

225

Abstract

We implemented the Informed Haar-like Features
algorithm for pedestrian detection. This was composed of
three primary endeavors: (1) feature extraction from
images using Integral Channel Features and Haar-like
templates generated from a pedestrian model (2) training
of an AdaBoosted decision tree classifier (3) development
of a sliding window detection algorithm. Combining these
components, we present an early iteration of a pedestrian
detection system.

1. Introduction
Pedestrian detection has received considerable attention

over the last few years [1]. In the simplest terms, it
consists of identifying any pedestrians in an image with
bounding boxes. It is a well-defined problem and instance
of object detection in still images and video that spans
several applications, including security and space usage
analytics and self-driving cars. In spite of a substantial
effort to solve the problem, even the most avant-garde
methods still underperform human ability [2].

In this paper, we describe and evaluate an
implementation of the successful Informed Haar-like
features method using a single static camera [3]. While
this method’s miss rate of 34.4% at 0.1 false positives per
image (FPPI) is below the current best of 14.72% [2] for
the Caltech pedestrian dataset, it has the advantage of
requiring comparatively little computing power. It is thus
better suited for real-time applications and processing of
long video files.

With the exception of the image filter computations and
machine learning, we implemented the entirety of the
Informed Haar-like Features classification and detection.
It is freely available on GitHub at
github.com/sigberto/informed-haar.

While newer convolutional neural network-based like
Fast R-CNN [10] and Faster R-CNN [11] have provided
quicker, more accurate platforms for object detection, they
require a GPU for practical applications. In contrast,
Informed Haar-like Features can run on any modern
computer at relatively good speeds.

1.1. Related Work

Viola and Jones provided one of the most influential
works in detection with their application of Haar-like
templates for feature extraction on face detection [6]. They
introduced the notion of integral images, (a way to quickly
compute image features as a sum of pixel regions), as well
as the use of a boosting algorithm to identify the most
relevant features. Other methods emphasized histogram of
oriented gradients (HOG) as the main way to extract
features, as well as the identification of parts of an object
to create models, as in the work of Felzenszwalb et al [7].
Both of these approaches had a significant influence on
feature extraction. An additional approach was developed
by Dollar et al. [8]. For every image, they applied a series
of filters, such as LUV and HSV color spaces, gradient
magnitudes, HOG, difference of gradients (DoG), edges
and thresholding and extracted features as a weighted sum
of these resulting “channels”. Variations of this approach
have also seen relatively wide adoption for pedestrian
detection. The Informed Haar-like Features algorithm
combines elements from the above approaches to produce
a robust detector—it combines the templates from Viola
and Jones, feature types from Felzenszwalb et al. and the
integral channel features from Dollar et al. Its feature
extraction involves three key steps:

a. Generation of “templates” that correspond to
different sections of the body of a pedestrian
(head, torso, legs and background)

b. Extraction of image features through the
application of image filters like gradient and
color spaces

c. Use of the templates to localize and weigh the
image features

2. Problem statement

Pedestrian detection consists of identifying pedestrians
in an image by constructing a bounding box around each
instance (fig. 1). This is a popular problem in computer
vision not only because of its applications, but also
because of the challenges it presents. Unlike detecting a
well-defined and invariant object like a vegetable or a
national flag, pedestrians present a number of challenges,

Informed Haar-like features for Pedestrian Detection

Sigberto Alarcon Viesca

Stanford University
Stanford, CA

salarcon@stanford.edu

Brandon Garcia
Stanford University

Stanford, CA
bgarcia7@stanford.edu

226

including high intra-class variability (different sizes, skin
colors, hair color, cloths and postures), scale, lighting
conditions, occlusions, and the sheer number of objects in
an average street scene. In addition, many applications like
self-driving cars require real-time detection for immediate
reaction.

The performance of a classifier is measured by two key
figures: miss rate and false positives per image (FPPI).
The former is the percentage of pedestrians in a training or
test set that were not detected; the latter is the average
number of bounding boxes generated that do not
correspond to a pedestrian. These are often plotted against
each other since they are negatively correlated. (fig. 2).

