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1. Introduction 
 
Given thousands of unordered images of photos with a variety of scenes in your gallery, 
you will find it is very interesting to organize your photos according to scenes, and create 
a 3D reconstruction for each of scenes. The most important and challenging part in this 
task is the matching of images. The popularity of mobile devices has brought a great 
demand for computer vision application on platforms with limited computation and 
storage resources. The main focus of this project is to perform some interesting 
evaluations to help decide which keypoint descriptor is more suitable for image matching 
before 3D reconstruction and/or image panorama given the restricted resources. After 
matching the images with the same scene, I am going to use the results to reconstruct a 
3D view for each scene. The flow of the system is shown in Figure 1. 
  

                 
 

Figure 1. The flow of the system 
 

2. Background/Related Work 
 
A lot of algorithms/methods have been developed to detect distinctive invariant features 
in images, and the most famous one is SIFT developed by David Lowe[1]. It was left 
unchallenged before SURF was developed. To compensate the complexity involved in 
SIFT and SURF, some novel binary descriptors such as BRISK[2], FREAK[3] was 
discovered and were proven promising in some cases. All these are good candidates to 
detect distinctive invariant features for various purposes. Also a lot of comparison was 
made between them for performance and computation cost; however none of them is 
perfect for any specific task. 
  



3D reconstruction is based on matches between multiple images of the same scene. The 
most famous 3D reconstruction project was “Photo Tourism” [4] developed by the 
collaboration of University of Washington-Seattle and Microsoft, where a large 
collection of photos either from personal photo collections or internet photos sharing the 
same site is the input, and each photo’s viewpoint and a sparse 3D model are computed 
using incremental bundle adjustment approach. CMVS and PMVS[5] were further 
developed to create a 3D dense reconstruction. 
 
Since 3D reconstruction or image panorama or other applications assumes the images 
from the same scene, there is a lot of manual work done by us to group images belonging 
to the same scene together firstly. To my knowledge, there is no much work on this 
region and I want to develop an effective method to group these images belonging to the 
same scene automatically. Our approach here is trying to use various descriptors, in 
particular SURF and BRISK in this project, to evaluate their performance on a real 
dataset[6] with the consideration of resources. 3D reconstruction is the second step in our 
project by using the results from the first step.  

 
3. Technical Approaches 
 
This section details image database and approaches I will implement or use in our work. 
 
3.1.Image Database 

  
Our initial database comes from Hyojin Kim[6] at University of California-Davis, and 
includes 7 scenes which include around 7-10 different views for each scene. After I 
downloaded these images, I purposely mixed them together to form the whole dataset for 
image matching step where I try to group images of the same scene.  
                           

                                          
            

Figure 2. Sample images from dataset 
 
3.2.   SURF and BRISK 



SURF is based on the same principles as SIFT, but it improves on SURF by using a box 
filter approximation to the convolution kernel of the Gaussian derivative operator with 
the using of integral images. SURF uses a blob detector based on the Hessian matrix to 
find points of interest. The descriptor is formed by concatenating the histograms of 
gradients of sub-grids around the keypoint into a 64 dimension vector. 
 
BRISK is a 512 bit binary descriptor with sampling pattern composed out of concentric 
rings. It distinguishes between short pairs and long pairs by their distance. The short pairs 
are used for building the descriptor by comparing the smoothed intensity of the first point 
in the pair is larger than that of the second point. This builds the binary descriptor that 
uses hamming distance instead of Euclidean, which can speed up computation a lot. 
 
In our project, I used these two detectors to detect features for image matching, and 
compared their performance over the dataset. 
 
3.3.   Selection of KeyPoints 
 
There are many keypoints detected when I use SURF and BRISK to detect, and some 
images have even more than 10,000 keypoints. Suppose I have n number of images to 
match, and m number of keypoints in each image, then the complexity of keypoints 
matching is O(n*n*m*m). If I use these keypoints directly, tremendous computation will 
be incurred, and therefore not practical in real applications. In order to solve this problem, 
I only took the most important keypoints for our task, and here I measured the importance 
of each keypoint by their individual strength since it is roughly an indictor of how good 
the keypoint is. Although the strength of some keypoints will change due to the change of 
light and there is no guarantee that a good keypoint is still there, it is not that usual, 
especially in our dataset. In our project, I ran our matching algorithm by considering all 
the keypoints in each image as a reference, and sorted these keypoints in terms of their 
strength, and compared the performance by selecting the different numbers of the most 
important keypoints for SURF and BRISK cases, which is the main focus of our project. 
Section 3.6 talks out the metric for performance measure.  
 
