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Abstract

In this project, we sought track the movement of mul-
tiple people in 3D given security footage that is represen-
tative of what would be available in retail stores without
modifying existing camera deployments. More specifically,
this involves using a single, possibly fisheye-distorted view
to track people in 3D space and model where they are in a
room or store. This involved bridging various papers across
the computer vision literature, looking at radial distortion
resolution for images from an uncalibrated camera; cali-
bration techniques from single-view metrology, affine ap-
proximation, and a simplified special-case mathematical
model for object detections on a ground plane; and deep
region-based convolutional networks for 2D person detec-
tion.

We define an approach that uses this single security cam-
era view to track people on a ground plane, relying on some
assumptions about the geometry of the space, but no ad-
ditional hardware, giving our work an advantage over ex-
isting companies and processes that rely on more sophisti-
cated sensors or sensor networks for person-tracking. The
assumptions we make are realistic in the retail store context,
and our quantitative results are compelling: significantly
more accurate than WiFi-based tracking solutions that are
already being deployed [9]. Our approach can be deployed
in most retail spaces without any hardware modifications to
existing security setups. We are excited by the real-world
applicability of our work.

1. Introduction
As we see much of retail moving online from brick-

and-mortar, opportunities to analyze consumer shopping
behavior are rapidly growing and becoming commercial-
ized. Recommendation engines, product positioning on
webpages, and sales funnels are all relentlessly A/B tested
and optimized to seduce the consumer into clicking Buy.
Much as the abundance of data makes optimization and it-
eration easy in the e-commerce space, brick-and-mortar re-

tail stores are looking to obtain and harness similar data to
shelve products, auction shelf space, and strategically place
discounts and information.

There are numerous current approaches being taken to
obtaining real-time consumer data in retail stores. Many
of these involve tracking peoples movement throughout the
store, with Bluetooth or wifi tracking, or with photogates.
All of these require significant hardware and deployment
costs, which has hindered their scalability.

Computer vision is a promising tool to address this busi-
ness need. As weve seen significant progress in the field as
of late (notably from convolutional neural networks), cam-
eras are an attractive option to track users in a store and
obtain data on customer retail behavior. Cameras are a par-
ticularly attractive method to obtain this data because most
retail stores already have the necessary hardware in place
for the purposes of security.

In this project, we track the 3D positions of multiple peo-
ple throughout a store in real-time, given a camera source
and certain assumptions about the store layout (namely, that
only one floor is visible to the camera, and that people’s
feet are visible in the image frames). We show a live 3D
bounding box whose coordinates are relative to the world
frame that tracks each person as they move, with error lev-
els within 55cm in outdoor settings and 30cm indoors, much
better than the existing WiFi- and Bluetooth-based tracking
solutions [9]. To do this, we tie together numerous concepts
from computer vision in a single approach - we design an
entirely new approach for this business need by integrat-
ing various approaches. To each subproblem, we tried var-
ious options, picked the best, and identified optimizations
for this particular case where applicable - for instance, we
found that affine approximation of tiled floor grids worked
far better than vanishing points given the configuration of
many security cameras with respect to the floor.

In this paper, we beginning by examining the problem
statement, and related work, both work that we read to gain
background knowledge, and also that we read to learn from
and build on their approaches to solving problems of dis-
tortion, calibration, and object detection. We then dive into
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our approaches to each of these three problems, and how
they tie together into an end-to-end approach that could be
deployed into retail stores. Finally, we use a larger scale
dataset to obtain some quantitative metrics with which to
evaluate the success of our approach, and we leave space
for future work, such as integrating Extended Kalman Fil-
ters to enforce temporal consistency.

2. Problem Statement

Our objective is to accurately predict the 3-D position
of a person based on their location in a security camera.
If the person’s true location (we use the location of their
feet) can be given by (x∗, y∗, Z∗), and we estimate loca-
tion (x′, y′, z′) for them in 3-D space, then we are trying to
minimize:

d =
√

(x ∗ −x′)2 + (y∗ = y′)2 + (z ∗ −z′)2

for each person in each image. Since we use people’s
feet, we can constrain z′ = 0, enabling us to use a single
view to predict position - this creates errors when people
jump, but this is not typical behavior.

