
1 Motivation came from neither partner having prior CNN experiences

Abstract
We set out to validate, examine, and improve on methods

in recognizing human actions in still images. Human

action recognition is still a challenging task, despite

recent advancements in object recognition, due to the

variabilities in real-world images containing human

subjects and surrounding objects and environments. We

experimented with traditional Convolutional Neural

Network and Bag of Word methods, while also using

various classifiers in conjunction. After examining outputs

and weights in both methods, we saw that noise is often

considered important features. This lead to further

examination and experimentation of our data set and its

properties. We will discuss our many findings in this

paper, with a surprising takeaway that specific

background and contextual information are essential for

classification.

I. Introduction

Recognizing human actions is a popular area of interest

due to its many potential applications, but it is still in its

infancy. Successful human action recognition would

directly benefit data analysis for large-scale image

indexing, scene analysis for human computer interactions

and robotics, and object recognition and detection. This is

more difficult than object recognition due to variability in

real-world environments, human poses, and interactions

with objects. Since researches on human action recognition

in still images are relatively new, we rely on methods for

object recognition as basis of our approaches. In particular,

we were interested in seeing how convolutional neural

networks (CNN)1 perform in comparison with past feature

selection methods such as Bag of Words (BoW). Also, we

experimented with various supervised and unsupervised

classifiers, examined our methods’ properties and effects on

our action data set, and also pre-processed our data set in

order to better our results.

II. Related Work

In past decades, many ideas proposed to solve the human

action recognition problem. Some people put interest on

understanding human-object reaction. Bourdev et .al [9]

proposed Poselet to recognize human body part and further

research on human pose relation. Although those methods

have very impressive result, hand-crafted feature method

still can't be very generalized to all purpose. They all are

used for specific goal.

To conquer that, Krizhevsky et al. [5] first used

Convolutional Neural Network(CNN) for image

classification in 2013. Convolutional Neural Network is a

powerful method because, unlike handcrafted feature

methods, it learns features from whole image through

forward and backward processes in deep layer structure. In

2014, Ji, Shuiwang et al. [6] first apply Convolutional

Neural Network to recognize human action in video and

popularized CNN methods. However, this is unlike our

project goal. There’s a necessity to using still images over

videos, which is less challenging due to inclusion of

temporal information and foreground subject segmentation,

because some actions such as “holding an object” and

“drinking” are rather inactive and analysis would only be

based on static features. To reduce the cost of CNN, it is

common to use a pre-trained model, as demonstrated by Chi

Geng et al. [8] use pre-trained CNN model to learn features

from images and classify images by SVM. To reduce the

over-fitting problem of CNN, Srivastava et al. gave

“dropout” which prevent neural units from co-adapting too

much to address over-fitting problem.

We examined Convolutional Neural Network (CNN) and

Bag of Word (BoW) methods that have proven to be

successful in object recognition, and applied them to the

human action recognition problem. Based on our initial

experimental results and analysis of our data, we attempted

to further improve our results using supervised and

unsupervised methods. To fully understand CNN, we

looked into feature extracted by CNN. We then drew

insightful observations that we think would help future

work in this area.

III. Methods

Data and Setup
We utilized Caffe, Python (and pycaffe), and Matlab to

create and run our CNN and BoW models. We rented a

server with 30GB of harddrive space and 4GB of Nvidia

GPU memory, costing roughly $400 including usage time.

Due to hardware limitations, we had to reduce our data set

size, so we chose to classify 8 actions out of the Stanford40

data set (B. Yao November 6-13, 2011), using 1839 images

for training (and validation, for CNN), and 456 images for

testing. With such small data set, we allocated more images

Human Action Recognition Using CNN and BoW Methods
Stanford University

CS231A Computer Vision Spring 2016

Max Wang
mwang07@stanford.edu

Ting-Chun Yeh
chun618@stanford.edu

for training, which only had 100 images per action for

training. Instead, we used a train-val-test ratio of 7-1.5-1.5.

We were at risks of overfitting, but we took precautions to

prevent overfitting.

As a default, we used the images as given in the data set.

Then, we applied cropping to our images in two ways: one

with a tight bound to isolate our subject and nearby objects,

and one that is 50% larger than our tight bound to capture

some background information. Lastly, we pre-processed

images to a color segmentation process using k-means.