3. Technical Content

Our implementation is composed of three primary
endeavors: Haar-like feature generation, classifier training,
and detection refinement. The Informed Haar-like
Features algorithm approach incorporates prior
information about the problem into its approach for
generating feature vectors for an image—it models upright
humans as three-part objects: head, torso and legs. While
there is a high degree of variability in terms of color, pose
and even texture, the regularity of the overall shape of a
pedestrian—especially the head-shoulder area—exhibits
high intraclass similarity and a geometry seldom found
elsewhere. We made use of feature values derived from a
variety of binary (two regions) and ternary (three regions)
Haar-like feature templates and color/gradient information
from the image pixels. We trained our classifier using the
AdaBoost learning algorithm on shallow decision trees.
Using our classifier, we then built a pedestrian detector,
using sliding windows and our classifier scores to propose
candidate bounding boxes. We further refined our
bounding box proposals via non-maximal suppression
(NMS). In an attempt to optimize for speed and
performance, we tuned the number of features that we
trained our classifier on, the number of estimators in our
ensemble, and the maximum depth of each individual
decision tree. For detection, we adjusted our threshold for
NMS, but primarily focused on refining our scaling
process.

We used the INRIA Person dataset [5] to train and test
our model; this is one of the two of the most popular
datasets for the task at hand (the other being the Caltech
dataset [4]) and makes comparison with other methods
easy and direct. The overall training and testing pipeline is
summarized as follows:

Training:
• Obtain average edge map of 120x60 pixels cropped

pedestrian dataset with Canny edge detector
• Subdivide the resulting 120x60 into n x n cells.

Label each cell as part of head, torso, legs or
background

• Generate bimodal and trimodal Haar feature
templates based on the above labeling

• Pass each image in the training set through various
filters—gradient in the X and Y directions, LUV
color scheme, and histogram of oriented gradients
(HOG). These result in eleven two-dimensional
“channels” as described by Dollar et al., per image

• Combine templates and channels to produce a
feature vector for each image

• Train an AdaBoost Decision Tree classifier on the
image features

Fig. 1. Example pedestrian detector input (above) and
objective output (below)

Fig. 2. Results of different detectors on the INRIA
dataset using standard evaluation settings [3]

227

• Take the most discriminative features and retrain a

new classifier on just those top features (in this
case, a feature is composed of a template and 1 of
our 11 channels)

Testing:
• For each test image, extract channels in the same

way as during the training, and slide a pedestrian-
shaped 120x60 pixel window over the entire image
at different scales.

• For each window, combine the top feature
templates and channel feature information to create
a feature vector

• Classify each feature vector and keep the bounding
boxes corresponding to the feature vectors that are
labeled as pedestrians.

• Apply NMS on the resulting bounding boxes to
obtain the final predictions on pedestrian locations

3.1. Feature extraction

3.1.1 Template pool

We first compute an average edge map (using Canny
edge detection) on all the cropped positive images and
divide the resulting average image into cells of n x n
pixels (fig. 3a). The authors found that 6 x 6 pixel cells
maximize performance. This enables us to create a label
L(i, j) for each cell c(i, j) in the image as belonging to each
of the parts of the body (head, torso, and legs) that the
model considers, as well as the background (fig 3b). This

labeling defines a model for the shape of a pedestrian. We
can then generate a template pool used to extract features
for classification and, similarly, detection. These templates
are generated as collections of n x n cells from the
segmented average edge map, with sizes ranging from 2 x
1 and 1 x 2 cells to 4 x 3 cells. We take every possible
template within this range and slide it over our pedestrian
model. At every point that we slide our windows over, we
generate either a binary or ternary template, depending on
how many components exist in our restricted window
view (Note that there can never be four since the head and
the legs separated by seven cells along the y-axis). Each
section of the cell is assigned either +1 or 0 in the bimodal
case and one of +1, 0 and -1 in the trimodal case (fig. 3c)
to distinguish which cells belong to which regions. We
call this weight matrix for each template W at each
position in our pedestrian model.

