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Abstract

The number of surveillance cameras around the world
has increased rapidly over the last couple of years [I].
Currently most of the video material generated by these
cameras is examined manually [1]. However, automatic
processing and analysis could significantly increase safety,
since as a result of this automation security teams can be
alerted within a shorter period of time. In this paper, com-
puter vision and deep learning techniques are used to ana-
lyze images, and create text descriptions of images that can
be send to the police or the owner of the security camera.
Specifically, a convolutional neural network is used to ex-
tract image features, principal component analysis is used
to reduce the dimensionality of the image features, and the
resulting image features are then fed into a recurrent neu-
ral network or a long short-term memory to generate a text
description. Different convolutional neural network archi-
tectures are evaluated based on their effectiveness to extract
image features for image descriptions. This paper demon-
strates that deeper convolutional neural networks (16-18
depth layers) extract more useful image features than less
deep convolutional neural networks (8, 10, 12 layers). Our
models generate high quality image descriptions, and ob-
tain comparable to state-of-the-art performance on the im-
age description generation task.

1. Introduction

The proliferation of digital image surveillance technol-
ogy has changed the security sector. Surveillance cameras
are used all over the world and they record billions of hours
of security footage each year [1]. This increased number of
security video material creates both opportunities and new
challenges. On the one hand, the larger number of surveil-
lance cameras can serve as deterrence, and have the poten-
tial to give us more information about crimes. On the other
hand, it is challenging or even impossible for humans to
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Figure 1: Computer vision techniques can improve security
by automatically warning the police when detecting suspi-
cious behavior.

effectively analyze such a large amount of video material,
and as a result new methods have to be developed to ana-
lyze surveillance camera video material.

Currently, most surveillance camera video analysis is
done manually, and the video analysis is generally done af-
ter the occurrence of a crime. Analysis of the video ma-
terial in retrospect can help the police identify criminals,
learn more about the details of the crime, and prevent simi-
lar crimes from happening in the future. Nonetheless, with
software that can analyze the video material in real-time
(i.e. while the crime is happening), police can take immedi-
ate action. This can significantly improve safety, increasing
the overall usefulness of surveillance cameras.

Computers vision is essential for the effective automa-
tion of surveillance camera video material analysis. A ma-
jor theme in the field of computer vision has been to dupli-
cate the abilities of human vision by electronically perceiv-
ing and understanding an image. In the case of surveillance
camera material it is essential to understand the content of
the surveillance camera image input and turn this image in-
put into a simplified representation that can be used to take
action if necessary. In this paper, computer vision tech-



niques are used to extract image features that can then be
turned into a description of the image (Figure 1). This im-
age description can then be sent to the owner of the surveil-
lance camera, a security organization, or the police. The
owner of the surveillance camera, a security organization, or
the police can then decide to take action based on this image
description. Being able to automatically describe the con-
tent of an image using properly formed English sentences
is a very challenging task. This task is significantly harder,
for example, than the well-studied image classification or
object recognition tasks, which have been a main focus in
the computer vision community. Indeed, a description must
capture not only the objects contained in an image, but it
also must express how these objects relate to each other as
well as their attributes and the activities they are involved
in. Moreover, the above semantic knowledge has to be ex-
pressed in a natural language like English, which means that
alanguage model is needed in addition to visual understand-
ing.

In this paper, a convolutional neural network (CNN) is
used to extract features from the security camera generated
images. CNNs have been shown to be powerful models
for image classification and object detection tasks. Differ-
ent convolutional neural network architectures are evaluated
based on their ability to extract image features for image
descriptions. To extract image features the CNNs are first
trained for the image classification task. After this training
phase, the CNNs are used to extract image features. The
activations of the second-to-last fully connected layer are
used as image features. Principal component analysis is
then used to reduce the dimensionality of the feature vector,
while still retaining as much of the variance in the dataset as
possible. The resulting features vector is then fed into a re-
current neural network (RNN) or a long short-term memory
(LSTM). The RNN and LSTM generate an image descrip-
tion based on the image features. The recurrent structures
allow the RNN and LSTM to exhibit dynamic temporal be-
havior, which is essential for the generation of correct En-
glish sentences. Especially, the LSTM is well suited to the
generation of long sentences since it can remember values
for very long durations. Our models generate high quality
image descriptions, and obtain comparable to state-of-the-
art performance on the image description generation task.

