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Abstract 

We implemented the Informed Haar-like Features 
algorithm for pedestrian detection. This was composed of 
three primary endeavors: (1) feature extraction from 
images using Integral Channel Features and Haar-like 
templates generated from a pedestrian model (2) training 
of an AdaBoosted decision tree classifier (3) development 
of a sliding window detection algorithm. Combining these 
components, we present an early iteration of a pedestrian 
detection system.  
 

1. Introduction 
Pedestrian detection has received considerable attention 

over the last few years [1]. In the simplest terms, it 
consists of identifying any pedestrians in an image with 
bounding boxes. It is a well-defined problem and instance 
of object detection in still images and video that spans 
several applications, including security and space usage 
analytics and self-driving cars. In spite of a substantial 
effort to solve the problem, even the most avant-garde 
methods still underperform human ability [2].  

In this paper, we describe and evaluate an 
implementation of the successful Informed Haar-like 
features method using a single static camera [3]. While 
this method’s miss rate of 34.4% at 0.1 false positives per 
image (FPPI) is below the current best of 14.72% [2] for 
the Caltech pedestrian dataset, it has the advantage of 
requiring comparatively little computing power. It is thus 
better suited for real-time applications and processing of 
long video files.  

With the exception of the image filter computations and 
machine learning, we implemented the entirety of the 
Informed Haar-like Features classification and detection. 
It is freely available on GitHub at 
github.com/sigberto/informed-haar. 

While newer convolutional neural network-based like 
Fast R-CNN [10] and Faster R-CNN [11] have provided 
quicker, more accurate platforms for object detection, they 
require a GPU for practical applications. In contrast, 
Informed Haar-like Features can run on any modern 
computer at relatively good speeds. 

1.1. Related Work 

Viola and Jones provided one of the most influential 
works in detection with their application of Haar-like 
templates for feature extraction on face detection [6]. They 
introduced the notion of integral images, (a way to quickly 
compute image features as a sum of pixel regions), as well 
as the use of a boosting algorithm to identify the most 
relevant features. Other methods emphasized histogram of 
oriented gradients (HOG) as the main way to extract 
features, as well as the identification of parts of an object 
to create models, as in the work of Felzenszwalb et al [7]. 
Both of these approaches had a significant influence on 
feature extraction. An additional approach was developed 
by Dollar et al. [8]. For every image, they applied a series 
of filters, such as LUV and HSV color spaces, gradient 
magnitudes, HOG, difference of gradients (DoG), edges 
and thresholding and extracted features as a weighted sum 
of these resulting “channels”. Variations of this approach 
have also seen relatively wide adoption for pedestrian 
detection. The Informed Haar-like Features algorithm 
combines elements from the above approaches to produce 
a robust detector—it combines the templates from Viola 
and Jones, feature types from Felzenszwalb et al. and the 
integral channel features from Dollar et al. Its feature 
extraction involves three key steps: 

a. Generation of “templates” that correspond to 
different sections of the body of a pedestrian 
(head, torso, legs and background) 

b. Extraction of image features through the 
application of image filters like gradient and 
color spaces 

c. Use of the templates to localize and weigh the 
image features 

2. Problem statement 

Pedestrian detection consists of identifying pedestrians 
in an image by constructing a bounding box around each 
instance (fig. 1). This is a popular problem in computer 
vision not only because of its applications, but also 
because of the challenges it presents. Unlike detecting a 
well-defined and invariant object like a vegetable or a 
national flag, pedestrians present a number of challenges, 
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including high intra-class variability (different sizes, skin 
colors, hair color, cloths and postures), scale, lighting 
conditions, occlusions, and the sheer number of objects in 
an average street scene. In addition, many applications like 
self-driving cars require real-time detection for immediate 
reaction. 

The performance of a classifier is measured by two key 
figures: miss rate and false positives per image (FPPI). 
The former is the percentage of pedestrians in a training or 
test set that were not detected; the latter is the average 
number of bounding boxes generated that do not 
correspond to a pedestrian. These are often plotted against 
each other since they are negatively correlated. (fig. 2). 