3.1.2 Feature generation with templates, gradient and
color information

For each cell c(i, j), we create an n-dimensional
descriptor that contains information from a variety of
different channels. Zhang et al originally use 10 channels
in their journal publication [3]: 3 color channels, 1 channel
for gradient magnitude, and 6 channels for histograms of
oriented gradients (HOG). We use the same channels, with
the exception of using 2 gradient channels, one in the X
and one in the Y directions, as per Zhang’s subsequently
published dissertation [12]. Each cell c(i, j) is therefore
described by a 1 x 1 x 11 feature vector; the 120 x 60
sliding window is represented by a 20 x 10 x 11 volume,
since cells are 6 x 6 pixels.

Fig. 3a. Average edge map
produced by Canny edge
detection

Fig 3b. Segmentation of pedestrian average
edge map into body sections and
background

Fig 3c. Template generation from segmented
average edge map

228

The information from the templates is taken into
account by computing an average weight for each of them
from the +1, 0, and -1 assignments (eq. 1), i.e. the matrix
W. Using Wavg we can find the feature value for every
template-channel combination (eq. 2). Hence, the length of
the feature vector for an image is given by the product of
number of templates and the number of channels.

3.2. Classification and Feature Selection

Like Zhang et al. we train an AdaBoost classifier on
our data set in order to determine the most discriminative
features for classification and detection. Our features are
derived from pairs of templates and 1 of our 11 channels.
We used shallow decision trees in our ensemble because
they are simple, fast, and robust to outliers. They split the
data without being pulled and skewed by noise.

We trained our model on feature vectors of length
24,926. This results from pairing each of our 2266
generated templates with each of our 11 channels. We
utilized 2000 estimators in our AdaBoost classifier with a
max-depth of 2 for each decision tree. After a 36 hour
training period, we learned the most discriminative of the
24,926 features and were able to subsequently train much
faster, simpler classifiers. We experimented with varying
the number of estimators (200 - 2000) and features (100 -
1000). Figure 4 displays the most discriminative templates
found during training; figure 5 shows a weighted map of
the cells that most successfully classify pedestrians.

3.3. Detection

Our detection step consists of a sliding window in the
shape and size of the pedestrian template model we trained
on and consider multiple scales, starting by resizing the
image such that its height or width is the same as that of
the pedestrian’s. We then resize the image to a larger size
by a chosen scaling factor and slide the window again so
that we can detect pedestrians of different scales. We
experimented with the scaling factor (1.09-1.6), as well as
the scaling method between consecutive resizings (linear,
exponential). We consolidate the resulting bounding boxes
by applying NMS to arrive at a final set of candidate
detections which are compared against the ground truth
bounding boxes provided by the INRIA Person dataset [5].

4. Experimental Setup and Results

4.1. Dataset description

We trained and tested our implementation on the
popular INRIA Person dataset [5]. It is based on a training
set of 614 positive and 1218 negative images, and a test
set of 288 positive and 453 negative as a base. Multiple
images contain more than one pedestrian. However, in
order to facilitate training, the authors provide
“normalized images”, which are crops of the original set—
for the positive images, they contain the pedestrians in the
center of the image at a fixed image size. This format
totals 2416 images in the training set and 1132 in the test
set. For the negative images, the authors suggest taking
random crops of the original negative images, which total
4872 in our case. When we tested our detector, we decided
to do so on a random subset of 200 of the test images. This

229

is fully in response to the high compute and time
requirements of our system.

4.2. Evaluation metrics

For classification, we present the accuracy and the F1
score on the test set.

