
ChessVision: Chess Board and Piece Recognition

Jialin Ding
Stanford University

jding09@stanford.edu

Abstract

This paper details a method to take an image of a chess
board and output a reconstructed computer representation
of the board through board and piece recognition. Though
techniques for board recognition have been thoroughly ex-
plored in the past, especially in relation to chessboard cal-
ibration, previous works on piece recognition often focus
on non-robust segmentation procedures that rely heavily
on the exact color of customized chess boards and pieces.
The method presented in this paper improves upon the
segmentation-based approaches of previous work in piece
recognition by introducing a novel approach using classi-
fiers trained on feature descriptors, which is more robust
to the similarities in color seen in real-life chess boards.
This work is important for both automating the recording of
moves in human chess games and improving the ability of
chess-playing AI that depend on vision.

1. Introduction
The recording of moves during a chess game is often

a tedious manual task that impedes the flow of the game,
especially in formats such as speed chess where manually
recording moves hinders efficient use of time. At the pro-
fessional level, specialized chess sets have been developed
to record moves automatically. However, this equipment is
expensive and not easily accessible to recreational players.
Further, in an age when much analysis and storage of chess
games is done on computers, chess players at all levels can
benefit from the ability to input games into a computer-
readable format by simply taking a picture of a real-life
board, as opposed to manual input. More recently, chess-
playing AI have relied on either specialized equipment or
human assistance in order to function. To truly create an
autonomous chess-playing robot would require the ability
to detect a chessboard and pieces through vision.

This paper outlines an approach that takes as input an
image which contains a chessboard, and outputs a com-
puter representation of that board. The approach was cre-
ated with the best use case for recreational chess players

in mind. Such players most likely do not have access to
multiple cameras. Therefore an approach that takes advan-
tage of multiple images of the same scene was ruled out. In
additional, a stable overhead view of the board, though op-
timal for board recognition, is difficult to configure in real
settings, and so was also ruled out. Therefore, this paper
was written under the assumption that users would take one
picture, mostly likely from a smartphone camera, from an
angle to one side of the board, in order to minimize obstruc-
tion from the players themselves.

One constraint faced in this approach was the lack of
existing databases of classified chess board and piece im-
ages. Therefore, the database used in this paper was man-
ually constructed from one particular chess set and there-
fore does not offer robustness to intra-class variation among
chessboards and pieces. In order to fit the best use case,
the particular chess set used in this paper was chosen to be
representative of the type of sets used by recreational chess
players.

The remainder of this paper will first outline previous
work on chess recognition and highlight a novel improve-
ment to a sub-component of the established algorithm; pro-
vide a technical explanation of the approach; discuss the
experimental setup and results; and present conclusions.

2. Previous work
The realm of chess recognition can be broadly separated

into two major areas. Board recognition refers to the de-
tection of the chess board within the image and the identi-
fication of board characteristics, such as the orientation, the
location of squares, etc. This usually involves finding a pro-
jective transformation that rectifies the image into a format
where the location of the board is known. Piece recognition
refers to the detection of pieces on the board and the local-
ization and classification of those pieces. Since piece recog-
nition relies on knowledge about the board, board recogni-
tion is typically a prerequisite step to piece recognition.

2.1. Board Recognition

Most of the previous computer vision work related to
chess has focused on the area of board recognition. Gen-

1

eral techniques for board recognition can be separated into
corner-based approaches and line-based approaches.

Corner-based approaches use corner detection on the in-
put image to identify the corners of the chess board, then
either perform Hough transforms to identify the lines of the
board or assign coordinates to the corners directly. These
approaches either assume a plain background, so as to re-
duce the number of corner-generating artifacts; use a top-
down overhead view [5]; or require the absence of pieces
from the board, in order to prevent the occlusion of corners
[1]. These approaches work well for general game-tracking
applications, where the board can be identified before the
start of the game, when there are no pieces on the board.
However, corner detection fail under occlusion and back-
ground noise, which occur in real-life settings.

Line-based approaches use edge detection on the input
image to identify lines of the chess board. Domain knowl-
edge, such as the fact that the board can be identified by
18 total lines and the orientations of half those lines will be
orthogonal to the other half, makes line-based approaches
more robust to noise, and is therefore the more popular tech-
nique [2, 6, 7].