Bag of Words
In general, objects in an image can be described by

feature descriptors, forming a histogram for the image. A

collection of histograms from different images form the

Bag of Words (BoW) model, which can be learned by a

classifier. During training, we used a Scale-Invariant

Feature Transform (SIFT) method to extract features, then

we utilized Spatial Pyramid Matching (SPM) (S. Lazebnik

2006) to obtain histograms from increasingly small sub-

regions. Stacking these histograms together helps us

maintain spatial information. We then used K-means

method to cluster the final histograms into K code words.

During testing, match the histogram of the input image

with our BoW model. BoW is unaffected by position and

orientation of objects in the image, and the SPM method

gives us more spatial information to help us localize

objects.

Figure 1 BoW Histogram

Convolutional Neural Network
CNN is a different method of obtaining image features

and training on feature representations in high dimensional

space. It has been quite successful in recent years, since its

introduction in 2012 (Alex Krizhevsky 2012).

We used Caffenet (Jia 2014) architecture as the basis to

our experiments. It is similar to AlexNet, but pooling is

done before normalization in Caffenet. In brief, Caffenet

has 5 convolution layers followed by 2 fully connected

layers and a softmax layer. We trained using pre-trained

weights, which have ran for 350,000 iterations, to give

better generalization and to prevent overfitting our data.

This is our control case.

Figure 2 Caffenet architecture

Then, we experimented with changing learning rates

and hyperparamters for each layer, which are: kernel size,

padding amount, stride, and number of outputs.

Hyperparameter tuning involves changing the sizes of the

CNN layers, creating a very different CNN, despite having

the same number of layers. To study the effect of locality

sizes on our results, we conducted two tests with the first

layer’s kernel size being 15 and 7, respectively, and

different amounts of paddings were used to keep other

layers the same. In a third test, we also changed the first

layer’s kernel size from 11 to 27, then decreased our

kernel sizes in the following layers until the 5th layer

matches the original 256x13x13 dimension.

We also created CNN’s from scratch, using our custom-

defined layers and hyperparameters. Below is a summary

of our three custom models (we only show kernel size, k,

since we only adjusted other parameters to suit our new k):

Custom 1: Conv(k=11) → RelU → pool → norm →

Conv(k=3) → RelU → Conv(k=3) → RelU → FC →

Softmax

Custom 2: Conv(k=13) → RelU → pool → Conv(k=7)

→RelU →pool→ Conv(k=3) →RelU →pool→FC→

FC→Softmax

Custom 3: Conv(k=13) → RelU → pool → Conv(k=7) →

RelU → pool→ Conv(k=3) → RelU → pool → FC →

Dropout → FC → Softmax

Our custom CNN 1 is a small CNN with 3 layers. The

other two are larger. The difference between our custom

CNN 2 and 3 is that custom CNN 3 has a dropout layer.

This is to prevent our network from overfitting by giving

each neuron a 0.5 probability that its activation will

become zero in each iteration. In other words, a dropout of

data. This avoids co-adaption of units.

 We also ran Googlenet for comparison, which uses an

“atypical” architecture embedded with inception layers

that contain multiple convolutions. In terms of

recognition, Googlenet is known to yield better results

than Caffenet, but it is more difficult to fine-tune so we

kept Caffenet as our basis.

Figure 3Googlenet architecture

t-Distributed Stochastic Neighbor Embedding
We used the t-SNE algorithm to help us visualize the

features obtained from the last FC layer of the Caffenet in

relation to our actual data. Features from this layer is a

high dimensional histogram for each image, and t-SNE

allows us to cluster these images together in 2D space.

With t-SNE, we set similarities of high dimensional points

(distribution Q) and low dimensional points (distribution

P) as two different joint probabilities, where a higher

probability indicate similarity. The cost function is then a

Kullback-Leibler divergence of distribution Q from P.

𝐾𝐿(𝑃||𝑄) = ∑ ∑ 𝑝𝑖𝑗𝑙𝑜𝑔
𝑝𝑖𝑗

𝑞𝑖𝑗
𝑗𝑖

This leads to the minimization problem.
𝛿𝐶

𝛿𝑦𝑖

= 4 ∑(𝑝𝑖𝑗 − 𝑞𝑖𝑗)(𝑦𝑖 − 𝑦𝑗)(1 + ||𝑦𝑖 − 𝑦𝑗||
2

)−1

𝑗

Coincidentally, since t-SNE is an unsupervised method to

cluster our data, we also tested to see how well it classifies

our data by applying a K-means algorithm on top of t-

SNE.

CNN + Classifier
Similar to using the t-SNE algorithm, we extracted

activations from the last fully connected layer of our

CNN’s as features and put them through various

classifiers. We are interested in using features from CNN

for image classification problem, but skip the Softmax

layer that Caffe uses.