 

 

3. Technical Content 

Our implementation is composed of three primary 
endeavors: Haar-like feature generation, classifier training, 
and detection refinement. The Informed Haar-like 
Features algorithm approach incorporates prior 
information about the problem into its approach for 
generating feature vectors for an image—it models upright 
humans as three-part objects: head, torso and legs. While 
there is a high degree of variability in terms of color, pose 
and even texture, the regularity of the overall shape of a 
pedestrian—especially the head-shoulder area—exhibits 
high intraclass similarity and a geometry seldom found 
elsewhere. We made use of feature values derived from a 
variety of binary (two regions) and ternary (three regions) 
Haar-like feature templates and color/gradient information 
from the image pixels. We trained our classifier using the 
AdaBoost learning algorithm on shallow decision trees. 
Using our classifier, we then built a pedestrian detector, 
using sliding windows and our classifier scores to propose 
candidate bounding boxes. We further refined our 
bounding box proposals via non-maximal suppression 
(NMS). In an attempt to optimize for speed and 
performance, we tuned the number of features that we 
trained our classifier on, the number of estimators in our 
ensemble, and the maximum depth of each individual 
decision tree. For detection, we adjusted our threshold for 
NMS, but primarily focused on refining our scaling 
process.  

We used the INRIA Person dataset [5] to train and test 
our model; this is one of the two of the most popular 
datasets for the task at hand (the other being the Caltech 
dataset [4]) and makes comparison with other methods 
easy and direct. The overall training and testing pipeline is 
summarized as follows: 

 
Training: 
• Obtain average edge map of 120x60 pixels cropped 

pedestrian dataset with Canny edge detector 
• Subdivide the resulting 120x60 into n x n cells. 

Label each cell as part of head, torso, legs or 
background 

• Generate bimodal and trimodal Haar feature 
templates based on the above labeling 

• Pass each image in the training set through various 
filters—gradient in the X and Y directions, LUV 
color scheme, and histogram of oriented gradients 
(HOG). These result in eleven two-dimensional 
“channels” as described by Dollar et al., per image 

• Combine templates and channels to produce a 
feature vector for each image 

• Train an AdaBoost Decision Tree classifier on the 
image features 

 

Fig. 1. Example pedestrian detector input (above) and 
objective output (below) 

 

Fig. 2. Results of different detectors on the INRIA 
dataset using standard evaluation settings [3] 
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• Take the most discriminative features and retrain a 

new classifier on just those top features (in this 
case, a feature is composed of a template and 1 of 
our 11 channels) 

 
Testing: 
• For each test image, extract channels in the same 

way as during the training, and slide a pedestrian-
shaped 120x60 pixel window over the entire image 
at different scales.  

• For each window, combine the top feature 
templates and channel feature information to create 
a feature vector 

• Classify each feature vector and keep the bounding 
boxes corresponding to the feature vectors that are 
labeled as pedestrians. 

• Apply NMS on the resulting bounding boxes to 
obtain the final predictions on pedestrian locations 

3.1. Feature extraction 

3.1.1 Template pool 

We first compute an average edge map (using Canny 
edge detection) on all the cropped positive images and 
divide the resulting average image into cells of n x n 
pixels (fig. 3a). The authors found that 6 x 6 pixel cells 
maximize performance. This enables us to create a label 
L(i, j) for each cell c(i, j) in the image as belonging to each 
of the parts of the body (head, torso, and legs) that the 
model considers, as well as the background (fig 3b). This  

 

labeling defines a model for the shape of a pedestrian. We 
can then generate a template pool used to extract features 
for classification and, similarly, detection. These templates 
are generated as collections of n x n cells from the 
segmented average edge map, with sizes ranging from 2 x 
1 and 1 x 2 cells to 4 x 3 cells. We take every possible 
template within this range and slide it over our pedestrian 
model. At every point that we slide our windows over, we 
generate either a binary or ternary template, depending on 
how many components exist in our restricted window 
view (Note that there can never be four since the head and 
the legs separated by seven cells along the y-axis). Each 
section of the cell is assigned either +1 or 0 in the bimodal 
case and one of +1, 0 and -1 in the trimodal case (fig. 3c) 
to distinguish which cells belong to which regions. We 
call this weight matrix for each template W at each 
position in our pedestrian model.  

3.1.2 Feature generation with templates, gradient and 
color information 

For each cell c(i, j), we create an n-dimensional 
descriptor that contains information from a variety of 
different channels. Zhang et al originally use 10 channels 
in their journal publication [3]: 3 color channels, 1 channel 
for gradient magnitude, and 6 channels for histograms of 
oriented gradients (HOG). We use the same channels, with 
the exception of using 2 gradient channels, one in the X 
and one in the Y directions, as per Zhang’s subsequently 
published dissertation [12]. Each cell c(i, j) is therefore 
described by a 1 x 1 x 11 feature vector; the 120 x 60 
sliding window is represented by a 20 x 10 x 11 volume, 
since cells are 6 x 6 pixels. 

