/file/d/0B2PnxbFvd8Tda3UtYWt3d3IyQk0/view?usp=sharing

https://lrs.icg.tugraz.at/research/aflw/
https://github.com/guoyilin/FaceDetection_CNN/blob/master/image_preprocess.py
https://www.youtube.com/watch?v=x1YkVRYlOAw
https://www.youtube.com/watch?v=RfqmdIC9LWk
https://www.youtube.com/watch?v=RfqmdIC9LWk
https://drive.google.com/file/d/0B2PnxbFvd8Tda3UtYWt3d3IyQk0/view?usp=sharing
https://drive.google.com/file/d/0B2PnxbFvd8Tda3UtYWt3d3IyQk0/view?usp=sharing