3.4.   RANSAC 

 
Some matches extracted by comparing the descriptors of keypoints, even with our 
selection, of two images are actually outliers. In order to remove these invalid matches 
between two images to build up a more robust matching, I implemented RANSAC to 
help us. I calculated the fundamental matrix between two images using 8-point algorithm, 
and defined a threshold so that one pair of matches is classified as outlier if the error of 
this pair is larger than it based on the calculated fundamental matrix from the selected 8 
points. I randomly took 8 points for each iteration and used the iteration with the least 
number of outliers as our model, and removed outliers. Figure 3 shows the difference 
before and after RANSAC. 
 



                         
 

Figure 3. Keypoints matching before and after RANSAC 
 

3.5.   Clustering 
 

The last step is to cluster images. After calculating key point matching between every 
pair of images with RANSAC, I have a match matrix (nxn, n is the number of images) to 
store the number of matches between any two images. Clustering algorithm was 
implemented to group images based on the match matrix. Different views of the same 
scene don’t necessarily have the large number of matching points considering that they 
might be taken from relatively big different viewpoints and they don’t have many visible 
points in common. Even though they don’t have many key points in common, they might 
have much more matching points with an intermediate image which has a not much 
different viewpoint from both images.  
 
I designed a different clustering algorithm to group these images from the same scene. I 
looped through every element of match matrix (actually I only cover the half matrix since 
the other half is almost symmetric to the first half). If the element, i.e. the number of 
matching points, is larger than a threshold (25 in our experiments), I consider them match, 
and add them to the cluster as follows, otherwise the whole pair is dropped. If one image 
is already in one cluster, and the other one isn’t in any cluster, then I add the second 
image into the cluster the first image belongs to. If both of them are already in clusters, 
then I merge these two clusters. If none of them are in clusters, a new cluster is created to 
hold these two images. In this way, the images from the same scene can hopefully be 
classified into the same cluster. Based on these clusters, I measured the performance 
based on metric discussed in Section 3.6. 
 
3.6.   Metric 
 
There are three important metrics involved in performance measure for clustering. I am 
expecting after the clustering algorithms, all the images should be got grouped, and also 
correctly, and the number of clusters should be the same as the exact number of scenes. 
Therefore I have metrics below to measure performance. 
 



3.6.1. Misclassification Rate 
 
It measures whether the images of each cluster belong to the same scene. In order to 
measure this, I assume that the images of one scene that occurs most frequently in one 
cluster are grouped correctly, and other images of the other scenes in this cluster are 
clustered wrongly. Suppose one image of scene 1, two images of scene 2, and three 
images of scene 3 are in one cluster, then I think this cluster is scene 3, so the 
misclassification number is 1+2. I looped all the clusters, added these misclassification 
numbers of each cluster together, and divided it by the images which got clustered to 
achieve the misclassification rate. 
 
3.6.2. Clustering Rate 
 
Smaller misclassification rate doesn’t necessarily mean a better clustering since some 
images might not get clustered at all, which means that these images don’t appear in any 
cluster. It is possible since there is chance that one image has no good defined match with 
any image. It is calculated by the percentage of images which get clustered over all the 
images. 
 
3.6.3. Over-Cluster Rate 
 
0% misclassification rate and a clustering rate of 1 don’t mean the clustering is perfect. 
Clustering might create more scenes than expected, although all the images get clustered 
and all the images of one cluster belong to the same scene. I measure over-cluster rate by 
the percentage of the number of extra clusters created over the expected number of scenes. 
It is less important measure compared to the other two since it is still acceptable if it is 
not perfect. In our context, I mainly focus on the first two metrics. 
 
3.7.    3D reconstruction 
 
3D reconstruction takes images of the same scene as input to generate camera postions 
and 3D views. Bundle adjustment is used to perform a 3D sparse reconstruction, and 
CMVS(Clustering Views for Multi-view Stereo) and PMVS(Patch-based Multi-view 
Stereo) are used to create a dense 3D view. CMVS is a preprocess for PMVS. Here I 
complied the libraries of SIFT, Bundle Adjustment, CMVS, and PMVS separately and 
integrate them into Visual SFM Package[7] to form both a sparse and a dense 3D 
reconstruction. The lib requires one point should be seen by three images in order to be 
reconstructed in 3D.    
 

4. Experiments 
 
4.1.   Image Matching 
 
Image matching is the most important part in our project. In our dataset I have totally 67 
images and 7 scenes for experiments.  As I talked earlier, I tuned the number of important 
keypoints where importance is measured by the strength of keypoints. In order to get an 



idea of the performance degradation by limiting the number of keypoints for matching 
purpose, I ran the clustering with all the keypoints considered for all the images for both 
SURF and BRISK without the storage of keypoints, and got the performance metric in 
table 1 below: 

  SURF BRISK 

Misclassification Rate 0.015873 0 

Clustering Rate 0.980299 0.925373 

Over-Cluster Rate 0.285714 0.428571 

 
Table 1. Performance of SURF and BRISK with all the keypoints considered. 