Figure 4 Our pipeline: applying SVM on extracted features

Support Vector Machine

SVM is to find a hyperplane that give the largest minimum

distance to training data. It is to optimize

𝑚𝑖𝑛𝛾,𝑤,𝑏
1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖

𝑚

𝑖=1

 𝑠. 𝑡. 𝑦𝑖(𝑤𝑇𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 , 𝑖 = 1, … … , 𝑚

 𝜉𝑖 ≥ 0, 𝑖 = 1, … … , 𝑚

The second term 𝐶 ∑ 𝜉𝑖
𝑚
𝑖=1 let us can have margin less

than 1. C control the two goal want to achieve: Keep

‖𝑤‖2 small and make margin less than 1. To use this

linear SVM on our multiclassifier data set, we used “one

vs one” comparison. We had experimented with “one vs

all” method but decided “one vs one” yields better results.

Multi-Class Support Vector Machine

We used one versus one for our dataset. For one versus

one method, if we have N class, there will be N(N-1)/2

classifier. Each classifier is for two classes from our

dataset. We are going to solve the following optimization

problem.

min 𝑃(𝑤𝑖𝑗 , 𝑏𝑖𝑗 , 𝜉𝑖𝑗) =
1

2
(𝑤𝑖𝑗)𝑇𝑤𝑖𝑗 + 𝐶 ∑ 𝜉𝑛

𝑖,𝑗

𝑛

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

 (𝑤𝑖𝑗)𝑇∅(𝑥𝑛) + 𝑏𝑖,𝑗 ≥ 1 − 𝜉𝑛
𝑖,𝑗

, 𝑦𝑛 = 𝑖

 (𝑤𝑖𝑗)𝑇∅(𝑥𝑛) + 𝑏𝑖,𝑗 ≤ −1 + 𝜉𝑛
𝑖,𝑗

, 𝑦𝑛 ≠ 𝑖

 𝜉𝑛
𝑖,𝑗

≥ 0, 𝑛 = 1,2, … … , 𝑁(𝑁 − 1)/2

Each classifier will vote to one class, and the most voted

class will be final result

Additive Chi Square Kernel

Additive Chi-square kernel does normalization to the

feature histograms, so that spikes in the histograms will

not be heavily affect the result. We used the “one vs one”

comparison.

𝑘(𝑥, 𝑦) = ∑
2𝑥[𝑖]𝑦[𝑖]

𝑥[𝑖] + 𝑦[𝑖]
𝑖

K-nearest neighbor algorithm

Choose an integer K. KNN classifier will find the nearest

K neighbors of x0 from training data. According to the

class of nearest k point, it give conditional probability for

each class.

𝑃(𝑌 = 𝑗|𝑋 = 𝑥0) =
1

𝐾
∑ 𝐼(𝑦𝑖 = 𝑗)

Figure 5 KNN model

Random Forest

A random Forest method is an ensemble method. It

build a series of simple trees which are used to vote for

final class. For classification, RF predict the class that

predicted by most trees. The predictions of the RF will be

the average of the predictions by simple trees

𝑃 =
1

𝐾
∑ 𝐼𝑡ℎ 𝑡𝑟𝑒𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐾

𝐼=1

IV. Experiments and Results

Default CNN
We first obtained data from running our data with pre-

trained weights of Caffenet and Googlenet. We obtained

these accuracies:

Model Top1 accuracy

Caffenet 0.8223

Googlenet 0.8552

We then examined some properties of Caffenet. We

verified that our model has converged by looking at the 1st

layer weights to verify there’s no noise.

Figure 6 Nicely converged 1st layer weights (left) vs noisy

weights (right)

Testing on training data yielded an accuracy of 0.9833.

This may indicate some overfitting, but we believe it is

mostly due to the original models doing well. This is

because using pre-trained weights and giving 0 learning

rates to some of the weights should provide enough

generalization.

We examined Caffenet’s first layer’s outputs and

noticed that while Caffeent can capture large features

correctly, it sometimes recognizes background noise and

irrelevant information as key features.

Figure 7 First layer outputs. 2nd row shows main features and

local objects are captured. 3rd row shows some noise is captured.

For improvement, we believe it would be beneficial to

filter out noise and have larger locality of features.

It becomes difficult gauging the activations in later

layers, due to the locality of each neuron, so it was not

used.

Figure 8 Activations from 5th layer of CNN

Custom CNN
Based on preliminary results, we wanted our CNN to

capture larger features and ignore smaller objects or noise.