2.2. Piece Recognition

Not as much work has gone into piece recognition.
Game-tracking applications assume the starting positions of
the pieces, and there can use differences in intensity val-
ues after each move to track the movement of pieces [1, 5].
Techniques that do not assume a starting position focus on
color segmentation to detect pieces and then use shape de-
scriptors to identify them [2, 3, 4]. However, color seg-
mentation often relies heavily on the ability to distinguish
the four major colors on a chessboard – the colors of white
squares, black squares, white pieces, and black pieces. Of-
ten, squares and pieces of the same color are difficult to dis-
tinguish, so unreasonable constraints must be placed, such
as the usage of a red-and-green chessboard [2] or a side-
view that relies on depth but occludes most of the pieces [3].
A more general solution should be able to perform piece
recognition on a standard, unmodified set.

The main purpose of this paper will be to offer a novel
approach to piece recognition that improves upon the state-
of-the-art techniques outlined above. Instead of the color
segmentation-based approach, which is often non-robust
and places unnecessary constraints on the board, this paper
uses a machine learning approach based on training classi-
fiers with gradient-based feature descriptors. The next sec-
tion will explain the entirety of this approach in detail.

Figure 1. In the board recognition stage, a projective transforma-
tion matrix is constructed that maps the the input image (left) to a
rectified image (right). The blue dots on the rectified image indi-
cate the predicted square corners.

3. Technical Solution

3.1. Board Recognition

The original ChessVision program was implemented us-
ing the line-based methods of de la Escalera et al. [6].
However, this technique produced a sizable error rate due
to noise and frequently was unable to correctly detect the
chessboard. Given that the main purpose of this paper was
to introduce a novel approach to piece recognition, the de-
cision was made to simplify board recognition by adding a
minimal amount of user interaction. This eliminates error
in board recognition and allows all experimentation to fo-
cus on the accuracy of piece recognition, without having to
account for the accuracy of board recognition.

The implementation of board recognition proceeds as
follows. The user is presented the image and must manu-
ally select the four corners of the board, in a specified order
(clockwise from the top left). The 2D coordinates of these
corners are then used to calculate a projective transforma-
tion that maps the board in the image to a 640 pixel by 640
pixel rectified board (Figure 1).

Calculation of the projective transformation matrix is
conducted as follows. Let Pi and (u, v, 1)Ti be the cor-
responding corner points in homogeneous coordinates on
the input image and the rectified image, respectively, for
i ∈ {1, 2, 3, 4}. Then the projective transformation matrix
H ∈ R3x3 can be found up to a scale factor by solving the
system of equations Ph = 0, where

P :=


PT
1 0 −u1P

T
1

0 PT
1 −v1PT

1
...

...
...

PT
4 0 −u4P

T
4

0 PT
4 −v4PT

4


and h is H reshaped into a column vector. The unknown h
can then be found by taking the first column vector of the
third returned matrix of applying SVD to P .

2

Figure 2. Examples of database images for each class. Note the
1:2 aspect ratio.

Class Size of training set (images)
Empty 64
Pawn 128
Knight 32
Bishop 32
Rook 32
Queen 32
King 16

Table 1. Size of training set by class.

3.2. Piece Recognition

Constructing the database There does not currently ex-
ist an extensive database of labeled chess pieces. For the
purposes of this paper, a database of chess pieces was man-
ually constructed from one specific chess set. The database
consisted of images of individual pieces placed on the board
(Figure 2). All images were taken with a 1:2 aspect ratio, in
order to guarantee that the entirety of the pieces were cap-
tured.

Images in the database were manually labelled with one
of seven classes, corresponding to the different chess pieces
– these were pawn, knight, bishop, rook, queen, king, and
empty. Images labelled empty did not contain a piece, but
rather an empty square. White and black pieces of the same
type were given the same label in the database. Distinguish-
ing pieces by color occurred at a later stage. The distribu-
tion of images in the database is shown in Table 1.

Feature extraction Features were constructed over the
images in the database using two separate descriptors –
scale-invariant feature transform (SIFT) [9] and histogram
of oriented gradients (HOG) [10]. The relative performance
of using one over the other is examined in experimentation.