2. Review of Previous Work
2.1. Overview

Most work in visual recognition has originally focused
on image classification, i.e. assigning labels corresponding
to a fixed number of categories to images. Great progress in
image classification has been made over the last couple of
years, especially with the use of deep learning techniques
[2, 3]. Nevertheless, a category label still provides limited

information about an image. Some initial attempts at gen-
erating more detailed image descriptions have been made,
for instance by Farhadi et al. and Kulkarni et al. [4, 5], but
these models are generally dependent on hard-coded sen-
tences and visual concepts. In addition, the goal of most
of these works is to accurately describe the content of an
image in a single sentence. However, this one sentence re-
quirement unnecessarily limits the quality of the descrip-
tions generated by the model. Several works, for example
by Li et al., Gould et al., and Fidler et al., focused on obtain-
ing a holistic understanding of scenes and objects depicted
on images [6, 7, 8, 9]. Nonetheless, the goal of these works
was to correctly assign labels corresponding to a fixed num-
ber of categories to the scene type of an image, instead of
generating higher-level explanations of the scenes and ob-
jects depicted on an image.

Generating sentences that describe the content of images
has already been explored. Several works attempt to solve
this task by finding the image in the training set that is most
similar to the test image and then returning the caption as-
sociated with the test image [4, 10, 11, 12, 13]. Jia et al,,
Kuznetsova et al., and Li et al. find multiple similar images,
and combine their captions to generate the resulting caption
[14, 15, 16]. Kuznetsova et al., and Gupta et al. tried using
a fixed sentence template in combination with object detec-
tion and feature learning [5, 17, 18]. They tried to identify
objects and features contained in the image, and based on
the identified objects contained in the image they used their
sentence template to create sentences describing the image.
Nevertheless, this approach greatly limits the output variety
of the model.

Recently there has been a resurgence of interest in image
caption generation, as a result of the latest developments in
deep learning [2, 19, 20, 21, 22]. Several deep learning ap-
proaches have been developed for generating higher level
word descriptions of images [21, 22]. Convolutional Neu-
ral Networks have been shown to be powerful models for
image classification and object detection tasks. In addition,
new models to obtain low-dimensional vector representa-
tions of words such as word2vec, and GloVe (Global Vec-
tors for Word Representation) and Recurrent Neural Net-
works can together create models that combine image fea-
tures with language modeling to generate image descrip-
tions [21, 22]. Karpathy et al. developed a Multimodal
Recurrent Neural Network architecture that uses inferred
alignments to learn to generate novel descriptions of im-
age regions [21]. Similarly, Kiros et al. used a log-bilinear
model that generates full sentence descriptions for images
[22]. However, their model uses a fixed window context
[22].

2.2. Contributions

Concretely, our contribution is threefold:
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Figure 2: Overview of technical approach.

1. Different CNN layer patterns (i.e. different network
depths) are evaluated on the image description genera-
tion task.

2. The performance of the RNN and LSTM for the image
description generation task are compared for several
CNN implementations.

3. Close to state-of-the-art results are achieved with the
presented models.

In addition, the full image description generation deep
learning pipeline is implemented without relying on exter-
nal deep learning packages such as Tensorflow, and instead
using only fundamental python packages for scientific com-

puting (e.g. numpy, scipy).

3. Technical Approach

Overview. We implemented a deep recurrent architec-
ture that automatically produces short descriptions of im-
ages (Figure 2). Our models use CNNs to obtain image
features. We then feed these features into either an RNN or
a LSTM network (Figure 3) to generate a description of the
image in valid English.

3.1. CNN-based Image Feature Extractor

For feature extraction, we use a CNN. CNNs have been
widely used and studied for images tasks, and are currently
state-of-the-art methods for object recognition and detec-
tion [20]. CNNs consist of a sequence of layers; every
layer of a CNN transforms one volume of activations to
another through a differentiable function [21]. There are
four main types of layers to build CNN architectures: con-
volutional layers, pooling layers, RELU layers, and fully-
connected layers. Convolutional layers compute the output
of neurons that are connected to local regions in the input,
each computing a dot product between their weights and a

small region that they are connected to in the input volume
[21]. Pool layers will perform a down-sampling operation
along the spatial dimensions (i.e. width and height) [21].
RELU layer will apply an element-wise activation function,
such as the max(0, z) thresholding at zero. Finally, fully-
connected layers compute the class scores. As with ordinary
neural networks, each neuron in this layer will be connected
to all the numbers in the previous volume.