Hence, we created our custom CNNs, as described in the

Methods section.

CNN Top 1 accuracy

Kernel size 7 0.5679

Kernel size 15 0.5021

Kernel size 27 0.4208

Custom CNN 1 0.1251

Custom CNN 2 0.5501

Custom CNN 3 0.5317

 None of our custom CNN’s matched the default

model’s accuracy. This could be we did not have the time

to train our models for long enough because we could only

run for 20,000 iterations, which takes half a day. But we

noticed that the 1st layer’s weights appear to converge

nicely, so it’s also possible that the default Caffenet was

designed to be the best CNN of its kind. Hyperparameter

tuning is, we realized, an optimization problem of its own.

 We noticed that, unexpectedly, a larger kernel size at

the first convolution layer yielded lower accuracies. We

compared the 1st layer’s outputs and noticed that, while a

larger kernel size does give us larger locality and capture

bigger features in the images, as intended, it is perhaps too

broad for our CNN. The smaller kernel size, on the other

hand, captures too much detail.

Figure 9 Layer 1 outputs, same column is from the same model.

From left to right: K=15 K=11, K=7

Bag of Words
From looking at BoW code words, we also thought it

would be beneficial to filter out background noise.

Figure 10 BoW features

We tried to filter out the background by changing our K

size for the k-mean cluster, but it’s not inherently obvious

how many codewords to use. We tried K=200 and K=300.

Figure 11 Linear SVM performances

Figure 12 KNN performances

Figure 13 Random forest performances

 We saw that for the most part, K=200 performed better.

But this may not be optimized, since number of code words

is heavily related to the properties of images, so there is no

best way to find K but trial and error, like finding CNN hyper

parameters. According to our result, K=200 is better, so we

can deduce that SIFT doesn’t use as many distinct features

from our images, so that we don’t need too many words.

A more useful takeaway is looking at our results of our

cropping. After we cropped the image based on tight

bounding box, we saw that accuracy actually dropped. This is

contradictory to our expectation. We thought that removing

background noise would reduce error and improve our result.

However, we realized that contextual information is actually

important for classification.

We then expanded our bounding box by 1.5 times to

include local background information. As predicted, we saw

an improvement in our result.

Figure 14 Plot of our results

CNN + CLASSIFIER
Fine-tuned CaffeNet

Top 1 accuracy

 Original Cropped Cropped

(1.5x)

CaffeNet 0.8223 0.7785 0.8377

CaffeNet+SVM

(linear

0.8469 0.7938 0.8728

CaffeNet+SVM

(chi-square)

0.8487 --- ---

CaffeNet+KNN 0.8443 0.7982 0.8618

CaffeNet+RF 0.8333 0.7872 0.8465

As shown above, if we train SVM and other classifiers

on top of features extracted by CNN, we achieve better

results than using CNN alone. This was surprising, since

CNN’s own accuracy was already high.

We again thought it may be due to the overfitting issue

described in previous section. So, when we use SVM for

classification, we made SVM resistant to overfitting by

tuning the parameter C.

Although kernel trick perform better than linear SVM in

BoW model, we didn’t use it on CNN feature because CNN

feature is very high dimension. Using kernel on CNN will be

time consuming with not a better result. So, we simply use

linear SVM here for CNN feature.

We observe that SVM, KNN, RF all perform well on our

dataset when using CNN features, even though in our BoW

model KNN and RF both did badly. Even though CNN is not

perfect at extracting features, it is much better than BoW

model, which takes in too much noise from the image.

We saw CNN+KNN have even higher accuracy after we

cropped the image. Table below show some predictions using

CNN+KNN on different cropped images. We can see that the

background is a contributing factor. Image 3 was classified

as climbing because of the wall background, so does the

image 4. After we cropped the image and put tight bounding

box on action, image 3 and image 4 became right but image1

was missed. Without rock in image1, it was classified as

jumping. In our expanded bounding Box, predictions for

images 1,3, and 4 became correct..

We can see that the background is necessary when the

action relies on the environment. Some action is highly

related to the background, like climbing, where as some do

not, like jumping. If we could recognize the relationship

between the background and the action, we can achieve

better results.

Un-Fine-tuned CaffeNet

Top 1 accuracy

 Original Cropped Cropped

(1.5x)

CaffeNet 0.7084 0.6012 0.7114

CaffeNet+SVM

(linear

0.8421 0.7807 0.8421

CaffeNet+KNN 0.7390 0.6798 0.7675

CaffeNet+RF 0.7215 0.6008 0.7324

We also tested the classifiers on non-trained CaffeNet.

