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Abstract 
We set out to validate, examine, and improve on methods 

in recognizing human actions in still images. Human 

action recognition is still a challenging task, despite 

recent advancements in object recognition, due to the 

variabilities in real-world images containing human 

subjects and surrounding objects and environments. We 

experimented with traditional Convolutional Neural 

Network and Bag of Word methods, while also using 

various classifiers in conjunction. After examining outputs 

and weights in both methods, we saw that noise is often 

considered important features. This lead to further 

examination and experimentation of our data set and its 

properties. We will discuss our many findings in this 

paper, with a surprising takeaway that specific 

background and contextual information are essential for 

classification. 

 

I. Introduction  

Recognizing human actions is a popular area of interest 

due to its many potential applications, but it is still in its 

infancy. Successful human action recognition would 

directly benefit data analysis for large-scale image 

indexing, scene analysis for human computer interactions 

and robotics, and object recognition and detection. This is 

more difficult than object recognition due to variability in 

real-world environments, human poses, and interactions 

with objects. Since researches on human action recognition 

in still images are relatively new, we rely on methods for 

object recognition as basis of our approaches. In particular, 

we were interested in seeing how convolutional neural 

networks (CNN)1 perform in comparison with past feature 

selection methods such as Bag of Words (BoW). Also, we 

experimented with various supervised and unsupervised 

classifiers, examined our methods’ properties and effects on 

our action data set, and also pre-processed our data set in 

order to better our results. 

II. Related Work 

In past decades, many ideas proposed to solve the human 

action recognition problem. Some people put interest on 

understanding human-object reaction. Bourdev et .al [9] 

proposed Poselet to recognize human body part and further 

research on human pose relation. Although those methods 

have very impressive result, hand-crafted feature method 

still can't be very generalized to all purpose. They all are 

used for specific goal. 

To conquer that, Krizhevsky et al. [5] first used 

Convolutional Neural Network(CNN) for image 

classification in 2013. Convolutional Neural Network is a 

powerful method because, unlike handcrafted feature 

methods, it learns features from whole image through 

forward and backward processes in deep layer structure. In 

2014, Ji, Shuiwang et al. [6] first apply Convolutional 

Neural Network to recognize human action in video and 

popularized CNN methods. However, this is unlike our 

project goal. There’s a necessity to using still images over 

videos, which is less challenging due to inclusion of 

temporal information and foreground subject segmentation, 

because some actions such as “holding an object” and 

“drinking” are rather inactive and analysis would only be 

based on static features. To reduce the cost of CNN, it is 

common to use a pre-trained model, as demonstrated by Chi 

Geng et al. [8] use pre-trained CNN model to learn features 

from images and classify images by SVM. To reduce the 

over-fitting problem of CNN, Srivastava et al. gave 

“dropout” which prevent neural units from co-adapting too 

much to address over-fitting problem. 

We examined Convolutional Neural Network (CNN) and 

Bag of Word (BoW) methods that have proven to be 

successful in object recognition, and applied them to the 

human action recognition problem. Based on our initial 

experimental results and analysis of our data, we attempted 

to further improve our results using supervised and 

unsupervised methods. To fully understand CNN, we 

looked into feature extracted by CNN. We then drew 

insightful observations that we think would help future 

work in this area. 

III. Methods 

Data and Setup  
We utilized Caffe, Python (and pycaffe), and Matlab to 

create and run our CNN and BoW models. We rented a 

server with 30GB of harddrive space and 4GB of Nvidia 

GPU memory, costing roughly $400 including usage time. 

Due to hardware limitations, we had to reduce our data set 

size, so we chose to classify 8 actions out of the Stanford40 

data set (B. Yao November 6-13, 2011), using 1839 images 

for training (and validation, for CNN), and 456 images for 

testing. With such small data set, we allocated more images 
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for training, which only had 100 images per action for 

training. Instead, we used a train-val-test ratio of 7-1.5-1.5. 

We were at risks of overfitting, but we took precautions to 

prevent overfitting. 

As a default, we used the images as given in the data set. 

Then, we applied cropping to our images in two ways: one 

with a tight bound to isolate our subject and nearby objects, 

and one that is 50% larger than our tight bound to capture 

some background information. Lastly, we pre-processed 

images to a color segmentation process using k-means.  