    

Fig. 3a. Average edge map 
produced by Canny edge 
detection 

Fig 3b. Segmentation of pedestrian average 
edge map into body sections and 
background 

Fig 3c. Template generation from segmented 
average edge map 
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The information from the templates is taken into 
account by computing an average weight for each of them 
from the +1, 0, and -1 assignments (eq. 1), i.e. the matrix 
W. Using Wavg we can find the feature value for every 
template-channel combination (eq. 2). Hence, the length of 
the feature vector for an image is given by the product of 
number of templates and the number of channels. 
 

 

3.2. Classification and Feature Selection 

Like Zhang et al. we train an AdaBoost classifier on 
our data set in order to determine the most discriminative 
features for classification and detection. Our features are 
derived from pairs of templates and 1 of our 11 channels. 
We used shallow decision trees in our ensemble because 
they are simple, fast, and robust to outliers. They split the 
data without being pulled and skewed by noise.  

We trained our model on feature vectors of length 
24,926. This results from pairing each of our 2266 
generated templates with each of our 11 channels. We 
utilized 2000 estimators in our AdaBoost classifier with a 
max-depth of 2 for each decision tree. After a 36 hour 
training period, we learned the most discriminative of the 
24,926 features and were able to subsequently train much 
faster, simpler classifiers. We experimented with varying 
the number of estimators (200 - 2000) and features (100 - 
1000). Figure 4 displays the most discriminative templates 
found during training; figure 5 shows a weighted map of 
the cells that most successfully classify pedestrians. 

 
 
 

 

3.3. Detection 

Our detection step consists of a sliding window in the 
shape and size of the pedestrian template model we trained 
on and consider multiple scales, starting by resizing the 
image such that its height or width is the same as that of 
the pedestrian’s. We then resize the image to a larger size 
by a chosen scaling factor and slide the window again so 
that we can detect pedestrians of different scales. We 
experimented with the scaling factor (1.09-1.6), as well as 
the scaling method between consecutive resizings (linear, 
exponential). We consolidate the resulting bounding boxes 
by applying NMS to arrive at a final set of candidate 
detections which are compared against the ground truth 
bounding boxes provided by the INRIA Person dataset [5]. 

4. Experimental Setup and Results 

4.1. Dataset description 

We trained and tested our implementation on the 
popular INRIA Person dataset [5]. It is based on a training 
set of 614 positive and 1218 negative images, and a test 
set of 288 positive and 453 negative as a base. Multiple 
images contain more than one pedestrian. However, in 
order to facilitate training, the authors provide 
“normalized images”, which are crops of the original set—
for the positive images, they contain the pedestrians in the 
center of the image at a fixed image size. This format 
totals 2416 images in the training set and 1132 in the test 
set. For the negative images, the authors suggest taking 
random crops of the original negative images, which total 
4872 in our case. When we tested our detector, we decided 
to do so on a random subset of 200 of the test images. This 
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is fully in response to the high compute and time 
requirements of our system.  

4.2. Evaluation metrics 

For classification, we present the accuracy and the F1 
score on the test set. 

For detection, the dataset provides annotations on the 
original images: ground-truth bounding boxes on the 
pedestrians in an image. Evaluation of detection is based 
on two metrics: false positives per image (FPPI) and miss 
rate. For a given image, a set of detections and a set of 
ground truths, these metrics are determined as follows [9]: 

1. Sort detections by score for greedy matching 
2. If the area of overlap between a detection and a 

ground truth is greater than 0.5, assign a match 
(eq. 3) and remove both from the matching pool. 

3. After all matches are made, the number of false 
positives is the difference between proposed 
detections and number of matches (eq. 4) 

4. The number of misses is the difference between 
ground truths and number of matches (eq. 5) 

The above steps are computed for all images and the 
overall miss rate and FPPI is reported 
 

 

4.3. Results 

We experimented with both classification and detection 
parameters to obtain the best-performing repressor on our 
implementation of the Informed Haar-like features 
algorithm. Our results for both classification and detection 
are presented below. Tables 1, 2 and fig. 6 present our 
quantitative results. Figs. 4, 5 and 7 display visualizations 
of the most informative templates and pedestrian window 
regions. 

4.4. Results analysis 

Overall, we observe that our classifier achieved 
relatively high accuracy and F1 score (table 1) on the 
INRIA Person test set, even when we significantly 
reduced the number of features and estimators used. On 
the other hand, the performance of the detection 
component of our implementation faired less favorably 
than expected. While Zhang et al. report a miss rate of 
33.4% at 0.1 FPPI, our best-performing detector (closest 

detector to the origin in the miss rate vs. FPPI curve, fig 
6.) only registered 0.7129% miss rate and 11.64 FPPI. We 
suspect that a couple of reasons could have had a 
significant influence on this discrepancy. 

