Making Puzzles Less Puzzling:
An Automatic Jigsaw Puzzle Solver

Cris Zanoci
Stanford University Computer Science
Stanford University Physics

czanoci@stanford.edu

Jim Andress
Stanford University Computer Science
Stanford University Mathematics

jandress@stanford.edu

June 6, 2016

Abstract

We implemented an algorithm to solve jigsaw puzzles in
which the scrambled square puzzle pieces have unknown
translations and rotations. We assume no input other than
the scrambled pieces and the dimensions of the original im-
age. Our algorithm reformulates the puzzle solving problem
as a search for a minimum spanning tree in a graph, subject
to additional spatial consistency constraints. In order to
provide for quick union and find operations while searching
for the MST, we implemented a modified Disjoint Set Forest
data structure. Our results are on par with those of state
of the art puzzle solving algorithms, and we demonstrate
successful reconstruction of large, high resolution photos.

1. Introduction

The jigsaw puzzle is one of the most popular puzzle
games, known and loved by almost everybody from an early
age. The puzzle consists of non-overlapping pieces that
have to be assembled into an output image. The game dates
back to as early as the 18 century, and the first computa-
tional approach to solving this problem was introduced by
Freeman in 1964 [4]. Today, with the recent developments
in machine learning and computer vision, automatic puzzle
solving has drawn the attention of researchers worldwide
[2 15410, (114 [12].

In addition to being an interesting task on its own, the
solution to this problem has applications to a number of re-
lated fields. For instance, automatic reconstruction of frag-
mented objects is of great importance in archaeology and art
restoration [[1]]. Moreover, puzzle solvers have also been ap-
plied to assembling shredded documents [7] and descram-
bling speech [15].

The jigsaw puzzle come in a variety of forms: traditional

interlocking puzzles, 3-dimensional puzzles, monochro-
matic puzzles, etc. However, for this project, we focus on
the more difficult case in which all pieces are square, such
that no information about the location or orientation is pro-
vided by the pieces. Hence the puzzle has to be solved using
image information alone. We use publicly available, high-
resolution pictures as our input, which we later divide into
squares. We will assume the puzzle to be rectangular and
its dimensions, in terms of the number of pieces, are con-
sidered known.

Following the definitions in [5] we introduce two types
of puzzles: Type 1 puzzles consist of square pieces of
known orientation, but unknown position (i.e. two pieces
can fit together in 4 different ways), while Type 2 puzzles
have both unknown orientation and position (i.e. two pieces
can fit together in 16 different ways). Type 2 puzzles are sig-
nificantly more challenging to assemble because the num-
ber of possible reconstructions exceeds that of an equivalent
Type 1 puzzle by a factor of 4%, where K is the number of
pieces. In this project we focus on Type 2 puzzles, since
our approach is powerful enough to solve them efficiently.
Our metric for a successful reconstruction is the number of
times two pieces that are adjacent in the original image are
adjacent in our final solution.

Our goal is to find an automated procedure for solving
the puzzle. Although some earlier approaches like [2]
incorporated additional user-supplied information (e.g. a
small number of “anchor” patches whose true locations are
known), we implement more recent methods which focus
on the fully unsupervised version of the problem.

2. Previous Work
2.1. Review

There is a rich history of puzzle solving techniques. The
initial approaches only made use of shape information and
ignored image data [[13]]. Later work by Chung et al. [3] ex-



amined RGB values together with hue and saturation along
the pieces’ edges. It was only in 2008 when Nielsen et al.
[9] implemented a solver based on a mixture of image fea-
tures and shape information that could solve puzzles with
about 320 pieces.

More recent assembly methods can be classified into two
main categories: greedy methods [5) [10, [12] and global
methods [2,[11}/14)]. The greedy methods start from initial
pairwise matches and successively extend to larger com-
ponents. Among these, the most important ones are Gal-
lagher’s constrained minimum spanning tree approach [3]]
and Son’s loop constraints between pieces [12]], which relies
on gradually reconstructing larger cycles within the puzzle.
Global methods, on the other hand, search directly for a so-
lution by maximizing a global compatibility function. Cho
et al. [2] proposed a probabilistic solver which achieves
approximated reconstructions by using a Markov Random
Field and loopy belief propagation solution. Another recent
paper by Sholomon [[11]] showed that genetic algorithms can
be successfully used to reconstruct large jigsaw puzzles.