We pre-train the CNN on the dataset for the image classi-
fication task. We then keep the weights of the network, and
for each image extract features from the second-to-last fully
connected layer of the network as described by Karpathy et
al [21]. This gives us a 4096-dimensional image feature
vector that we reduce using principal component analysis
(PCA) to a 512-Dimensional image feature vector due to
computational constraints. We feed these features into the
first layer of our RNN or LSTM at the first iteration [24].

For the pre-training phase we use the image category la-
bels contained in our dataset. During the pre-training phase
our goal is to obtain a high accuracy on the image classi-
fication task, so that our CNN is able to correctly assign
labels for a fixed number of categories to images. We use
back-propagation to update the weights in the network, so
that the network learns to detect features in the images that
can be used for image classification or in our case image
description generation.

After the pre-training phase we can use the pre-trained
CNN to detect image features for the image description gen-
eration task. As described by Karpathy et al. image features
obtained by a convolutional neural network pre-trained on
the image classification task, can also be used for the im-
age description generation task [21]. Similar to Donahue
et al. we extract image features from the second-to-last
layer from the CNN, and then perform PCA to reduce the
dimension of the image features because of computational
constraints [36]. We designed our CNNs so that the image
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Figure 3: Example of an LSTM unit and its gates

features of the second-to-last fully connected layer are of di-
mension 4096. Using PCA we replace the high-dimensional
(4096-dimensional) data by its projection onto its 512 most
important axes, so that the resulting feature vector is 512-
dimensional. These axes are the axes corresponding to the
largest eigenvalues of the covariance matrix.

We experiment with several CNN network depths, i.e.
CNNss of depth 6, 8, 10, 12, 14, and 16. With depth we re-
fer to the total number of convolutional and fully connected
layers. For each of the network depths we create one model
using the RNN to generate sentences, and one model using
the LSTM to generate sentences.

3.2. RNN-based Sentence Generator

We first experiment with vanilla RNNs as they have been
shown to be powerful models for processing sequential data
[25, 26]. Vanilla RNNs can learn complex temporal dy-
namics by mapping input sequences to a sequence of hid-
den states, and hidden states to outputs via the following
recurrent equations.

he = f(Whnhe—1 + Wapat) (D
Yt = Whyht 2)

where f is an element-wise non-linearity, h; € RY is the
hidden state with N hidden units, and y; is the output at time
t. In our implementation, we use a hyperbolic tangent as our
element-wise non-linearity. For a length 7" input sequence
x1,%2, ..., T, the updates above are computed sequentially
as hy (letting ho = 0), y1, ho, y2,... hp, yr.

3.3. LSTM-based Sentence Generator

Although RNNs have proven successful on tasks such as
text generation and speech recognition [25, 26], it is difficult
to train them to learn long-term dynamics. This problem is
likely due to the vanishing and exploding gradients problem
that can result from propagating the gradients down through

the many layers of the recurrent networks. LSTM networks
(Figure 3) provide a solution by incorporating memory units
that allow the networks to learn when to forget previous hid-
den states and when to update hidden states when given new
information [24].

At each time-step, we receive an input x; € R and the
previous hidden state h;_1 € RH | the LSTM also maintains
an H-dimensional cell state, so we also get the previous cell
state ¢;_; € RH. The learnable parameters of the LSTM
are an input-to-hidden matrix W, € R*HzD 3 hidden-to-
hidden matrix W), € R*=H and a bias vector b € R*H .

At each time step, we compute an activation vector a €
R*H as

a=Wyxi+ Wrh_1+0b 3)

We then divide a into 4 vectors a;, af, a,, a; € R
where a; consists of the first [ elements of a, ay is the next
H elements of a, etc.. We then compute four gates which
control whether to forget the current cell value f € R, if
it should read its input i € R, and whether to output the
new cell value o € R, and the block input g € RH,

i=o(a;) 4)
f=o(ay) )
0=o(ap) (6)
g = tanh(ay) (7

where o is the sigmoid function and tanh is the hyper-
bolic tangent; both are applied element-wise.