For detection, the dataset provides annotations on the
original images: ground-truth bounding boxes on the
pedestrians in an image. Evaluation of detection is based
on two metrics: false positives per image (FPPI) and miss
rate. For a given image, a set of detections and a set of
ground truths, these metrics are determined as follows [9]:

1. Sort detections by score for greedy matching
2. If the area of overlap between a detection and a

ground truth is greater than 0.5, assign a match
(eq. 3) and remove both from the matching pool.

3. After all matches are made, the number of false
positives is the difference between proposed
detections and number of matches (eq. 4)

4. The number of misses is the difference between
ground truths and number of matches (eq. 5)

The above steps are computed for all images and the
overall miss rate and FPPI is reported

4.3. Results

We experimented with both classification and detection
parameters to obtain the best-performing repressor on our
implementation of the Informed Haar-like features
algorithm. Our results for both classification and detection
are presented below. Tables 1, 2 and fig. 6 present our
quantitative results. Figs. 4, 5 and 7 display visualizations
of the most informative templates and pedestrian window
regions.

4.4. Results analysis

Overall, we observe that our classifier achieved
relatively high accuracy and F1 score (table 1) on the
INRIA Person test set, even when we significantly
reduced the number of features and estimators used. On
the other hand, the performance of the detection
component of our implementation faired less favorably
than expected. While Zhang et al. report a miss rate of
33.4% at 0.1 FPPI, our best-performing detector (closest

detector to the origin in the miss rate vs. FPPI curve, fig
6.) only registered 0.7129% miss rate and 11.64 FPPI. We
suspect that a couple of reasons could have had a
significant influence on this discrepancy.

A factor that could have made a significant contribution
is the fact that we had approximately twice as many
negative images as positive images during training,
whereas Zhang et al. used a factor of ten. Even though our
implementation performed well on the test set, it only has
less than twice as many negative example per positive
example. When we slide a window over an image, we
examine as many as 50,000 subimages. Even a false
positive rate of 1% would generate 500 false positives pre-
NMS. This explains why we observe comparably high
FPPI. Qualitatively, we observed that a significant amount
of the false positives generated were on sections of the
image that had a complete lack of pedestrian components;
some were drawn around sand, water, phone booths, and
floor tiles. A larger, more carefully selected set of negative
images would likely have significantly reduced FPPI. A
way to improve the classifier in future work and minimize
this problem would be to train it twice: once using ten
times more negative images than positives ones and
another using hard negative images. The latter would be
collected by running the half-trained classifier on random
crops of negative images and assembling a new negative
training set from those that were incorrectly classified as
pedestrians with high confidence and retraining the
classifier on these.

Moreover, we observe that our miss rate is significantly
below the reported 33.4% at 0.1 FPPI. We believe a
significant contributing factor to this is our limited
rescaling. Unfortunately, Zhang et al. do not describe their
detection process in much detail. While they mention
using a sliding window and using NMS, the extent to
which they describe scaling is entirely contained by “[t]he
spatial step size is set identical to the cell size for speed
and the scale step is set to be 1.09 so that there are 8 scales
in each octave.”. While this gives some guidance, there is
no mention of what scale the image starts at relative to the
pedestrian window of 120 x 60 pixels, or a mention of a
stopping condition. We used two scaling methods:

1. Scale image height or width to minimum of 120
or 60 pixels, whichever is larger, while keeping
the aspect ratio and subsequently increasing the
size by a scaling factor a fixed n times in
exponential form.

2. Scale image to four times the height or width of
the sliding window, whichever is larger, while
keeping the aspect ratio and subsequently
decreasing the size of the image a variable n
times in exponential form until the image is small
enough to have approximately the same height as
the pedestrian window.

230

Unfortunately, we had to keep the scaling factor

relatively large and the number of resizes relatively small
due to the large amount of time our implementation
required to test and evaluate each image. For example, at a
scaling factor of 1.33 and 6 resizings, each image takes
approximately 5 minutes to process; testing on all 741
images in the test set entails 62 hours. Reducing the
scaling factor to 1.09 and increasing the number of resizes
would result in an even longer time. We attribute this
inefficiency at least partly to the fact that our
implementation is in Python, which can be 700 times
slower than C++ and 50 times slower than Matlab [13].
Either of these languages or even a Cython base would
have made experimentation easier and faster.