Although the game was proven to be NP-hard, the suc-
cessful approaches mentioned above are known to work
with puzzles of thousands of pieces. Table |I| summarizes
the results of a few papers that we studied. Notice that all
of them achieve an accuracy of more than 90% under the
neighbor comparison metric, which we will explain in Sec-
tion 4l We will refer to this table in future sections in order
to compare our results

2.2. Our Contribution

For our project, we focused on the minimum spanning
tree reconstruction technique described by Gallagher [5].
Our main contribution is an efficient data structure represen-
tation of the problem using Disjoint Set Forests which guar-
antees a fast reassembly. For the other parts of the solver,
we closely follow the description in [5], but we implement
each component from scratch.

While investigating the accuracy of our implementa-
tion, we explore two pairwise compatibility metrics for the
pieces, the sum of squared distances and Mahalanobis gra-
dient compatibility, and show that the latter performs better.
We also implement two measures for evaluating the puzzle
reconstruction accuracy and show that our algorithm can re-
construct real images reliably.

3. Methods

Almost all the papers mentioned above start by comput-
ing a pairwise compatibility function for the square pieces.
This metric tells us how likely two pieces are to be next to
each other in the final reconstruction. This is a crucial part
of the algorithm, since our solver later uses these scores to
assemble the pieces.

Once we know the compatibility of any two pieces, we
need an algorithm for assembling the squares. In our case,
we treat the pieces as vertices in a graph and compatibility
scores as edges. Then we apply a modification of Kruskal’s
minimum spanning tree algorithm to connect the pieces.

In practice, even after the solver has reassembled most
of the pieces, we are not guaranteed that the solution has
a rectangular shape. Therefore, we need a post-processing
stage as described in [35]. First, since the dimensions of the
initial image are known, we trim the solution to make sure
that it fits inside the rectangle outlined by the initial image.
Next, we fill in the gaps with the leftover squares according
to the compatibility scores computed in the beginning.

3.1. Edge Compatibility Metric

The first important compatibility metric we explored is
the dissimilarity-based compatibility introduced by Cho et
al. [2]). It sums the squared distances (SSD) between pixels
on either side of the common edge of two potentially neigh-
boring pieces x; and x;. If the size of each piece is P x P
pixels, then the dissimilarity between the two when z; is
placed on the left of x; is:

3 P

CLR(miaxj) = ZZ(zi(pa P, C) - xj<p’ 1,0))2 (1)

c=1p=1

where p is one specific pixel in the range 1 to P, and c is
one of the three color channels. Intuitively, two adjacent
pieces should have similar pixels along their common edge
and therefore a small dissimilarity score.

Next, we consider the Mahalanobis gradient compatibil-
ity (MGC), proposed by Gallagher [3], which measures the
similarity of the two gradient distributions on either side of
the common edge between two neighboring squares. We
begin by computing the gradient distribution for each puz-
zle piece x;. The first step is to approximate the gradient
in each color channel of the piece along an edge by tak-
ing the difference of the pixel values in the two outermost
rows or columns (depending on whether we are considering
a vertical or horizontal edge) of the piece. For example, the
gradient along the right edge of the piece x; is roughly

GiL(pvc) :in(p,P,C)—ZEi(p,P—LC) (2)

where the notation is as defined above. We can then use this
P x 3 matrix G;, to approximate the gradient distribution
on the left edge of piece z;. For example, we can compute
the mean gradient value for a channel c as

1 P
pir(e) = 5 D Gir(p.o) 3)
p=1

We similarly compute S;z,, which is the 3 x 3 covariance
matrix encapsulating the inter-dependencies of the gradient



Approach Author Year | Largest Puzzle | Direct Metric | Neighbor Metric | Perfect
Constrained MST Gallagher [5] | 2012 9600 82.2 % 90.4 % 9/20
Genetic Algorithm | Sholomon [11]] | 2013 10375 80.6 % 95.2 % -
Loop Constraints Son [12] 2014 9801 94.7 % 94.9 % 12/20

Linear programming Yu [14]] 2015 3300 95.3 % 95.6 % 14/20

Table 1: Reconstruction performance of four recent methods on Type 2 puzzles. The last three columns are based on the MIT

dataset, with P = 28 and K = 432.

values in different color channels. These same computa-
tions are applied to each edge of the piece, meaning that we
are finally left with four mean vectors and four covariance
matrices, one per edge.