Bag of Words 
In general, objects in an image can be described by 

feature descriptors, forming a histogram for the image. A 

collection of histograms from different images form the 

Bag of Words (BoW) model, which can be learned by a 

classifier. During training, we used a Scale-Invariant 

Feature Transform (SIFT) method to extract features, then 

we utilized Spatial Pyramid Matching (SPM) (S. Lazebnik 

2006) to obtain histograms from increasingly small sub-

regions. Stacking these histograms together helps us 

maintain spatial information. We then used K-means 

method to cluster the final histograms into K code words. 

During testing, match the histogram of the input image 

with our BoW model. BoW is unaffected by position and 

orientation of objects in the image, and the SPM method 

gives us more spatial information to help us localize 

objects.  

 
Figure 1 BoW Histogram 

Convolutional Neural Network 
CNN is a different method of obtaining image features 

and training on feature representations in high dimensional 

space. It has been quite successful in recent years, since its 

introduction in 2012 (Alex Krizhevsky 2012). 

We used Caffenet (Jia 2014) architecture as the basis to 

our experiments. It is similar to AlexNet, but pooling is 

done before normalization in Caffenet. In brief, Caffenet 

has 5 convolution layers followed by 2 fully connected 

layers and a softmax layer. We trained using pre-trained 

weights, which have ran for 350,000 iterations, to give 

better generalization and to prevent overfitting our data. 

This is our control case. 

Figure 2 Caffenet architecture 

 

Then, we experimented with changing learning rates 

and hyperparamters for each layer, which are: kernel size, 

padding amount, stride, and number of outputs. 

Hyperparameter tuning involves changing the sizes of the 

CNN layers, creating a very different CNN, despite having 

the same number of layers. To study the effect of locality 

sizes on our results, we conducted two tests with the first 

layer’s kernel size being 15 and 7, respectively, and 

different amounts of paddings were used to keep other 

layers the same. In a third test, we also changed the first 

layer’s kernel size from 11 to 27, then decreased our 

kernel sizes in the following layers until the 5th layer 

matches the original 256x13x13 dimension.  

We also created CNN’s from scratch, using our custom-

defined layers and hyperparameters. Below is a summary 

of our three custom models (we only show kernel size, k, 

since we only adjusted other parameters to suit our new k): 

 

Custom 1: Conv(k=11) → RelU → pool → norm → 

Conv(k=3) → RelU → Conv(k=3) → RelU → FC → 

Softmax 

 

Custom 2: Conv(k=13) → RelU → pool → Conv(k=7) 

→RelU →pool→ Conv(k=3) →RelU →pool→FC→ 

FC→Softmax 

 

Custom 3: Conv(k=13) → RelU → pool → Conv(k=7) → 

RelU → pool→ Conv(k=3) → RelU → pool → FC → 

Dropout → FC → Softmax 

 

Our custom CNN 1 is a small CNN with 3 layers. The 

other two are larger. The difference between our custom 

CNN 2 and 3 is that custom CNN 3 has a dropout layer. 

This is to prevent our network from overfitting by giving 

each neuron a 0.5 probability that its activation will 

become zero in each iteration. In other words, a dropout of 

data. This avoids co-adaption of units.  

 

  We also ran Googlenet for comparison, which uses an 

“atypical” architecture embedded with inception layers 

that contain multiple convolutions. In terms of 

recognition, Googlenet is known to yield better results 

than Caffenet, but it is more difficult to fine-tune so we 

kept Caffenet as our basis. 



 

 

 

 

 
Figure 3Googlenet architecture 

 

t-Distributed Stochastic Neighbor Embedding 
We used the t-SNE algorithm to help us visualize the 

features obtained from the last FC layer of the Caffenet in 

relation to our actual data. Features from this layer is a 

high dimensional histogram for each image, and t-SNE 

allows us to cluster these images together in 2D space. 

With t-SNE, we set similarities of high dimensional points 

(distribution Q) and low dimensional points (distribution 

P) as two different joint probabilities, where a higher 

probability indicate similarity. The cost function is then a 

Kullback-Leibler divergence of distribution Q from P. 

𝐾𝐿(𝑃||𝑄) =  ∑ ∑ 𝑝𝑖𝑗𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖

  

This leads to the minimization problem. 
𝛿𝐶

𝛿𝑦𝑖

= 4 ∑(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗)(1 + ||𝑦𝑖 − 𝑦𝑗||
2

)−1

𝑗

 

Coincidentally, since t-SNE is an unsupervised method to 

cluster our data, we also tested to see how well it classifies 

our data by applying a K-means algorithm on top of t-

SNE. 