We use two coordinate systems in this paper. The pri-
mary system is standard, where x spans the width of the
image, increasing to the right, and y spans the height, in-
creasing downwards, and the origin (0, 0) in the upper left
hand corner of the image. We also use a unique coordi-
nate system when undistorting images, where (0, 0) is at
the optical center of the image, and x and y increase right
and downwards respectively. This coordinate system is nec-
essary to model radial distortion parameters by expressing
points in polar coordinates from the optical center.

3. Related Work

There is a significant amount of work that has been done
in the space of retail analytics via camera, but this work has
been done almost exclusively by startups which protect their
methods as intellectual property. These include Prism Sky-
labs, Brickstream, and RetailNext. These are all dependent
on custom hardware, or sensors to augment the surveillance
feed.

On the technical front, we had to integrate work from
various frontiers in computer vision. Solving this business
problem required us to solve a number of technical prob-
lems. One was correction of barrel distortion - we leaned
heavily on Sing Bing Kangs work in Semiautomatic Meth-
ods for Recovering Radial Distortion Parameters from A
Single Image, in which he defined an algorithm by which
a user to draws snakes on a distorted image, with each ap-
proximately corresponding to a projected straight line in
space [8]. In his paper, he outlines how these snakes can

be used consistently with a model of radial image distor-
tion to solve for the radial distortion parameters and thus
undistort the image. For a given snake, the algorithm fits it
to the line of best fit, rotates this line to be horizontal, and
estimates constant distortion parameters that fit all of these
snakes/lines.

Another problem that was clear was recovering both in-
trinsic and extrinsic camera parameters from a single view.
To do this, we used the affine calibration approximation
taught in class, and covered in R. Hartley and A. Zissermans
textbook, Multiple View Geometry in Computer Vision [7].
In particular, we used calibration from a checkerboard with
the direct linear transformation algorithm, with tiled floors
as our checkboard. We had also tried single view metrology
with three sets of parallel lines, but this left us estimating
extrinsics.

Finally, we had the problem of object detection, to find
people in our image frame. Cutting edge research in object
detection suggests that deep convolutional nets is the best
way to do this. Scalable Object Detection using Deep Neu-
ral Networks by Erhan et al. at Google demonstrated that
convolutional neural nets are very powerful for finding re-
gions of interest, while also having an effective recognition
path that categorizes the object of interest. The two steps
take a while though, and are not necessarily fast enough to
build real-time bounding boxes on video - Ren et al.s Faster
R-CNN: Towards Real-Time Object Detection with Region
Proposal Networks takes this work a step further by folding
the localization and recognition path into the same convolu-
tional neural networks, training the weights with the local-
ization and recognition cost functions alternately [10]. We
use this work directly as a component of our solution.

Finally, after proving our concept on some footage via
YouTube, we were able to find a much more expansive
dataset with ground truths from A new Dataset for Peo-
ple Tracking and Reidentification via the Video Surveil-
lance Online Repository [11]. This dataset was also pre-
calibrated and undistorted for us, via the methodology out-
lined in Cooperative Object Tracking with Multiple PTZ
Cameras, presented by Everts, Jones, and Sebe [3].

4. Technical Approach

4.1. Distortion Correction

While there are a number of approaches to fixing this
issue, such as un-distorting the image with projections of
area, or computing radial distortion coefficients, most meth-
ods depend on knowing the intrinsics of the camera pre-
distortion. Sing Bing Kangs work, however, suggests a
method to manually pick points on a line and accordingly
fit distortion parameters, as referred to above [8]. In par-
ticular, it tries to fit all points that should be collinear (as
denoted by a person) so that they are, while moving those
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points as little as possible, and only moving all points radi-
ally by adjusting radius parameters.