Once the above information has been computed for each
puzzle piece, we can define the dissimilarity between edges
on two pieces via an application of the Mahalanobis dis-
tance, which is used to measure the distance from a point to
a probability distribution. In our specific case, we have esti-
mates of the distribution defining the gradient along each of
the edges, and we want to determine whether the gradient
between the two edges is consistent with these distributions.

We therefore first compute the gradient which would re-
sult by placing the two edges next to each other. For exam-
ple, the resulting gradient from the right edge of piece z; to
the left edge of z; can be computed as

GijLr(p,c) = z;(p,1,¢) — ;(p, P, c) 4

We then take each gradient vector along this edge and com-
pute its squared Mahalanobis distance to the gradient dis-
tribution along the right edge of piece x;, summing the dis-
tance across pixels. This gives us a dissimilarity

Dpr(xi,xj) =
P
> (Gijrr(p) = pir)Si (Gijrr(p) — pir)™ ()

p=1

Again, Equation[d]is only a measure of the distance from the
cross-edge gradient to the distribution to the left piece. To
compute a symmetric distance function, we modify Equa-
tions ] and [3] to use the edge of the right piece, giving us
Dpry(z, ;). Our final distance metric is then

Crr(zirj) = Drr(@i, x;) + Drr(xj, ;) (6)
3.2. Tree-Based Puzzle Reconstruction

Once an edge compatibility metric has been chosen and
edge weights have been computed, we must still find a
means of using these weights to reconstruct the puzzle. We
again followed the lead of Gallagher [3]] and reformulated
the puzzle-solving problem as a graph problem, namely that
of finding a minimum spanning tree (MST) for a graph rep-
resentation of the puzzle.

Consider a graph in which each vertex corresponds to
a piece in the scrambled puzzle and the edges connecting
vertices have weights which correspond to the compatibil-
ity of the two connected pieces. Because each piece can be
placed in four different orientations, this graph is extremely
dense: in fact, there are 16 edges connecting any two dis-
tinct vertices. A minimum spanning tree algorithm, such as
Kruskal’s [6], can then be run on this graph to group the
puzzle pieces into a single connected component.

However, in general the minimum spanning tree of the
graph will not represent a valid configuration of the puzzle
since it does not take into account the additional structure
present in this puzzle graph. Specifically, for a given ar-
rangement of the pieces to be valid it must satisfy certain
spatial consistency constraints, in particular that each edge
of each piece can be connected to at most one neighboring
piece.

We therefore implemented a Disjoint Set Forest data
structure with modifications to address these additional con-
straints. The forest begins with each vertex in its own indi-
vidual tree. The edge e with the smallest weight is then
extracted from a priority queue. This edge records not only
which pieces are to be connected, but also which edges of
those pieces are to be placed next to each other. If the two
pieces indicated by e are already contained within the same
forest (meaning that they are already within the same clus-
ter of assembled puzzle pieces), then e is thrown out. Oth-
erwise, the no-overlap condition is checked.

To determine whether merging two clusters would result
in pieces colliding, each cluster representative in the dis-
joint set forest stores the coordinates of each piece that it
represents. Then, when considering an edge, we translate
and rotate the coordinates of one cluster to lie in the same
reference frame as the other. If any coordinate pair appears
within both clusters, including the edge in the forest would
result in a conflict, so it is discarded. If not, the clusters are
merged, as can be seen in the various intermediate stages of
the reconstruction shown in Figure[l]

At first, the outputs from our reconstruction were far
from correct. We determined the cause of these poor results
to be the fact that, initially, the algorithm chose to merge un-
informative pieces early. For example, in many photos the
algorithm would merge all the sky pieces first, even though
it is extremely difficult to correctly arrange the sky. This be-
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Figure 1: Intermediate stages showing pieces being added
to the main puzzle connected component.

havior has further negative effects since the merged sky im-
poses additional spatial constraints on the rest of the pieces,
thereby preventing the rest of the puzzle from being solved
correctly.

We therefore sought a means of re-prioritizing the edges
such that those chosen early in the merge process were more
likely to be correct. To solve this problem, we used a trick
popularized by the SIFT feature descriptor [8]]. The key
insight is that if a piece has a single match which is sig-
nificantly better than all others, that match is much more
likely to be correct than if the piece had multiple matches
which all had a similar score. We therefore divide each set
of pairwise compatibility scores corresponding to a partic-
ular edge by the second smallest score. This ensures that
any dominant matches have a score much less than 1, while
any non-dominant matches are brought back up to an edge
weight of 1.