Finally, we compute the next cell state ¢; which encodes
knowledge at every time step of what inputs have been ob-
served up to this step, and the next hidden state h; as

ce=foci1+iog 3)

hi = oo tanh(ct) 9)

where o represents the Hadamard product. The inclu-
sion of these multiplicative gates permits the regulation of
information flow through the computational unit, allowing
for more stable gradients and long-term sequence depen-
dencies [24]. Such multiplicative gates make it possible
to train the LSTM robustly as these gates deal well with
exploding and vanishing gradients. The non-linearities are
sigmoid o () and hyperbolic tangent tanh().

Our LSTM model takes the image I and a sequence
of input vectors (z1, ..., xr). It then computes a sequence
of hidden states (hq,...,h:) and a sequence of outputs
(Y1, ---,y) by following the recurrence relation for ¢t = 1
toT"

by = Wii[CNN(I)] (10)

he = f(Whaxt + Wiphe—1 +bp +1(t =1) 0 b,) (11)
yr = Softmax(Wophs + b,) (12)



where Wp;, Wiz, Won, Won, xi, by, and b, are learnable
parameters and C N N (I) represents the image features ex-
tracted by the CNN.

3.4. Training.

We train our LSTM model to correctly predict the next
word (y,) based on the current word (z;), and the previous
context (h;_1). We do this as follows: we set hg = 0, x;
to the START vector, and the desired label y; as the first
word in the sequence. We then set x> to the word vector
corresponding to the first word generated by the network.
Based on this first word vector and the previous context the
network then predicts the second word, etc. The word vec-
tors are generated using the word2vec embedding model as
described by Mikolov et. al [27]. During the last step, xr
represent the last word, and yr is set to an EN D token.

3.5. Testing.

To predict a sentence, we obtain the image features b,,
set hg = 0, set x1 to the START vector, and compute the
distribution over the first word ;. Accordingly, we pick
the argmax from the distribution, set its embedding vector
as xo, and repeat the procedure until the END token is
generated.

3.6. Softmax Loss.

At every time-step, we generate a score for each word
in the vocabulary. We then use the ground truth words
in combination with the softmax function to compute the
losses and gradients. We sum the losses over time and aver-
age them over the minibatch. Since we operate over mini-
batches and because different generated sentences may have
different lengths, we append NULL tokens to the end of
each caption so that they all have the same lengths. In ad-
dition, our loss function accepts a mask array that informs
it on which elements of the scores counts towards the loss
in order to prevent the NULL tokens to count towards the
loss or gradient.

3.7. Optimization.

We use Stochastic Gradient Descent (SGD) with mini-
batches of 25 image-sentence pairs and momentum of 0.95.
We cross-validate the learning rate and the weight decay.
We achieved our best results using Adam, which is a method
for efficient stochastic optimization that only requires first-
order gradients and computes individual adaptive learning
rates for different parameters from estimates of first and
second moments of the gradients [28]. Adam’s main ad-
vantages are that the magnitudes of parameter updates are
invariant to rescaling of the gradients, its step-size is ap-
proximately bounded by the step-size hyperparameter, and
it automatically performs a form of step-size annealing [28].

living room of a house with no one home

a person laying on a bed with a view of the outside

Figure 4: Example images with associated captions con-
tained in the dataset.

4. Experiments and Results
4.1. Dataset

We will use the 2014 release of the Microsoft COCO
dataset which has become the standard testbed for image
captioning [29]. The dataset consists of 80,000 training im-
ages and 40,000 validation images, each annotated with 5
captions written by workers on Amazon Mechanical Turk
and associated categories. Four example images with cap-
tions can be seen in Figure 4. We convert all sentences to
lower-case, and discard non-alphanumeric characters.

4.2. Evaluation Metric

For each image we expect a caption that provides a cor-
rect but brief explanation in valid English of the images.
The closer the generated caption is to the captions written
by workers on Amazon mechanical Turk the better.