 
SURF has a higher clustered rate than BRISK due to its high accurate description of 
descriptors. However, the time spent on SURF (around 3 hours) is 100x longer than 
BRISK, and it is expected since the matching part of BRISK is simply hamming distance 
instead of Euclidean, and also there are more keypoints detected with SURF in our 
dataset. And it is not practical for SURF to use all the keypoints, and here it is only to 
extract the performance for reference. 
 
The next step is to vary the number of important keypoints to compare with the golden 
one above. I ran our codes at 108, 216, 396, 540, and 640 for both SURF and BRISK 
with the storage of keypoints, which means that I only need to extract the keypoints for 
each image once and store there for future usage, and it is practical since the number of 
keypoints got stored are limited, and there is no re-computation of keypoints. I found that 
misclassification rate is 0 for all the cases, so I showed the clustering rate plot in Figure 4 
for various numbers of keypoints. The computation time of SURF is 2x slower than 
BRISK, and both of them are a couple minutes with our dataset of 67 images. 
                 

 
Figure 4. Clustering Rate versus Number of Keypoints for SURF and BRISK 

 
With the increase of number of keypoints used for image matching, an improvement of 
clustering rate was observed, which is expected since in the limit it is the case of golden 



case where all the keypoints are used. In all the cases, SURF always outperforms BRISK.  
The most exciting result is in the case of 640, the performance of SURF is roughly same 
as the golden case, which means that these 640 keypoints are really those eventually used 
in the golden case in our dataset. This result is really encouraging since we can achieve 
the same performance with much less computation cost (here several minutes vs 3 hours). 
The improvement of performance for SURF implies that the strength of keypoints is a 
good indication of distinctiveness/goodness for our dataset. However, the experiments on 
BRISK exhibit the different behavior. Even though clustering rate improves with the 
increase of the number of keypoints, it is not that apparent, and there is 30% difference 
with SURF at 108, and performance at 640 is the same as that of SURF at 108. These 
indicate that the strength of BRISK keypoints can’t fully express the 
distinctiveness/goodness of keypoints in our dataset. In order to further investigate the 
case of BRISK, I actually took a step further to divide the whole image into nxn grids, 
and extracted the important keypoints grid by grid instead of extracting them from the 
whole image, and I saw around 5% improvement, but still much lower than SURF.   
 
The sign of the Laplacian for keypoints in SURF can be used further to speed up image 
matching (only compare when their signs are the same), and is also quite useful when 
using k-d trees. Given a 64-dimension feature of SURF, there are still a lot of storage and 
computation involved in image matching, and 36-dimension PCA versioned feature can 
be useful for saving of computation and storage, which is comparable to BRISK. 
 
4.2.   3D Reconstruction 

 
After the investigation of performance over the change of the number of keypoints, I 
achieved the best results at 540 at acceptable computation and storage cost. Base on the 
clustering results from 540, I performed 3D sparse and dense reconstruction by 
integrating the libraries of SIFT, Bundle Adjustment, CMVS, and PMVS into Visual 
SFM Package. In our best case of clustering, actually I have three extra clusters formed 
for scene 1, so I reconstructed the other 6 scenes, and below shows the sparse and dense 
reconstruction for scene 0 (Figure 5) and scene 2(Figure 6) with satisfactory results. We 
also observed some failures of reconstruction in other datasets, and it is due to the 
repeatable structure. Figure 7 shows invalid matches between two views of Huang 
because of repeated small trees and lawns, leading to failure of 3D reconstruction.  

 



 
Figure 5. Sparse and dense reconstruction of Scene 0 

 

 
Figure 6.  Sparse and dense reconstruction of Scene 2 

 
 

                       
 

Figure 7. Wrong matches between two images of Huang 

 
5. Conclusions 
 
In conclusion, I have compared the performance of SURF and BRISK on the image 
clustering by considering limited number of keypoints for saving of computation cost of 
computer vision applications. I discovered that the strength of SURF keypoints is a good 
measurement of distinctiveness/goodness and can be used for keypoints selection in our 
dataset for image matching, and achieved a comparable performance with much less 
computation cost. The sign of the Laplacian for the keypoints in SURF can help speed up 
image matching. A more aggressive approach might be taken to use PCA SURF to 
reduce the dimension of descriptor for more saving of computation and storage. SURF 



might be a promising candidate for mobile platform applications. My analysis might 
provide some information to someone trying to select limited keypoints for their own 
applications. I hope in the next few years, there are more and more compute vision 
applications on the mobile platform, and necessary performance analysis will contribute 
to this advent.  
 
The codes and dataset are accessible through the link below: 
https://drive.google.com/folderview?id=0B_eHunfjZfIbTkRtQVJYMzdQWWM&usp=sh
aring 
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