Radial distortion, of which barrel distortion is a type, can
be modeled by imposing a polar coordinate system on the
image. From the center of the image, each pixel has an an-
gle and distance from the optical center. Changes in this
distance create radial distortion. The distortion at a point,
which we call ∆r, is the change in distance from the op-
tical center from the undistorted distance. We model this
distortion with the equation:

∆r =

∞∑
i=1

C2i+1r
2i+1 where r =

√
x2 + y2

Then, the approach is to find values of C such that all
points we manually constrain to be collinear as collinear,
while also minimizing the distance we move them. This
is a common radial distortion correction algorithm, and we
found that Photoshop actually provides a very effective im-
plementation which can be used to adjust entire videos, and
imposes the same distortion parameters on each frame. We
went this route to manually undistort video, rather than im-
plement the polar geometry and solver for the parameters
from scratch.

4.2. Calibration

Being able to map pixel coordinates to world coordinates
is a central component of understanding shoppers’ 3D lo-
cations from images. Thus it is necessary to find a robust
camera calibration for any given video feed. We considered
two approaches to solving this problem for our unlabeled
retail store data. For our 3DPeS data, calibration parame-
ters were included with the dataset. The parameters were
given in a third type of calibration formulation, which we
also explain below. Because retail cameras only need to be
calibrated once, it is practical to do these calibrations by
hand in a real-world context; thus we did not invest time in
automating the calibration process.

4.2.1 Single View Metrology

Given that we are constrained to one camera, in an environ-
ment with multiple sets of mutually orthogonal lines, it is
natural to first try an approach based on single-view metrol-
ogy to calibrate the camera. In our retail video, we labeled
three sets of mutually orthogonal lines by selecting two
points on each of 6 lines. For each pair of parallel lines, we
found the corresponding vanishing point vi, i ∈ {1, 2, 3} by
computing the intersection of the lines in image coordinates.
We then considered the matrix ω, the projection of the abso-
lute conic Ω∞ into image coordinates. By assuming a cam-
era with square pixels and 0-skew (a reasonable assumption

for a retail security video that has been corrected for barrel
distortion), we can constrain ω to:

ω =

ω1 0 ω2

0 ω1 ω3

ω2 ω3 ω4

 (1)

This matrix has four unknowns, but it is only known up
to scale. This means there are effectively three unknowns
if we set one of the unknown variables to 1 and scale the
rest accordingly. As a result, we can solve for the matrix ω
by using our three vanishing points, and exploiting the fact
that because they are mutual orthogonal, for each vi, vj with
i 6= j, v>i ωvj = 0. Thus we have three scalar equations in
three unknowns:

v>1 ωv2 = 0 (2)

v>1 ωv3 = 0 (3)

v>2 ωv3 = 0 (4)

It is known that ω = (KK>)−1, where K is the 3x3
matrix of camera intrinsics. So we can find K using the
Cholesky decomposition of ω. We did this with our retail
video and found the camera intrinsics. Unfortunately after
this process the extrinsics

[
R|T

]
are still unknown, so we

could not recover the entire camera matrix P = K
[
R|T

]
.

Setting the camera to be the origin in world coordinates
is not helpful, because even though it resolves the

[
R|T

]
parameters (they would simply be

[
I|0
]
, we still need to

know where the ground plane is in world coordinates to re-
solve the projective ambiguity of mapping a pixel to a world
point. We tried estimating

[
R|T

]
by hand through trial and

error, but the results were very unreliable.

Figure 1. Sets of mutually orthogonal lines used for single view
metrology calibration in the retail camera frame. The line intersec-
tions give us three vanishing points, which we use in the equations
above to solve for K.

wher e
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4.2.2 Affine Calibration

Our problems with a calibration based on single view
metrology could be resolved by finding point correspon-
dences and solving for the camera matrix directly. For our
retail video, we labeled 15 points by hand in the scene. We
place the origin at the bottom left corner of the bottom-
leftmost tile that is fully visible, we let each tile be 1 ×
1 in width and height in world coordinates, and we say that
all tiles lie on the ground plane z = 0. We model the cam-
era matrix P as affine, which is a desirable approximation
even though the true camera matrix is projective, because
the lines in the scene are nearly parallel and solving for
fewer unknowns is preferred with only 15 point correspon-
dences. That is, we let:

P =

a1,1 a1,2 a1,3 a1,4

a2,1 a2,2 a2,3 a2,4

0 0 0 1

 (5)

Then, we use our n = 15 points to solve the following
over-constrained system of 2n equations:

Ax = b (6)

Where the world coordinates of point i are (xi, yi, zi),
the image coordinates are (ui, vi), and:

A =



x1 y1 z1 1 0 0 0 0
x2 y2 z2 1 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
xn yn zn 1 0 0 0 0
0 0 0 0 x1 y1 z1 1
0 0 0 0 x2 y2 z2 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 x1 yn zn 1


(7)

b =



u1

v1

u2

v2

. .
un
vn


(8)

And x is a column vector of the eight unknowns in P ,
arranged in order with unknowns from the first row of P
before unknowns from the second. We solve the system
of equations in the standard way, by rearranging so that the
right hand side is 0 and the matrixA has additional columns
(and x additional rows) to maintain the constraints imposed
in the original equation by the values in b; then taking the
SVD of this augmented left-hand matrix, and using the last
column of the third output from SVD as the parameters of
P .

4.2.3 PTZ Calibration for Ground Plane Object Detec-
tion

Affine calibration worked well for our retail video data. But
we used a different approach when working with the 3DPeS
dataset, because that dataset already included parameters
for a different type of calibration. Due to the difficult po-
sition of the cameras in the dataset, the publisher used a
simpler type of calibration [3] designed specifically for Pan,
Tilt, and Zoom (PTZ) cameras, which are commonly used
in surveillance. The methodology is fully described in the
source paper; we briefly summarize it here for convenience.

The calibration assumes that objects are only detected
along a ground plane of Z = 0. Let U, V,H be the dis-
placement of the camera coordinate system relative to the
world; ∆i = i − i0,∆j = j − j0 are the pixel positions
relative to the image’s optical center (i0, j0); αf

x and αf
y are

the horizontal and vertical scales between the image and im-
age plane; t is the tilt angle of the camera; and p′ = p+ p0

is the pan angle after the camera is aligned with the world
coordinate system. An object’s world coordinates X,Y are
then given as:

[
X
Y

]
=

H

αf
y∆i sin t+ cos t

R

αf
x∆j
αf
y∆i
−1

+

[
U
V

]
(9)

where

R =

[
cos p′ sin p′ cos t sin p′ sin t
sin p′ − cos p′ cos t − cos p′ sin t

]
(10)

4.3. Person Detection

Figure 2. Our ConvNet can detect multiple pedestrians with high
confidence, especially in clear environments such as this one. This
image is from Camera 3 in the 3DPeS dataset.
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Person detection in 2D images is a well-studied problem
[12] [1] [6] with several existing solutions, offering various
tradeoffs between speed, accuracy and simplicity. There
are essentially two parts to the problem: generating regions
of interest (RoIs) where a person might be, and classifying
those regions to determine if the region does indeed contain
a person.

Recently, approaches that utilize deep ConvNets have
been shown to perform exceptionally well at object detec-
tion, and person detection specifically. For this part of our
problem, we use a deep Convent object detection architec-
ture proposed by Girshick et. al. known as Faster R-CNN
[10]. Faster R-CNN is an improvement on Fast R-CNN [4],
which is itself an improvement of the original R-CNN ar-
chitecture [5]. Faster R-CNN works as a single, unified
ConvNet that uses shared convolutional layers to output fea-
ture maps that then get sent to a Region Proposal Network
(RPN) and a classifer head. The network is trained end-to-
end with back propagation and stochastic gradient descent,
with a multi-task loss function. The full details can be found
in [10].

We use a pretrained version of Faster R-CNN that we
modified to only output person detections (the original ver-
sion outputs detections of 20 types of objects).