The effectiveness of our model is tested on 40,000 im-
ages contained in the Microsoft COCO dataset. We eval-
uate the generated captions using the following metrics:
BLEU (Bilingual Evaluation Understudy) [30], and ME-
TEOR (Metric for Evaluation of Translation with Explicit
Ordering) [31][32]. Each method evaluates a candidate
sentence by measuring how well it matches a set of five
reference sentences written by humans. The BLEU score
is computed by counting the number of matches between
the n-grams of the candidate caption and the n-grams of
the reference caption. METEOR was designed to fix some
of the problems found in the more popular BLEU metric,
and also produce good correlation with human judgement
at the sentence or segment level [30]. METEOR differs
from the BLEU metric in that BLEU seeks correlation at
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Figure 5: Comparison of METEOR and BLEU scores obtained by our models and state-of-the-art models [21, 33, 34, 35,

36]. CNN-z indicates that the CNN model has a total of x convolutional plus fully connected layers.

a truck parked on a street

a computer monitor on a desk

Figure 6: Examples of captions generated by our models.

the corpus level [31]. For both metrics (BLEU, and ME-
TEOR) the higher the score, the better the candidate caption
is [30][31][32].

4.3. Results

Our models generate high quality descriptions of images
in valid English (Figure 5 and 6). As can be seen from
example sentences in Figure 6, the model discovers inter-
pretable visual-semantic correspondences. It even discovers
relationships between the objects in the images such as that
the man is sitting ”in front” of the computer, and that the
truck is parked “on the street.” The generated descriptions
are accurate enough to be helpful for automatic surveillance
technology. In general, we find that a relatively large por-
tion of generated sentences (27%) can be found in the train-
ing data.

We report the METEOR, and BLEU scores in Figure 5
and compare them to the results obtained in the literature.
Our LSTM models achieve close to state-of-the-art perfor-
mance. They perform slightly better than our RNN mod-
els, i.e. they achieve higher BLEU, and METEOR scores.
This is most likely because LSTMs are better able to bet-

METEOR score vs. CNN depth for RNN model
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Figure 7: CNN architectures with more layers extract im-
age features that can lead to better RNN generated image
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METEOR score vs. CNN depth for LSTM model
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Figure 8: CNN architectures with more layers extract im-
age features that can lead to better LSTM generated image
descriptions.

ter able to classify, process and predict time series when



there are very long time lags of unknown size between im-
portant events such as with the sentences generated by our
model. The vanilla RNN suffers from the vanishing gra-
dient problem, meaning that The beginning of a generated
sentence often contains important information about the end
of the generated sentence, and as a result models such as the
LSTM are relatively well suited for the sentence generation
task.

As can be seen in Figure 7 and 8 increasing the depth
of the CNN leads to better image features for the image
description generation task. Both the LSTM and the RNN
models generate better captions using image features ob-
tained by deeper CNN models. In future work, it might be
interesting to investigate the cause of the better results ob-
tained using deeper nets. We expect that it is related to the
fact that deeper nets can learn more complex functions so
that they can better capture the regularities in the training
data. Our best model is the CNN of depth 16 in combi-
nation with the LSTM. It achieves close to state-of-the-art
performance, i.e. METEOR score 62.74 and BLEU score
19.62.

5. Conclusion

We have presented a deep learning model that automat-
ically generates image captions with the goal of increasing
the effectiveness of security cameras. Our described model
is based on a CNN that encodes an image into a compact
representation, followed by a RNN or LSTM that gener-
ates corresponding sentences based on the learned image
features. We showed that this model achieves comparable
to state-of-the-art performance, and that the generated cap-
tions are highly descriptive of the objects and scenes de-
picted on the images. Because of the high quality of the
generated image descriptions, camera surveillance based se-
curity can greatly benefit. The police or the owner of the
camera can decide to take actions based on the image cap-
tions generated by our model. Future work can explore
more different types of CNN architectures, such as for ex-
ample CNNs with even more layers. It might also be in-
teresting to explore different CNN training techniques such
as other hyperparameter tuning optimization strategies. In
addition, one could try using transfer learning to optimize
the weights of the CNN based on the quality of the image
descriptions it generates.

Acknowledgments

We would like to thank the CS231A course staff for their
ongoing support.