CNN + Classifier 
Similar to using the t-SNE algorithm, we extracted 

activations from the last fully connected layer of our 

CNN’s as features and put them through various 

classifiers. We are interested in using features from CNN 

for image classification problem, but skip the Softmax 

layer that Caffe uses.  

 
Figure 4 Our pipeline: applying SVM on extracted features  

 

Support Vector Machine 

SVM is to find a hyperplane that give the largest minimum 

distance to training data. It is to optimize 

 

𝑚𝑖𝑛𝛾,𝑤,𝑏    
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑚

𝑖=1

 

 𝑠. 𝑡.             𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖  , 𝑖 = 1, … … , 𝑚 

                   𝜉𝑖 ≥ 0, 𝑖 = 1, … … , 𝑚 

The second term 𝐶 ∑ 𝜉𝑖
𝑚
𝑖=1  let us can have margin less 

than 1. C control the two goal want to achieve: Keep 

‖𝑤‖2 small and make margin less than 1. To use this 

linear SVM on our multiclassifier data set, we used “one 

vs one” comparison. We had experimented with “one vs 

all” method but decided “one vs one” yields better results. 

Multi-Class Support Vector Machine 

We used one versus one for our dataset. For one versus 

one method, if we have N class, there will be N(N-1)/2 

classifier. Each classifier is for two classes from our 

dataset. We are going to solve the following optimization 

problem. 

min 𝑃(𝑤𝑖𝑗 , 𝑏𝑖𝑗 , 𝜉𝑖𝑗) =
1

2
(𝑤𝑖𝑗)𝑇𝑤𝑖𝑗 + 𝐶 ∑ 𝜉𝑛

𝑖,𝑗

𝑛

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

  (𝑤𝑖𝑗)𝑇∅(𝑥𝑛) + 𝑏𝑖,𝑗 ≥ 1 − 𝜉𝑛
𝑖,𝑗

, 𝑦𝑛 = 𝑖 

 (𝑤𝑖𝑗)𝑇∅(𝑥𝑛) + 𝑏𝑖,𝑗 ≤ −1 + 𝜉𝑛
𝑖,𝑗

, 𝑦𝑛 ≠ 𝑖 

 𝜉𝑛
𝑖,𝑗

≥ 0, 𝑛 = 1,2, … … , 𝑁(𝑁 − 1)/2 

 

Each classifier will vote to one class, and the most voted 

class will be final result 

Additive Chi Square Kernel 

Additive Chi-square kernel does normalization to the 

feature histograms, so that spikes in the histograms will 

not be heavily affect the result. We used the “one vs one” 

comparison. 

 

𝑘(𝑥, 𝑦) = ∑
2𝑥[𝑖]𝑦[𝑖]

𝑥[𝑖] + 𝑦[𝑖]
𝑖

 

K-nearest neighbor algorithm 

Choose an integer K. KNN classifier will find the nearest 

K neighbors of x0 from training data. According to the 

class of nearest k point, it give conditional probability for 

each class. 

 

𝑃(𝑌 = 𝑗|𝑋 = 𝑥0) =
1

𝐾
∑ 𝐼(𝑦𝑖 = 𝑗) 

 
Figure 5 KNN model 

Random Forest 

A random Forest method is an ensemble method. It 

build a series of simple trees which are used to vote for 

final class. For classification, RF predict the class that 



 

 

 

predicted by most trees. The predictions of the RF will be 

the average of the predictions by simple trees 

 

𝑃 =  
1

𝐾
∑ 𝐼𝑡ℎ 𝑡𝑟𝑒𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐾

𝐼=1

 

IV. Experiments and Results 

Default CNN 
We first obtained data from running our data with pre-

trained weights of Caffenet and Googlenet. We obtained 

these accuracies: 

 

Model Top1 accuracy 

Caffenet 0.8223 

Googlenet 0.8552 

 

We then examined some properties of Caffenet. We 

verified that our model has converged by looking at the 1st 

layer weights to verify there’s no noise. 

 
Figure 6 Nicely converged 1st layer weights (left) vs noisy 

weights (right) 

 

Testing on training data yielded an accuracy of 0.9833. 