Comparing rows 7 & 8 in table 1 and rows 3 & 8, and 4
& 9 in table 2 it is clear that that tree depth had minimal
impact on classification and virtually none on detection.
While accuracy decreased slightly and F1 score increase
slightly, the difference is too small to make any
statistically significant conclusions—a different test set
could potentially reverse those results. We attribute the
lack of change in detection performance to the fact that
because the classifier changed very slightly, so would the
resulting detection bounding boxes. This change would
not be substantial enough to change the matches between
the detections and the ground truth, thus leaving miss rate
and FPPI mostly intact.

We observe that the scaling factor and number of resizes
had a significant effect on both miss rate and FPPI. This is
most likely because the pedestrian window detector is
trained on pedestrians of a very regular size—small

translations or scalings can significantly change the
predicted label and misclassify seemingly simple images.

At an NMS threshold of 0.5, we observe that the
detector with the smallest miss rate spanned a relatively
large number of resizes at a relatively small scaling factor,
allowing it to sample a given image for pedestrians at a
more comprehensive set of scales overall. The power of
the scaling parameters becomes obvious when comparing
rows 3 & 4 of table 2. Increasing the number of rescalings
by one decreased miss rate by 0.08, but at the cost of more
than doubling FPPI: we scan a larger number of potential
pedestrians but also misclassify more of them as a
consequence.

The number of estimators and the number of features
chosen also had a minimal impact on classification and
detection (table 2, rows 1-3). We attribute this to two
observations. First, our method selects the most
discriminative features from the original pool; there
should be a logarithmic relationship between the number
chosen and their performance. Second, the classifier
distinguishes between only two classes, which
substantially lowers the threshold required to successfully
classify any given image.

Unsurprisingly, the NMS threshold had a very direct
impact on both miss rate and FPPI (rows 15-17 in table 2).
Decreasing the threshold discards fewer candidate
bounding boxes, resulting in more matches, but also more
false positives, and vice versa.

Row Number of Features (most important) Number of Estimators Max Tree Depth Accuracy F1 Score

1 24,926 2000 2 0.9782 0.9713

2 1000 2000 2 0.9771 0.9701

3 250 500 2 0.9737 0.9655

4 100 2000 2 0.9642 0.9532

5 100 1000 2 0.9635 0.9523

6 100 500 2 0.9649 0.9540

7 100 200 2 0.9611 0.9494

8 100 200 3 0.9494 0.9611

Table 1. Classification accuracy and F1 score
O Classification parameters
O Classification performance

231

5. Conclusions and Future Work

We have shown that despite unfavorable detection
results, our ground-up implementation of the Informed
Haar-like features algorithm has the potential to deliver
respectable performance on pedestrian detection for the
INRIA Person dataset. Our experiments with number of
classifiers and features, NMS threshold, scaling factor and
number of resizes revealed that the first two variables have
little effect on classifier and detector performance, while

the latter three have significant power on miss rate and
FPPI.

In spite of the relatively poor performance of this
iteration of our implementation, we believe we now fully
understand why it behaved in the way we observed. After
noticing the high accuracy and F1 score of the classifier
and the contrasting high miss rate and high FPPI of the
detector, we wrongfully concluded that the poor detection
performance was a product of only the detection part of

Row Number of
Features (most
important)