Figure 3. The Faster R-CNN architecture. (Image from [?]ref3))

4.4. Putting it Together

Given a neural network that can detect 2D bounding
boxes around people and a calibrated camera, how do we
put the system together? Our approach takes as input a

stream of video data. For each frame in the stream, we run
our person detector over the image and get as output a set
of bounding boxes. In the general case, the mapping be-
tween the pixels defining the bounding box and the world
coordinate system is ambiguous, thanks to the ambiguity of
the 3D to 2D transformation of the camera. But because
we know these bounding boxes are people, we can make an
assumption that each person’s feet rest on the ground plane
(Z = 0). This is a reasonable assumption in nearly all re-
tail environments; the only test videos we encountered in
which this is not the case is when the camera watches over
an escalator or can see multiple floors at once.

Once we have bounding boxes for each person, we take
the bottom center pixel of each box (call its image coor-
dinates cx, cy) and find the 3D coordinates associated with
that pixel, assuming it lies on the Z = 0 plane. In the affine
calibration case, this means finding the intersection of the
ray from the camera along which any point in 3D would
project to (cx, cy), and the Z = 0 plane. By construction
this intersection must resolve to a unique point.

In the PTZ calibration case, the ground plane assumption
is built into the calibration model and so there is nothing
else that must be done besides converting cx, cy to offsets
from the optical center and plugging the results into equa-
tion (9).

In both cases, once we have obtained the world coordi-
nates of each person, we plot 3D voxels representing each
person in 3D graphing environment modeled after the room,
to visualize the positions of the people in 3D.

5. Experimental Setup and Results
We performed experiments on two data sources for this

project. The first was from a video clip of a retail security
system demo on YouTube [2]. This clip was useful for us
to understand real world surveillance video conditions. For
example, before looking for real surveillance video online
we had not considered the fact that we might encounter bar-
rel distortion: upon encountering that problem we realized
a practical implementation would need to correct for this
(which we now do). It was also helpful as a qualitative as-
sessment tool of our system’s performance. Unfortunately
YouTube videos don’t have ground truth labels, so we could
not evaluate our results quantitatively with this data source.

The lack of truth labels led us to search for other data
sources. We found that the 3DPeS Video Surveillance
dataset was quite useful in this regard. This dataset contains
outside surveillance footage, where there are often fewer
occlusions and people are farther away than the in-store en-
vironment, so it is not exactly representative of a retail sys-
tem. Nonetheless the dataset offered numerous advantages,
including ground-truth labels and pre-computed calibration
parameters. It gave us the chance to address the same fun-
damental task, predicting where people are in 3D given a
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single 2D camera, in a cleaner environment.

5.1. Environment

We performed all tests on late-2013 Macbook Pro with
16GB RAM and a 2.3GHz processor. Due to lack of hard-
ware, we ran all code on the CPU, even though the Con-
vNet runs much faster on the GPU. This resulted in an aver-
age execution time of 3.19s per frame, a roughly 15X slow-
down in prediction speed compared to the results reported
by [10] on better hardware. The time spent outside of our
ConvNet’s forward pass was negligible. From these num-
bers it is clear that a real world deployment of our work
should have a dedicated GPU.

5.2. Results and Error Analysis: Retail Clip Exper-
iments

Figure 4. Example bounding box predictions for the retail video
data. These were generated without doing image distortion correc-
tion, although in our final implementation we were sure to correct
distortion first if it was present.

The goal of our experiments on the retail clip data was
to verify qualitatively that our approach was sound, and to
produce for each frame a 3D visualization of the scene ge-
ometry with people accurately tracked throughout. In our
affine calibration step, we hand-labeled 15 point correspon-
dences, shown here in figure 5. The root-mean-square error
(RMSE) of the calibration matrix we found on the data used
to create it was 32.7084 pixels, less than the width of one
tile almost everywhere in the frame. Ad-hoc measurements
of the final 3D voxels outputs showed they were generally
within two thirds of a tile to the true position of each person
when the bounding box was correct, or roughly 20cm. We
did not analyze this rigorously, as we performed most of our
quantitative analysis on the second dataset.