A factor that could have made a significant contribution 
is the fact that we had approximately twice as many 
negative images as positive images during training, 
whereas Zhang et al. used a factor of ten. Even though our 
implementation performed well on the test set, it only has 
less than twice as many negative example per positive 
example. When we slide a window over an image, we 
examine as many as 50,000 subimages. Even a false 
positive rate of 1% would generate 500 false positives pre-
NMS. This explains why we observe comparably high 
FPPI. Qualitatively, we observed that a significant amount 
of the false positives generated were on sections of the 
image that had a complete lack of pedestrian components; 
some were drawn around sand, water, phone booths, and 
floor tiles. A larger, more carefully selected set of negative 
images would likely have significantly reduced FPPI. A 
way to improve the classifier in future work and minimize 
this problem would be to train it twice: once using ten 
times more negative images than positives ones and 
another using hard negative images. The latter would be 
collected by running the half-trained classifier on random 
crops of negative images and assembling a new negative 
training set from those that were incorrectly classified as 
pedestrians with high confidence and retraining the 
classifier on these. 

Moreover, we observe that our miss rate is significantly 
below the reported 33.4% at 0.1 FPPI. We believe a 
significant contributing factor to this is our limited 
rescaling. Unfortunately, Zhang et al. do not describe their 
detection process in much detail. While they mention 
using a sliding window and using NMS, the extent to 
which they describe scaling is entirely contained by “[t]he 
spatial step size is set identical to the cell size for speed 
and the scale step is set to be 1.09 so that there are 8 scales 
in each octave.”. While this gives some guidance, there is 
no mention of what scale the image starts at relative to the 
pedestrian window of 120 x 60 pixels, or a mention of a 
stopping condition. We used two scaling methods: 

1. Scale image height or width to minimum of 120 
or 60 pixels, whichever is larger, while keeping 
the aspect ratio and subsequently increasing the 
size by a scaling factor a fixed n times in 
exponential form. 

2. Scale image to four times the height or width of 
the sliding window, whichever is larger, while 
keeping the aspect ratio and subsequently 
decreasing the size of the image a variable n 
times in exponential form until the image is small 
enough to have approximately the same height as 
the pedestrian window. 
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Unfortunately, we had to keep the scaling factor 

relatively large and the number of resizes relatively small 
due to the large amount of time our implementation 
required to test and evaluate each image. For example, at a 
scaling factor of 1.33 and 6 resizings, each image takes 
approximately 5 minutes to process; testing on all 741 
images in the test set entails 62 hours. Reducing the 
scaling factor to 1.09 and increasing the number of resizes 
would result in an even longer time. We attribute this 
inefficiency at least partly to the fact that our 
implementation is in Python, which can be 700 times 
slower than C++ and 50 times slower than Matlab [13]. 
Either of these languages or even a Cython base would 
have made experimentation easier and faster. 

Comparing rows 7 & 8 in table 1 and rows 3 & 8, and 4 
& 9 in table 2 it is clear that that tree depth had minimal 
impact on classification and virtually none on detection. 
While accuracy decreased slightly and F1 score increase 
slightly, the difference is too small to make any 
statistically significant conclusions—a different test set 
could potentially reverse those results. We attribute the 
lack of change in detection performance to the fact that 
because the classifier changed very slightly, so would the 
resulting detection bounding boxes. This change would 
not be substantial enough to change the matches between 
the detections and the ground truth, thus leaving miss rate 
and FPPI mostly intact. 

We observe that the scaling factor and number of resizes 
had a significant effect on both miss rate and FPPI. This is 
most likely because the pedestrian window detector is 
trained on pedestrians of a very regular size—small  

 
translations or scalings can significantly change the 
predicted label and misclassify seemingly simple images.  

At an NMS threshold of 0.5, we observe that the 
detector with the smallest miss rate spanned a relatively 
large number of resizes at a relatively small scaling factor, 
allowing it to sample a given image for pedestrians at a 
more comprehensive set of scales overall. The power of 
the scaling parameters becomes obvious when comparing 
rows 3 & 4 of table 2. Increasing the number of rescalings 
by one decreased miss rate by 0.08, but at the cost of more 
than doubling FPPI: we scan a larger number of potential 
pedestrians but also misclassify more of them as a 
consequence. 

The number of estimators and the number of features 
chosen also had a minimal impact on classification and 
detection (table 2, rows 1-3). We attribute this to two 
observations. First, our method selects the most 
discriminative features from the original pool; there 
should be a logarithmic relationship between the number 
chosen and their performance. Second, the classifier 
distinguishes between only two classes, which 
substantially lowers the threshold required to successfully 
classify any given image. 