The effect of this change can be seen by comparing the
two sides of Figure[2] The photo labeled (a) shows a recon-
struction generated using the raw edge compatibility scores,
and the one labeled (b) shows the same puzzle reconstructed
with edge weights which have been divided by the second
best. Clearly, (b) is significantly closer to the correct recon-
struction.

3.3. Trimming

A sample output of the Tree-Based Reconstruction algo-
rithm is shown in Figure [3| (a). As can be seen, the Tree-
Based Reconstruction output is often not a perfect rectangle
since it has no knowledge of the true puzzle dimensions. In
order to correct the minor errors present in the MST output,
we trim the puzzle to ensure that it has the same dimensions
as the original image. This is accomplished by moving a
frame the size of the original image over the puzzle and de-
termining the location which includes the largest number of
pieces. Because we are dealing with Type 2 puzzles, which

(b)

(a)

Figure 2: (a) The reconstruction before dividing by the sec-
ond lowest edge weights (b) The reconstruction after di-
viding by the second lowest edge weights

include rotations, the MST can be rotated by 90°, meaning
that we have to try both possible orientations of the sliding
frame.

Once the frame location has been determined, any pieces
outside of the frame are trimmed from the main puzzle. The
output of this stage is shown in Figure|3|(b).

3.4. Filling

The final step is to use any pieces trimmed in the previ-
ous stage to fill the holes remaining in the constructed puz-
zle. First, we determine all of the holes which have the
highest number of filled neighbors. We then loop over each
remaining piece and each hole, computing the total compat-
ibility score of placing that piece next to each of the occu-
pied neighbors of that hole. The piece with the minimum
score is then added to the puzzle in the proper position and
orientation, and the process repeats, with the newly added
piece included in the neighbor computations. A sample of
the results from this stage is shown in Figure 3] (c).

4. Results

In order to create the best puzzle reconstructions possi-
ble, we must first determine which of our two edge compat-
ibility metrics is better. In this case, the accuracy of an edge
metric can be measured by determining the percentage of
puzzle piece edges in which the best match as reported by
the metric is, in fact, the true matching edge in the puzzle.

Table [2] shows the percentage of puzzle edges whose
nearest neighbor with respect to a specific metric is their
true neighbor in the image. We used the MIT dataset com-
piled by Cho [2], which consists of 20 pictures that are
commonly used as a benchmark in all the references. We
also used a larger picture to see the changes when both P
(piece size) and K (total number of pieces) increase. The
result were consistent with our expected patterns: the MGC



MIT dataset (P = 28, K = 432)
Type Type 1 Type 2
RGB SSD | 0.357 0.293
MGC 0.842 0.815
Elephant picture (P = 64, K = 540)
Type Type 1 Type 2
RGB SSD | 0.764 0.663
MGC 0.953 0.951

Table 2: The different metrics which were applied to the
MIT dataset and a larger elephant picture, and the result-
ing percentage of edges which were matched with their true
neighbor.

metric consistently gets a higher percentage of true matches,
and Type 1 puzzles are generally easier to solve than Type
2. Moreover, both metrics do significantly better when there
is more information at each edge (i.e. larger P).

Figure ] shows the nearest neighbor for various pieces
found by both the MGC and SSD metric. The two im-
ages, especially (b), demonstrate why consideration of gra-
dient distributions is useful, as similar colors across an edge
are often less important than similar gradient values. Al-
though the edge pixels do share a common color scheme,
the smooth texture in the bottom right of (b) clearly doesn’t
match the rough elephant skin, a feature which is detected
by the MGC metric.

Once we had established the superiority of the MGC
metric over SSD, we decided to only use the MGC metric
in reconstructing our final results. Next, we had to deter-
mine a means of measuring the accuracy of a puzzle recon-
struction. We focused on two metrics widely used in the
puzzle-solving literature:

Direct Comparison Metric: The Direct metric measures
the percent of pieces in the reconstructed puzzle which are

Figure 4: Results showing the nearest neighbors found by
the MGC and SSD metrics for pieces of the elephant photo-
graph. In each of the two images, the upper and lower left
corners represent the query piece. The upper right corner is
the nearest neighbor as measured by MGC, and the lower
right corner is the nearest neighbor as measured by SSD.

in the same position and have the same orientation as the
pieces in the initial, unscrambled picture. Note that this
metric can report back a score of zero, even for a relatively
good reconstruction, if the pieces have all been shifted over
from their true location. Therefore, this metric doesn’t al-
ways accurately reflect the quality of our reconstruction.
This is why we also introduce a second metric.