A common failure mode of our solution on the retail clip
data was occlusions. Occlusions cause problems in two
ways. The first is that they sometimes prevent our Con-
vNet from finding a person in the frame. Even if the Con-
vNet does find a bounding box, however, occlusions can

Figure 5. The point correspondences we labeled for the retail cam-
era video clip, vantage point 2. It is important that some of the
points are off the ground plane, or the calibration would be degen-
erate.

still cause problems if the feet of the person are not visible
in the image. This is because our pipeline assumes that the
bottom of the bounding box is where a person’s feet are, and
thus where the ground plane is. When that assumption is vi-
olated (e.g. because the bounding box ends at the person’s
waste), then the output is noticeably inaccurate.

Another typical failure occurred when people were in
rapid motion. In the video clip, there is a point at which
the two women sprint out of the store. For most of these
frames, the system loses track of them because no bound-
ing boxes are predicted. We hypothesize two reasons for
this failure. One is that the rapid and blurry stills of a hu-
man sprinting do not look very much like a typical person,
and these types of images are likely underrepresented in the
dataset on which our ConvNet was trained. The second is
that due the underlying architecture of the ConvNet, it has
a receptive field size of 228 pixels. This is suitable for most
purposes but when the people in this video clip are sprinting
with arms extended on both sides, their width in the image
easily exceeds 400 pixels. This makes it nearly impossi-
ble for the ConvNet to have a chance at detecting the entire
bounding box.

5.3. Results and Error Analysis: 3DPeS Dataset
Experiments

We also evaluate our pipeline on the 3D People Surveil-
lance Dataset provided by [5]. In general our people detec-
tion ConvNet works much more reliably on this dataset be-
cause of the reduced occlusions, better lighting and higher
definition of the images. In our run of the pipeline on a
live stream of 17 frames from the same camera, we detect
51 of 53 total person bounding boxes when the person is
more than halfway in the scene (i.e. not majority cut off
by an edge of the image). Across all frames we tested, the
root-mean-square error of our position predictions in world
coordinates was 554 millimeters. This is about 2x higher
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Figure 6. Bounding boxes found for a sample frame and the cor-
responding 3D scene model that we generated. In the 3D model,
the origin is marked by the blue plus sign below the left voxel. It
corresponds to the tile in the frame found right below the ”i” in
”DixonSecurity.com”. We can see here that the model is rather ac-
curate considering the low number of calibration points, the origi-
nal fisheye distortion, and partial occlusions in the scene.

than our ad-hoc estimate of our performance on the retail
dataset, due mostly to the vastly greater field-of-view of the
camera we used in this dataset. (This is an outdoor cam-
era which overlooks more than 200 square meters of space,
much more than can be seen by the indoor camera. So be-
ing off the same number of pixels will translate to a much
larger increase in RMSE.)

We can glean several interesting insights from the pre-
diction error graph. For example, we see that in general

Figure 7. Our prediction errors in millimeters in the world frame
for each person in each image we evaluated, shown collectively.
Each point is the difference between the predicted x, y of a person
in world coordinates and the true x, y of the person.

Figure 8. The same graph as before but with the outlier (Y offset
> 3000) removed. Note the different scales of the X and Y axes.

there is more error along the X axis than the Y axis, but
most of the Y axis error that does occur is in the same di-
rection: consistently slightly positive. This is because we
use the bottom of the bounding box as the intersection point
of the person with the ground, when in reality the ground
truth label for the person’s position in 3D considers the cen-
ter of the person overall. (Imagine a circle on the ground
around the person’s feet. The centerpoint of this circle is
the ground truth x, y label. It will consistently be slightly
offset from a point at the edge of one foot, which is what
we get with the bounding box method.)

The X axis error is also because of our bounding-box-to-
intersection-point methodology. As people walk they swing
their arms and stride their legs. The bounding box produced
by our ConvNet will generally capture all of these extremi-
ties, so any time they are not displaced from the person’s
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center symmetrically, the bottom center of the bounding
box will not be an accurate representation of where the feet
intersect. Finally, the bounding boxes are in general imper-
fect, and random noise is surely a factor as well.