This may indicate some overfitting, but we believe it is 

mostly due to the original models doing well. This is 

because using pre-trained weights and giving 0 learning 

rates to some of the weights should provide enough 

generalization.  

We examined Caffenet’s first layer’s outputs and 

noticed that while Caffeent can capture large features 

correctly, it sometimes recognizes background noise and 

irrelevant information as key features. 

 
Figure 7 First layer outputs. 2nd row shows main features and 

local objects are captured. 3rd row shows some noise is captured. 

 

For improvement, we believe it would be beneficial to 

filter out noise and have larger locality of features. 

It becomes difficult gauging the activations in later 

layers, due to the locality of each neuron, so it was not 

used. 

 
Figure 8 Activations from 5th layer of CNN 

 

Custom CNN 
Based on preliminary results, we wanted our CNN to 

capture larger features and ignore smaller objects or noise. 

Hence, we created our custom CNNs, as described in the 

Methods section. 

 

CNN Top 1 accuracy 

Kernel size 7 0.5679 

Kernel size 15 0.5021 

Kernel size 27 0.4208 

Custom CNN 1 0.1251 

Custom CNN 2 0.5501 

Custom CNN 3 0.5317 

 

 None of our custom CNN’s matched the default 

model’s accuracy. This could be we did not have the time 

to train our models for long enough because we could only 

run for 20,000 iterations, which takes half a day. But we 

noticed that the 1st layer’s weights appear to converge 

nicely, so it’s also possible that the default Caffenet was 

designed to be the best CNN of its kind. Hyperparameter 

tuning is, we realized, an optimization problem of its own. 



 

 

 

 We noticed that, unexpectedly, a larger kernel size at 

the first convolution layer yielded lower accuracies. We 

compared the 1st layer’s outputs and noticed that, while a 

larger kernel size does give us larger locality and capture 

bigger features in the images, as intended, it is perhaps too 

broad for our CNN. The smaller kernel size, on the other 

hand, captures too much detail.  

 
Figure 9 Layer 1 outputs, same column is from the same model. 

From left to right: K=15 K=11, K=7 

Bag of Words 
From looking at BoW code words, we also thought it 

would be beneficial to filter out background noise.  

 
Figure 10 BoW features 

 

We tried to filter out the background by changing our K 

size for the k-mean cluster, but it’s not inherently obvious 

how many codewords to use. We tried K=200 and K=300. 

 

 
Figure 11 Linear SVM performances 

 
Figure 12 KNN performances 

 

 
Figure 13 Random forest performances 

 

 
  We saw that for the most part, K=200 performed better. 

But this may not be optimized, since number of code words 

is heavily related to the properties of images, so there is no 

best way to find K but trial and error, like finding CNN hyper 

parameters. According to our result, K=200 is better, so we 

can deduce that SIFT doesn’t use as many distinct features 

from our images, so that we don’t need too many words. 

A more useful takeaway is looking at our results of our 

cropping. After we cropped the image based on tight 

bounding box, we saw that accuracy actually dropped. This is 

contradictory to our expectation. We thought that removing 



 

 

 

background noise would reduce error and improve our result. 

However, we realized that contextual information is actually 

important for classification.  

We then expanded our bounding box by 1.5 times to 

include local background information. As predicted, we saw 

an improvement in our result.  

 
Figure 14 Plot of our results 

CNN + CLASSIFIER 
Fine-tuned CaffeNet 

Top 1 accuracy 

 Original Cropped Cropped 

(1.5x) 

CaffeNet 0.8223 0.7785 0.8377 

CaffeNet+SVM 

(linear 

0.8469 0.7938 0.8728 

CaffeNet+SVM 

(chi-square) 

0.8487 --- --- 

CaffeNet+KNN 0.8443 0.7982 0.8618 

CaffeNet+RF 0.8333 0.7872 0.8465 

 

As shown above, if we train SVM and other classifiers 

on top of features extracted by CNN, we achieve better 

results than using CNN alone. This was surprising, since 

CNN’s own accuracy was already high. 

We again thought it may be due to the overfitting issue 

described in previous section. So, when we use SVM for 

classification, we made SVM resistant to overfitting by 

tuning the parameter C. 

Although kernel trick perform better than linear SVM in 

BoW model, we didn’t use it on CNN feature because CNN 

feature is very high dimension. Using kernel on CNN will be 

time consuming with not a better result. So, we simply use 

linear SVM here for CNN feature. 