In order to ensure the resulting features were of the same
size, all images in the database were resized to 64 pixels by
128 pixels.

Features were extracted with SIFT using a bag-of-words

model, as follows. SIFT keypoints were first extracted from
all database images. K-means was run over these keypoints
to extract n centroids, which we refer to as words. In exper-
imentation, n was varied. Then the database was iterated
through again. For each image, SIFT keypoints were ex-
tracted and mapped to the nearest word. A histogram was
then constructed over these mapped keypoints and normal-
ized to sum to 1. These histograms served as the feature for
their respective image.

Features were extracted with HOG directly on each re-
sized image. Block size, block stride, cell size, and the num-
ber of bins were varied in experimentation.

The above process of extracting features with SIFT and
HOG was repeated five times, once at one of five possible
aspect ratios – 1:1, 1:1.25, 1:1.5, 1:1.75, and 1:2. During
each iteration, database images were cropped from the top
to fit the given aspect ratio. (For example, for the 1:1.5 as-
pect ratio, only the bottom 3/4 of each image, 64 pixels by
96 pixels, was used to compute features. The top 1/4 was
discarded.) Note that this means no cropped was necessary
for the iteration with aspect ratio 1:2.

In the end, computing features using both SIFT and
HOG over five aspect ratios for all database images pro-
duced 2 · 5 · 336 = 3360 feature descriptors. The remainder
of piece recognition can use either the SIFT features or the
HOG features; the process is identical for both. Therefore,
we will proceed under the assumption that HOG feature de-
scriptors are used. In experimentation, the performance of
both SIFT and HOG was explored.

Training SVMs were used to train binary one-vs-rest
classifiers for each class. The positive training set consisted
of features of that class, and the negative training set con-
sisted of all other features. Each classifier was trained only
on the feature descriptors of the aspect ratio corresponding
to its class (Table 2). Therefore seven classifiers were pro-
duced. Given the unbalanced size of the data set for each
class, weights were given to each class c:

w1 =

∑
i 6=c # image for class i∑
i # image for class i

w0 =
image for class c∑
i # image for class i

Piece classification Pieces were detected and classified
using a modified sliding windows technique. We take ad-
vantage of our domain knowledge of the chessboard as well
as the projective transformation between the 640 pixel by
640 pixel rectified image produced from board recognition
and the input image to slide exactly over the 64 squares of
the chessboard.

3

Class Aspect ratio
Empty 1:1
Pawn 1:1
Knight 1:1.25
Bishop 1:1.5
Rook 1:1.25
Queen 1:1.75
King 1:2

Table 2. Aspect ratios of training set and bounding boxes by class

Figure 3. The pawn classifier used bounding boxes with a 1:1 as-
pect ratio, while the bishop classifier used bounding boxes with a
1:1.5 aspect ratio. The difference in resulting bounding box im-
ages is shown through sample images.

At each square, each of the seven classifiers is run over a
window with aspect ratio corresponding to the class (Figure
3). This was done in order to incorporate information about
the shape of the piece into classification, as well as to reduce
the possibility of artifacts in the bounding box (i.e., pieces
in adjoining squares). The width of the window is set to the
width of the base of the square, and the height is adjusted
accordingly. (For example, a bishop classifier that is run on
a square with a base width of 100 pixels in the input image
would have a window with height 150 pixels.) The window
is resized to a width of 64 pixels before being run through
the classifier.

Instead of outputting a prediction, the classifiers output
a class membership probability estimate. Therefore each
classifier produces a probability matrix over the 64 squares,
with each square being assigned a probability of being oc-
cupied by the piece of the classifier (Figure 4). Overall,
the seven classifiers output seven probability matrices. For
each square, we take the class with the highest probability
estimate in that square as our classification prediction.

Piece color Since the rectified image is 640 pixels by 640
pixels, each square is 80 pixels by 80 pixels. Further, us-
ing domain knowledge we know the color of each square.
Piece color is determined by taking the central 40 pixels by

40 pixels of a square, binarizing, taking the ratio of white
pixels to black pixels, and comparing to the expected ratio
of an empty square. (For example, if the empty square is
known to be white, then a sizable black to white pixel ratio
indicates that the piece is black.)