Unsurprisingly, the NMS threshold had a very direct 
impact on both miss rate and FPPI (rows 15-17 in table 2). 
Decreasing the threshold discards fewer candidate 
bounding boxes, resulting in more matches, but also more 
false positives, and vice versa. 

 
 
 

Row Number of Features (most important) Number of Estimators Max Tree Depth Accuracy F1 Score 
 

1 24,926 2000 2 0.9782 0.9713 

2 1000 2000 2 0.9771 0.9701 

3 250 500 2 0.9737 0.9655 

4 100 2000 2 0.9642 0.9532 

5 100 1000 2 0.9635 0.9523 

6 100 500 2 0.9649 0.9540 

7 100 200 2 0.9611 0.9494 

8 100 200 3 0.9494 0.9611 

Table 1. Classification accuracy and F1 score 
O    Classification parameters 
O    Classification performance 
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5. Conclusions and Future Work 

We have shown that despite unfavorable detection 
results, our ground-up implementation of the Informed 
Haar-like features algorithm has the potential to deliver 
respectable performance on pedestrian detection for the 
INRIA Person dataset. Our experiments with number of 
classifiers and features, NMS threshold, scaling factor and 
number of resizes revealed that the first two variables have 
little effect on classifier and detector performance, while  

 

 
 

the latter three have significant power on miss rate and 
FPPI. 

In spite of the relatively poor performance of this 
iteration of our implementation, we believe we now fully 
understand why it behaved in the way we observed. After 
noticing the high accuracy and F1 score of the classifier 
and the contrasting high miss rate and high FPPI of the 
detector, we wrongfully concluded that the poor detection 
performance was a product of only the detection part of 

Row Number of 
Features (most 
important) 

Number of 
Estimators 

Max 
Tree 
Depth 

Scaling 
Factor 

Number of 
Resizes 

NMS 
Threshold 

Miss 
Rate 

FPPI 

1 1000 2000 2 1.2 3 0.5 0.7794 7.01 

2 100 2000 2 1.2 3 0.5 0.7826 9.165 

3 100 200 2 1.2 3 0.5 0.7587 9.445 

4 100 200 2 1.2 4 0.5 0.6755 22.67 

5 100 200 2 1.09 4 0.5 0.6878 20.92 

6 100 200 2 1.15 3 0.5 0.7812 9.365 

7 100 500 2 1.2 3 0.5 0.7526 9.670 

8 100 200 3 1.2 3 0.5 0.7587 9.500 

9 100 200 3 1.2 4 0.5 0.6755 22.67 

10 100 200 3 1.2 4 0.3 0.7776 14.71 

11 100 200 2 1.2 4 0.3 0.7776 14.71 

12 250* 500 2 1.4 4 0.5 0.7129 11.64 

13 100* 200 2 1.5 3 0.5 0.7280 19.72 

14 250* 500 2 1.6 3 0.5 0.7266 12.95 

15 100** 200 2 1.33 6 0.5 0.7036 15.95 

16 100** 200 2 1.33 6 0.3 0.8288 10.59 

17 100** 200 2 1.33 6 0.7 0.6326 24.65 

Table 2. Detection miss rate and false positives per image.  
O    Classification parameters 
O    Detection parameters 
O    Detector performance 
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the pipeline, without taking into account the fact that the 

 

  
 
Fig. 7. Sample output from detector system 
 
the pipeline, without taking into account the fact that the 
test sets for classification were starkly different and much 
more regularly structured than that of detection. This led 
us to perform a series of experiments with no significant 
increase in the detection metrics. Subpar classification 
explains why no change in rescalings or NMS produced 
any more fruitful results. As previously described, the first 
step of future work is to retrain our classifier with many 
more negative data points. Secondly, and equally 
importantly, is to train once more with hard negative 
images—a set compiled from using the classifier on 
negative images and selecting false positives produced 
with high confidence and retraining with those images to 
boost the robustness of the classifier. We could then use 
our current rescaling pipeline, and greatly reduce the 
number of false positives. We could also scan images over 
a greater scale range to minimize miss rate. 

The next implementation of the algorithm would be in 
a more low-level language like MATLAB or C++ to 
minimize training and testing times and enhance the rate at 
which we perform experiments. 

Possible extensions to the implementation include 
introducing new channels with SIFT-like features to 

increase robustness to rotation and reduce dependability of 
an upright pedestrian. We would also train and test on 
alternative datasets, including the Caltech pedestrian video 
dataset. 
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