Surprisingly, we found SVM give a pretty good accuracy. It

is only a little lower than fine-tuned feature. KNN and RF are

not like SVM, their accuracy is much lower than fine-tuned

caffeNet feature. This confirms that Caffenet’s pretrained

model does a very good job at recognizing objects, such that

when we insert our data set we do not need to train much.

Feature Examination: t-SNE
After applying the t-SNE method, we noted that the

accuracy was only 0.5203, much like our other classifiers.

What’s more interesting, though, is visualizing our data.

We see that images with clearly distinct objects (holding

an umbrella, riding a horse, playing guitar, etc) are more

distinguishable. On the other hand, actions that require

environmental interactions (jumping, climbing) are not as

obvious. Also, images taken from afar or from

unconventional angles would be harder to cluster. This

could be due to the introduction of background noise or

occlusion. It becomes obvious that pre filtering our data

set would be an important step prior to training.

Figure 15 t-SNE visualization

Data Processing
 We attempted to further pre-process our images using

color segmentation with k-means algorithm. However, the

results were not desirable most of the time. We see that

this method works great on images where the human

subject is clearly separated from the background, but it

fails to do the same when there are other objects near the

human subject, especially when the colors are similar.

While the idea of segmentation is novel and may provide

more accurate results, the color segmentation method is

not ideal for such wide-range data.

Figure 16 Results of sgmentations on different images.

Conclusion
We experimented with and validated many methods and

techniques in our project. The most useful takeaways for

future work is that, for either supervised or unsupervised

learning, it is important to include sufficient but not excess

background and contextual information prior to training for

human action recognition. The key point is how to select the

region from image. We saw that cropping is a strong tool to

use, but we cannot crop too much or too little background.

Then, we found that KNN performs well with fine-tuned

CaffeNet model on our dataset. KNN is a very fast

calculating model. For future work, we will test and evaluate

KNN using the whole 40 action dataset. This is because CNN

does a good job extracting features, so when used in

conjunction with KNN, we achieve a much better result, as

oppose to using low level features from BoW.

In general, CNN is a great tool at extracting features from

images, even though it lacks the ability to distinguish subject,

object, and background, similar to BoW. Even so, it

significantly outperforms BoW model, as we expected from

literature. For small size dataset, using SVM, KNN on CNN

feature gives even higher accuracy than CNN itself. We

thought that CNN could overfit such small size dataset, but it

is possible to prevent overfit with CNN settings. In small size

dataset, it may be more accurate to combine SVM,KNN with

CNN feature.

Code link:

https://drive.google.com/a/stanford.edu/folderview?id=0B0G

AxnZFVLhBTmVuRWVxeUdTcGs&usp=sharing

V. References

[1] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton. 2012.

ImageNet Classification with Deep Convolutional. NIPS

Proceedings.

[2] B. Yao, X. Jiang, A. Khosla, A.L. Lin, L.J. Guibas, and L.

Fei-Fei. November 6-13, 2011. Human Action Recognition

by Learning Bases of Action Attributes and Parts. Barcelona,

Spain.: Internation Conference on Computer Vision (ICCV).

[3] Chi Geng, JianXin Song. 2015. Human Action Recognition

based on Convolutional Neural Networks with a

Convolutional Auto-Encoder. 5th International Conference

on Computer Sciences and Automation Engineering.

[4] Girshick, Ross, et al. Proceedings of the IEEE conference on

computer vision and pattern recognition. "Rich feature

hierarchies for accurate object detection and semantic

segmentation." 2014.

[5] Ji, Shuiwang, et al. n.d. 3D convolutional neural networks for

human action recognition. Pattern Analysis and Machine

Intelligence, IEEE Transactions on35.1 (2013): 221-231.

[6] Jia, Yangqing and Shelhamer, Evan and Donahue, Jeff and

Karayev, Sergey and Long, Jonathan and Girshick, Ross and

Guadarrama, Sergio and Darrell, Trevor. 2014. "Caffe:

Convolutional Architecture for Fast Feature Embedding."

arXiv preprint arXiv:1408.5093.

[7] Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton.

2012. Imagenet classification with deepconvolutional neural

networks. Advances in neural information processing

systems.

[8] S. Lazebnik, C. Schmid and J. Ponce. 2006. Beyond Bags of

Features: Spatial Pyramid Matching for Recognizing Natural

Scene Categories. IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR'06),.

[9] Lubomir Bourdev, Jitendra Malik. Poselets: Body Part

Detectors Trained Using 3D Human Pose Annotations