4. Experiments and results
Board recognition and determination of the color of each

piece each had near perfect accuracy, and so were not exten-
sively tested in experimentation.

Piece recognition was tested on 30 images of chess-
boards with a variable number of pieces placed in random-
ized configurations. Three metrics were measured on each
image. To formally define these metrics, let Bp ∈ R8x8 be
the board predicted by the program, and let Bgt ∈ R8x8 be
the ground truth board, where each element of Bp and Bgt

contains the class label of the corresponding square. Labels
for all classes are positive, except for the label for the empty
class, which is negative. Let P c be the probability matrix
produced by the classifier for class c, so that P c

ij is the prob-
ability estimate of the square in row i and column j of the
chessboard having class c.

• Detection Accuracy: The fraction of squares correctly
identified as empty or non-empty.

DA =

∑8
i,j=1 1{sign(B

p
ij) == sign(Bgt

ij)}
64

• Classification Accuracy: The fraction of correctly
classified squares.

CA =

∑8
i,j=1 1{B

p
ij == Bgt

ij }
64

• Cross Entropy of the Chessboard: An extension of
the idea of cross entropy to the chess setting. It is in-
tended as a more descriptive form of classification ac-
curacy, since it takes into account the margin of prob-
ability scores.

CE =

∑8
i,j=1− lnP c

ij

64

The optimal parameters for SIFT and HOG feature ex-
traction were found by varying the parameters and measur-
ing the quality of the resulting predictions on the 30 test
images. The optimal number of bins for SIFT was found to
be 10. Any further increase in the number of bins did not
appreciably increase accuracy, but did increase computation
time. For HOG, the block size, block stride, cell size, and
number of bins were varied, with the constraints that block
stride and cell size were set equal. The results are shown
in Table 3. Smaller cell sizes produced better results, up

4

Figure 4. Sliding windows produces seven probability matrices (only three are shown here). Red squares in these matrices denote high
probability of a piece. Combining the results produces the final predicted board.

to a point, likely because greater granularity better captures
the relevant differentiating features of pieces that typically
occupy small portions of the board (e.g., the crosses on top
of kings and the crenellations on rooks). Also, increasing
the number of bins produced better results, up to a point.
The optimal configuration of parameters would determined
to be a block size of 32 pixels, a block stride of 16 pix-
els, a cell cize of 16 pixels, and 9 bins. Optimizing further
did not produce appreciably better results, but did increase
computation time. The class weights for SVM also had to
be adjusted slightly to account for the small size of the data
set.

Results of running the program with the optimized pa-
rameters are shown in figure 5. The confusion matrix over
all 30 images using HOG features is shown in table 4. There
are several interesting things to note in these results.

• HOG performs better than SIFT. There are several ex-
planations for this. First, the different classes of pieces
are similar in shape, so a collection of keypoints that
describe one class may be very similar to the keypoints
that describe another class. Instead, pieces are bet-
ter described by a holistic description. Further, HOG
is fundamentally well-suited to detection problems,
which is essential what each classifier is doing. Due
to its holistic nature, HOG is also more robust to oc-
clusions.

• Accuracy decreases and cross entropy increases as the
number of pieces on the board increases. This is likely
due to a combination of reasons. First, differentiating
an empty square from a non-empty square is funda-

Figure 5. Detection and classification accuracy for SIFT and HOG
on top. Cross entropy for SIFT and HOG on bottom.

mentally simpler than differentiating two pieces. Sec-
ond, the rate of occlusions of pieces by other pieces
increases as more pieces appear on the board. Due to
the inadequate data set, the trained classifiers are not
robust to occlusions.

• Some pairs of pieces are difficult to differentiate. For

5

Config.
No.

HOG parameters Measured performance
Block size Block stride Cell size Num. of bins Cross Entropy Detection Acc. Classification Acc.