Neighbor Comparison Metric: The Neighbor metric
measures the percent of edges in the reconstruction which
are adjacent to their true neighbor in the original image.
This metric is more robust to translations than the Direct
metric, since only those edges along the wrap-around edge
will be counted as incorrect.

Table[3|shows our algorithm’s results on the MIT dataset,
using several different values for P and K. Comparing
these numbers with those in Table [T} we can see that our
result for P = 28 and K = 432 is on the same order of
magnitude as those generated by state of the art algorithms.



Figure 5: Reconstruction from a mixture of two different
images, each consisting of 432 pieces.

Also notice that the size of the squares is a very important
parameter. Just by decreasing the size of the pieces by 25%,
from 28 to 20 pixels, we see that our results decrease dra-
matically. Therefore, we the piece size imposes significant
limitations on our algorithm. A solution for this problem is
to keep P constant but switch instead to higher resolution
pictures in order to increase K. Additional tests showed
that our algorithm is less sensitive to increasing the number
of pieces K, as is still performs well even with thousands
of pieces (see our best result). Also notice that a significant
fraction of the dataset is reconstructed perfectly, and that it
runs in reasonable time.

Our tree-based method only uses the dimensions of the
initial image in the trimming and filling stages. Therefore,
it is still possible to assemble a puzzle with extra pieces that
don’t necessarily belong to our initial image. To illustrate
this point, we run our algorithm on a mixture of pieces from
two different images (see Fig. [5). We are still able to recon-
struct the pictures almost entirely, even though our algo-
rithm didn’t know anything (dimensions, number of pieces
belonging to each image, etc.) about the two mixed pic-
tures. Notice that we cannot run the post-processing steps
on these images, since we don’t each picture’s separate di-
mension.

Finally, Figure [6] represents our largest puzzle recon-
struction thus far. This puzzle has 2856 pieces, each of size
28 x 28 pixels, and took one hour on a Stanford Corn Ma-
chine. It is a perfect reconstruction of the original image.

5. Conclusions

In summary, this paper implements a recent algorithm
for assembling jigsaw puzzles of unknown orientation and
positions. First, we compared two compatibility metrics
and determined that the Mahalanobis Gradient Compati-
bility performs better because it incorporates information
about the continuity of pixel values along the common edge.
Next, we used a novel Disjoint Set Forest implementation
for a modified version of Kruskal’s algorithm. This mod-

ified version takes into account spacial consistency, which
is crucial for the puzzle reassembly problem. We then post-
process the reconstructed image to guarantee it has the same
dimensions as the original. We found our algorithm to per-
form with high accuracy, matching the reconstructions of
state of the art algorithms when run on common datasets.
Finally, we demonstrate the power of our algorithm by per-
fectly reconstructing a 2856-piece puzzle.

One caveat of this approach is that we have no way of
backtracking (except for trimming / filling). That is, the al-
gorithm has no way of correcting a mistake which occurs
early in the reconstruction process. Therefore, we found
while our results typically yielded an almost perfect recon-
struction, it occasionally made a mistake early on while
solving a puzzle, leading to extremely poor results in iso-
lated cases.

This problem is especially prevalent in pictures where
we have a lot homogeneous textures, for example the sky.
In these cases, it is easy for the algorithm to incorrectly
match the nearly identical sky pieces. Unfortunately, the
MIT dataset contains many pictures in which the sky has
been almost completely washed out. Therefore, it is quite
likely that on other datasets, our reconstruction accuracies
would be even higher than they were on the MIT data.

The number of possible edge pairs in a K piece puz-
zle is approximately 16/ 2, meaning that our largest puz-
zle computed over 130 million edge weights. This edge
weight computation accounts for a huge majority of the al-
gorithm’s runtime (the actual reconstruction takes around a
minute for large puzzles and seconds for small). Further-
more, we found that less than the top one percent of edges
were considered by Kruskal’s before the pieces formed a
single connected component. Therefore, if we were able to
bucket the edges and only compute distances between edges
likely to be neighbors, it would have a profound effect on
our algorithm’s runtime. Thus, in the future we hope to im-
plement some form of Locality Sensitive Hashing in order
to decrease the number of edge compatibility computations
run by the algorithm.

Our code can be found at: https://github.com/
czanoci/cs23la-cris—jim
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