Number of
Estimators

Max
Tree
Depth

Scaling
Factor

Number of
Resizes

NMS
Threshold

Miss
Rate

FPPI

1 1000 2000 2 1.2 3 0.5 0.7794 7.01

2 100 2000 2 1.2 3 0.5 0.7826 9.165

3 100 200 2 1.2 3 0.5 0.7587 9.445

4 100 200 2 1.2 4 0.5 0.6755 22.67

5 100 200 2 1.09 4 0.5 0.6878 20.92

6 100 200 2 1.15 3 0.5 0.7812 9.365

7 100 500 2 1.2 3 0.5 0.7526 9.670

8 100 200 3 1.2 3 0.5 0.7587 9.500

9 100 200 3 1.2 4 0.5 0.6755 22.67

10 100 200 3 1.2 4 0.3 0.7776 14.71

11 100 200 2 1.2 4 0.3 0.7776 14.71

12 250* 500 2 1.4 4 0.5 0.7129 11.64

13 100* 200 2 1.5 3 0.5 0.7280 19.72

14 250* 500 2 1.6 3 0.5 0.7266 12.95

15 100** 200 2 1.33 6 0.5 0.7036 15.95

16 100** 200 2 1.33 6 0.3 0.8288 10.59

17 100** 200 2 1.33 6 0.7 0.6326 24.65

Table 2. Detection miss rate and false positives per image.
O Classification parameters
O Detection parameters
O Detector performance

232

the pipeline, without taking into account the fact that the

Fig. 7. Sample output from detector system

the pipeline, without taking into account the fact that the
test sets for classification were starkly different and much
more regularly structured than that of detection. This led
us to perform a series of experiments with no significant
increase in the detection metrics. Subpar classification
explains why no change in rescalings or NMS produced
any more fruitful results. As previously described, the first
step of future work is to retrain our classifier with many
more negative data points. Secondly, and equally
importantly, is to train once more with hard negative
images—a set compiled from using the classifier on
negative images and selecting false positives produced
with high confidence and retraining with those images to
boost the robustness of the classifier. We could then use
our current rescaling pipeline, and greatly reduce the
number of false positives. We could also scan images over
a greater scale range to minimize miss rate.

The next implementation of the algorithm would be in
a more low-level language like MATLAB or C++ to
minimize training and testing times and enhance the rate at
which we perform experiments.

Possible extensions to the implementation include
introducing new channels with SIFT-like features to

increase robustness to rotation and reduce dependability of
an upright pedestrian. We would also train and test on
alternative datasets, including the Caltech pedestrian video
dataset.

References

[1] R. Benenson, M. Omran, J. Hosang, B. Schiele. Ten Years

of Pedestrian Detection, What Have We Learned?. ECCV,
2014

[2] S. Zhang, R. Benenson, M. Omran, J. Hosang, B. Schiele.
How far are We From Solving Pedestrian Detection?
Unpublished, 2016.

[3] S. Zhang, C. Bauckhage, A. Cremers. Informed Haar-like
Feature Improve Pedestrian Detection. CVPR, 2014

[4] P. Dollár, C. Wojek, B. Schiele, P. Perona. Pedestrian
Detection: A Benchmark. CVPR, 2009

[5] N. Dalal. INRIA Person Dataset. French Institute for
Research in Computer Science and Automation, 2005

[6] P. Viola, M. Jones. Robust Real-Time Face Detection. IJCV
2004.

[7] P. Felzenszwalb, D. McAllester, D. McAllester. A
Discriminatively Trained, Multiscale, Deformable Part
Model. CVPR 2008

[8] P. Dollar, Z. Tu, P. Perona, and S. Belongie. Integral
Channel Features. BMVC, 2009.

[9] Piotr Dollar, Christian Wojek, Bernt Schiele, and Pietro
Perona. Pedestrian Detection: An Evaluation of the State of
the Art

[10] R. Girshick Fast R-CNN. ICCV, 2015.
[11] S. Ren, K. He, R. Girshick, J. Sun. Faster R-CNN: Towards

Real-Time Object Detection with Region Proposal
Networks. ICCV 2015

[12] S. Zhang. Efficient Pedestrian Detection in Urban Traffic
Scenes. Doctoral dissertation, University of Bonn, 2014

[13] A beginners guide to using Python for performance
computing. SciPy.org. http://scipy.github.io/old-
wiki/pages/PerformancePython