6. Conclusions and Future Work

We’ve successfully developed and outlined an end-to-
end approach to turning raw security footage into a 3D
model of customer movement throughout a retail store. This
involves a one-time calibration of distortion and camera pa-
rameters, and then the usage of Faster-RCNN to find peo-
ple in the frame. The aforementioned parameters are used
to related their location on frame to their real location in-
side the store. While scaling difficulties arise in the once-
per-deployment cost of manually determining the camera’s
distortion, intrinsic, and extrinsic parameters, this method
seems to be accurate enough to effectively provide data to
retail environments.

With typical error in the range of 20cm or so in real space
in indoor settings, this could very plausibly be used to track
the location of shoppers in a retail space - information such
as aisle choice, for instance, is easily determined at this level
of granularity. Back projecting the person’s location into 3-
D space is very important for these businesses, and it’s ex-
citing that a simple and practical assumption about position
(that feet are on the ground) is so effective.

There is, however, a major obstacle to usage of this ap-
proach in practice. This is occlusion of the feet - it’s not
uncommon for shelves or other objects to block the feet of
subjects, making it impossible for our existing algorithm
to guess their position. We had to carefully select datasets
because of this limitation, but real retail stores will not be
able to do this, instead having to work with whatever their
camera sees. One promising way to handle this would be to
use temporal consistency (i.e. relate similar bounding boxes
across timeframes) to estimate foot position now based on
foot position in previous frames. This could be done with
Extended Kalman Filters, which allow us to integrate a
physical model of the world alongside noisy measurement
data (the person detector) to produce an output that is over-
all more robust. We can also use a Faster-RCNN architec-
ture ConvNet trained specifically to look for feet, and when
feet are not detected in a bounding box (due to occlusions)
we can instead use the position of the face and extrapolate
downward based on assumptions about human proportions.
The problem of consistent offsets in one direction caused
by the edge-of-feet point from the bounding box v.s. the
between-the-feet ground truth point can be resolved with a
simple addition of a mean error vector x∆, y∆ that can be
learned from training data. Overall, we think this is a com-
pelling first step towards real-time 3D person detection in
retail and that the remaining obstacles are surmountable.

References
[1] N. Dalal, B. Triggs, and C. Schmid. Human detection us-

ing oriented histograms of flow and appearance. Computer
Vision ECCV, 2006.

[2] T. Dixon. Fight caught on cctv security camera. https:
//www.youtube.com/watch?v=Kla8W8IIAtk.

[3] I. Everts, G. Jones, and N. Sebe. Cooperative object tracking
with multiple ptz cameras. Image Analysis and Processing,
2007.

[4] R. Girshick. Fast r-cnn. IEEE International Conference on
Computer Vision (ICCV), 2015.

[5] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. CoRR, 2013.

[6] I. Haritaoglu, D. Harwood, and L. S. Davis. W4s: A real-
time system for detecting and tracking people in 2 1/2d.
Computer Vision — ECCV, 1998.

[7] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2003.

[8] S. B. Kang. Semiautomatic methods for recovering radial
distortion parameters from a single image. Technical Report
CRL, 1997.

[9] F. Manzella and I. T. Teije. The truth about in-store analytics:
Examining wi-fi, bluetooth, and video in retail. 2014.

[10] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: To-
wards real-time object detection with region proposal net-
works. arXiv, 2015.

[11] V. S. O. Repository. 3dpes: A new dataset for people
tracking and reidentification. http://imagelab.ing.
unimore.it/visor/3dpes.asp.

[12] Z. Zivkovic and B. Krose. Part based people detection using
2d range data and images. IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems, 2007.

8

https://www.youtube.com/watch?v=Kla8W8IIAtk
https://www.youtube.com/watch?v=Kla8W8IIAtk
http://imagelab.ing.unimore.it/visor/3dpes.asp
http://imagelab.ing.unimore.it/visor/3dpes.asp