We observe that SVM, KNN, RF all perform well on our 

dataset when using CNN features, even though in our BoW 

model KNN and RF both did badly. Even though CNN is not 

perfect at extracting features, it is much better than BoW 

model, which takes in too much noise from the image. 

We saw CNN+KNN have even higher accuracy after we 

cropped the image. Table below show some predictions using 

CNN+KNN on different cropped images. We can see that the 

background is a contributing factor. Image 3 was classified 

as climbing because of the wall background, so does the 

image 4. After we cropped the image and put tight bounding 

box on action, image 3 and image 4 became right but image1 

was missed. Without rock in image1, it was classified as 

jumping. In our expanded bounding Box, predictions for 

images 1,3, and 4 became correct.. 

We can see that the background is necessary when the 

action relies on the environment. Some action is highly 

related to the background, like climbing, where as some do 

not, like jumping. If we could recognize the relationship 

between the background and the action, we can achieve 

better results. 

 
 

Un-Fine-tuned CaffeNet 

Top 1 accuracy 

 Original Cropped Cropped 

(1.5x) 

CaffeNet 0.7084 0.6012 0.7114 

CaffeNet+SVM 

(linear 

0.8421 0.7807 0.8421 

CaffeNet+KNN 0.7390 0.6798 0.7675 

CaffeNet+RF 0.7215 0.6008 0.7324 

 

We also tested the classifiers on non-trained CaffeNet. 

Surprisingly, we found SVM give a pretty good accuracy. It 

is only a little lower than fine-tuned feature. KNN and RF are 

not like SVM, their accuracy is much lower than fine-tuned 

caffeNet feature. This confirms that Caffenet’s pretrained 

model does a very good job at recognizing objects, such that 

when we insert our data set we do not need to train much.  

Feature Examination: t-SNE 
After applying the t-SNE method, we noted that the 

accuracy was only 0.5203, much like our other classifiers. 

What’s more interesting, though, is visualizing our data. 

We see that images with clearly distinct objects (holding 

an umbrella, riding a horse, playing guitar, etc) are more 

distinguishable. On the other hand, actions that require 

environmental interactions (jumping, climbing) are not as 

obvious. Also, images taken from afar or from 



 

 

 

unconventional angles would be harder to cluster. This 

could be due to the introduction of background noise or 

occlusion. It becomes obvious that pre filtering our data 

set would be an important step prior to training. 

 

 
Figure 15 t-SNE visualization 

Data Processing 
 We attempted to further pre-process our images using 

color segmentation with k-means algorithm. However, the 

results were not desirable most of the time. We see that 

this method works great on images where the human 

subject is clearly separated from the background, but it 

fails to do the same when there are other objects near the 

human subject, especially when the colors are similar. 

While the idea of segmentation is novel and may provide 

more accurate results, the color segmentation method is 

not ideal for such wide-range data. 

 

 
Figure 16 Results of sgmentations on different images. 

Conclusion 
We experimented with and validated many methods and 

techniques in our project. The most useful takeaways for 

future work is that, for either supervised or unsupervised 

learning, it is important to include sufficient but not excess 

background and contextual information prior to training for 

human action recognition. The key point is how to select the 

region from image. We saw that cropping is a strong tool to 

use, but we cannot crop too much or too little background.  

Then, we found that KNN performs well with fine-tuned 

CaffeNet model on our dataset. KNN is a very fast 

calculating model. For future work, we will test and evaluate 

KNN using the whole 40 action dataset. This is because CNN 

does a good job extracting features, so when used in 

conjunction with KNN, we achieve a much better result, as 

oppose to using low level features from BoW. 

In general, CNN is a great tool at extracting features from 

images, even though it lacks the ability to distinguish subject, 

object, and background, similar to BoW. Even so, it 

significantly outperforms BoW model, as we expected from 

literature. For small size dataset, using SVM, KNN on CNN 

feature gives even higher accuracy than CNN itself. We 

thought that CNN could overfit such small size dataset, but it 

is possible to prevent overfit with CNN settings. In small size 

dataset, it may be more accurate to combine SVM,KNN with 

CNN feature. 

 

Code link: 

https://drive.google.com/a/stanford.edu/folderview?id=0B0G

AxnZFVLhBTmVuRWVxeUdTcGs&usp=sharing 
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