References

[1] Tarun Wadhwa. ”The Next Privacy Move: Cameras that Judge
your Every Move.” Forbes. (2012). Web. 3 Jun. 2016

[2] Russakovsky, Olga, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li
Fei-Fei. “ImageNet Large Scale Visual Recognition Challenge.”
International Journal of Computer Vision Int J Comput Vis 115.3
(2015): 211-52. Web. 2 Jun. 2016

[3] Everingham, Mark, Luc Van Gool, Christopher K. I
Williams, John Winn, and Andrew Zisserman. “The Pascal Vi-
sual Object Classes (VOC) Challenge.” International Journal of
Computer Vision Int J Comput Vis 88.2 (2009): 303-38. Web. 22
May 2016

[4] Farhadi, Ali, Mohsen Hejrati, Mohammad Amin Sadeghi,
Peter Young, Cyrus Rashtchian, Julia Hockenmaier, and David
Forsyth. "Every Picture Tells a Story: Generating Sentences from
Images.” Computer Vision ECCV 2010 Lecture Notes in Computer
Science (2010): 15-29. Web. 5 Apr. 2016

[5] Kulkarni, Girish, Visruth Premraj, Sagnik Dhar, Siming Li,
Yejin Choi, Alexander C. Berg, and Tamara L. Berg. ”Baby Talk:
Understanding and Generating Simple Image Descriptions.” Cvpr
2011 (2011). Web. 27 May 2016

[6] Li, Li-Jia, R. Socher, and Li Fei-Fei. “Towards Total Scene
Understanding: Classification, Annotation and Segmentation in an
Automatic Framework.” 2009 IEEE Conference on Computer Vi-
sion and Pattern Recognition (2009). Web. 21 Apr. 2016

[7] Gould, Stephen, Richard Fulton, and Daphne Koller. “De-
composing a Scene into Geometric and Semantically Consistent
Regions.” 2009 IEEE 12th International Conference on Computer
Vision (2009). Web. 6 May 2016

[8] Fidler, Sanja, Abhishek Sharma, and Raquel Urtasun. A
Sentence Is Worth a Thousand Pixels.” 2013 IEEE Conference on
Computer Vision and Pattern Recognition (2013). Web. 18 May
2016

[9] Li, Li-Jia, and Li Fei-Fei. ”What, Where and Who? Classi-
fying Events by Scene and Object Recognition.” 2007 IEEE 11th
International Conference on Computer Vision (2007). Web. 10
Apr. 2016

[10] Lazaridou, Angeliki, Nghia The Pham, and Marco Baroni.
”Combining Language and Vision with a Multimodal Skip-gram
Model.” Proceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics:
Human Language Technologies (2015). Web. 23 May 2016

[11] Hodosh, Young, and Hockenmaier. “Framing image de-
scription as a ranking task: data, models and evaluation metrics.”
Journal of Artificial Intelligence Research (2013). Web. 3 Apr.
2016

[12] Socher, Richard, Andrej Karpathy, Quoc V. Le, Christo-
pher Manning, and Andrew Y. Ng. "Grounded compositional se-
mantics for finding and describing images with sentences.” Trans-
actions of the Association for Computational Linguistics (TACL)
(2014). Web. 24 May 2016

[13] Ordonez, Vicente, Girish Kulkarni, and Tamara L. Berg.
”Im2text: Describing images using 1 million captioned pho-
tographs.” NIPS: 1143-1151 (2011). Web. 29 May. 2016

[14] Jia, Yangqing, Mathieu Salzmann, and Trevor Darrell.



”Learning Cross-modality Similarity for Multinomial Data.” 2011
International Conference on Computer Vision (2011). Web. 28
May 2016

[15] Kuznetsova, Polina, Vicente Ordonez, Alexander C. Berg,
Tamara Berg, and Yejin Choi. “Collective generation of natural
image descriptions.” Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics 1 (2012): 359:368.
Web. 30 Apr. 2016

[16] Li, Siming and Kulkarni, Girish and Berg, Tamara L. and
Berg, Alexander C. and Choi, Yejin. "Composing simple image
descriptions using web-scale n-grams.” Proceedings of the Fif-
teenth Conference on Computational Natural Language Learning:
220-228 (2011). Web. 27 Apr. 2016

[17] Kuznetsova, Polina, Vicente Ordonez, Tamara Berg, Yejin
Choi. "TREETALK: Composition and Compression of Trees for
Image Descriptions.” Transactions of the Association for Compu-
tational Linguistics 2 (2014): 351-362. Web. 1 Apr. 2016