1 16 8 8 9 1.18 0.931 0.803
2 32 16 16 9 1.34 0.884 0.768
3 32 4 4 9 1.19 0.925 0.809
4 16 4 4 9 1.04 0.950 0.846
5 16 2 2 9 1.03 0.949 0.843
6 8 4 4 9 1.06 0.948 0.840
7 4 2 2 9 1.03 0.943 0.836
8 16 8 8 2 1.38 0.868 0.748
9 16 8 8 20 1.08 0.939 0.843

Table 3. Parameter configurations of HOG and quality of resulting predictions. Configuration 4 was determined to be optimal.

Predicted Class
Empty Pawn Knight Bishop Rook Queen King

Actual Class

Empty 1211 115 46 4 12 6 1
Pawn 19 204 6 0 3 4 0
Knight 14 22 25 2 2 6 1
Bishop 6 33 6 23 2 1 0
Rook 13 15 9 7 19 6 0
Queen 4 5 5 4 0 9 3
King 5 8 8 7 0 5 15

Table 4. Confusion matrix over all test images.

example, bishops were more often predicted as pawns
than bishops. This is due to the similar nature of the
two pieces, and is something that could be addressed
by a more comprehensive data set.

5. Conclusions

The source code for this project can be found
at https://github.com/jialinding/ChessVision.
This paper presented a proof of concept of using a machine
learning approach to piece recognition that is much more
robust to real-life chess boards than segmentation-based ap-
proaches of past works. We determined that training classi-
fiers on HOG feature descriptors produced test results with
a detection accuracy of 95% and a classification accuracy of
85%. Key details to enhance results included using different
aspect ratios in order to better utilize the shape of the piece
in classification and reduce artifacts; and using a cell size
for HOG that is small enough to capture the distinguishing
attributes of pieces.

However, improvements must be made to the program
before it can be used in real game scenarios. The main
bottleneck to improvement, as was apparent throughout the
process of implementing this paper, was the lack of a com-
prehensive labelled data set of images of chess boards and
pieces. With a more comprehensive data set, the classi-
fiers would likely be more accurate and more robust to oc-
clusions and intra-class variations, and classification tech-
niques that require large amounts of training data, such as

neural networks, could be explored. These areas should be
the focus of future research.

References
[1] J. Hack and P. Ramakrishnan. (2014). CVChess: Computer

Vision Chess Analytics [Online]. Available: http://web.
stanford.edu/class/cs231a/prev projects/
chess.pdf

[2] C. Danner and M. Kafafy. (2015). Visual Chess Recognition
[Online]. Available: https://web.stanford.edu/
class/ee368/Project Spring 1415/Reports/
Danner Kafafy.pdf

[3] N. Loewke. (2015). Depth-based image segmentation
[Online]. Available: http://stanford.edu/class/
ee367/Winter2015/report loewke.pdf

[4] I. A. Aljarrah, A. S. Ghorab, and I. M. Khater, ”Object Recog-
nition System using Template Matching Based Signature and
Principal Component Analysis”, International Journal of Dig-
ital Information and Wireless Communications vol. 2, no. 2,
pp. 156-163. The Society of Digital Information and Wireless
Communications, 2012

[5] C. Koray and E. Sumer, ”A Computer Vision System for
Chess Game Tracking,” presented at the 21st Computer Vi-
sion Winter Workshop, Rimske Toplice, Slovenia, 2016

[6] A. De la Escalera and J. M. Armingol, ”Automatic chessboard
detection for intrinsic and extrinsic camera parameter calibra-
tion,” Sensors, vol. 10, no. 3, pp. 20272044, 2010.

[7] K. Y. Tam, J. A. Lay, and D. Levy, ”Automatic grid segmen-
tation of populated chessboard taken at a lower angle view,”

6

in Digital Image Computing: Techniques and Applications
(DICTA), 2008. IEEE, 2008, pp. 294299.

[8] J. E. Neufeld and T. S. Hall, ”Probabilistic location of a popu-
lated chessboard using computer vision,” Midwest Symposium
on Circuits and Systems, pp. 616619, 2010.

[9] D. G. Lowe, ”Distinctive image features from scale-invariant
keypoints,” International journal of computer vision, vol. 60,
no. 2, pp. 91-110, Nov. 2004

[10] N. Dalal and B. Triggs, ”Histograms of Oriented Gradients
for Human Detection”, in Proc. IEEE Conf. Computer Vision
and Pattern Recognition, 2005

7