[18] Gupta and Mannem. “From image annotation to image
description. In Neural information processing.” Springer (2012).
Web. 7 Apr. 2015

[19] LeCun, Bottou, Bengio, and Haffner. “Gradient- based
learning applied to document recognition.” Proceedings of the
IEEE (1998): 86(11):22782324. Web. 27 May 2016

[20] Krizhevsky, Sutskever, and Hinton. “Imagenet classifica-
tion with deep convolutional neural networks.” NIPS (2012). Web.
28 Apr. 2016

[21] Karpathy, Andrej, and Li Fei-Fei. ”"Deep Visual-semantic
Alignments for Generating Image Descriptions.” 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR)
(2015). Web. 29 May 2016

[22] Kiros Ryan, Rich Zemel, and Ruslan Salakhutdinov.
”Multimodal neural language models.” Proceedings of the 31st
International Conference on Machine Learning (ICML-14): 595-
603 (2014). Web. 21 May 2016

[23] Simonyan, Karen and Andrew Zisserman. “Very deep
convolutional networks for large-scale image recognition.” CoRR
(2014). Web. 28 May 2016

[24] Hochreiter, Sepp, and Jrgen Schmidhuber. “Long Short-
Term Memory.” Neural Computation 9.8 (1997): 1735-780. Web.
23 Apr. 2016

[25] Graves, Alex. ”Generating sequences with recurrent neu-
ral networks.” CoRR (2013). Web. 30 May 2016

[26] Graves, Alex and Navdeep Jaitly. “Towards end-to-
end speech recognition with recurrent neural networks.” Proceed-
ings of the 31st International Converence on Machine Learning
(ICML-14): 1764-1772 (2014). Web. 28 May 2016

[27] Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S. Cor-
rado, and Jeff Dean. “Distributed representations of words and
phrases and their compositionality.” Advances in Neural Informa-
tion Processing Systems (NIPS) 26: 3111-3119 (2013). Web. 29
Apr. 2016

[28] Kingma, Diederik and Jimmy Ba. "Adam: A method for
stochastic optimization.” CoRR (2015). Web. 19 May 2016

[29] Lin, Tsung-Yi, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollr, and C. Lawrence
Zitnick. "Microsoft COCO: Common Objects in Context.” Com-
puter Vision ECCV 2014 Lecture Notes in Computer Science
(2014): 740-55. Web. 27 May 2016

[30] Papineni, Kishore, Salim Roukos, Todd Ward, and Wei-
Jing Zhu, Bleu: a method for automatic evaluation of machine
translation.” Proceedings of the 40th Annual Meeting on Associa-
tion for Computation Linguistics (ACL): 311-318 (2002). Web. 24
May 2016

[31] Denkowski, Michael, and Alon Lavie. ”Meteor Univer-
sal: Language Specific Translation Evaluation for Any Target Lan-
guage.” Proceedings of the Ninth Workshop on Statistical Machine
Translation (2014). Web. 22 Apr. 2016

[32] Vedantam, Ramakrishna, C. Lawrence Zitnick, and Devi
Parikh. ”CIDEr: Consensus-based Image Description Evalua-
tion.” 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) (2015). Web. 24 May 2016

[33] Vinyals, Oriol, Alexander Toshev, Samy Bengio, and Du-
mitru Erhan. ”Show and Tell: A Neural Image Caption Generator.”
2015 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) (2015). Web. 25 May 2016

[34] Chen, Xinlei and C. Lawrence Zitnick. Learning a Recur-
rent Visual Representation for Image Caption Generation. CoRR
abs/1411.5654 (2014). Web. 19 May 2016

[35] Fang, Hao, Saurabh Gupta, Forrest Iandola, Rupesh K.
Srivastava, Li Deng, Piotr Dollar, Jianfeng Gao, Xiaodong He,
Margaret Mitchell, John C. Platt, C. Lawrence Zitnick, and Geof-
frey Zweig. “From Captions to Visual Concepts and Back.” 2015
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2015). Web. 27 Apr. 2016

[36] Donahue, Jeft, Lisa Anne Hendricks, Sergio Guadarrama,
Marcus Rohrbach, Subhashini Venugopalan, Trevor Darrell, and
Kate Saenko. “Long-term Recurrent Convolutional Networks for
Visual Recognition and Description.” 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (2015). Web. 1
Jun. 2016



