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Abstract

Hand detection is an important problem in computer vi-
sion, as it has applications spanning areas from robotics
to virtual reality to life logging. We examine hand detec-
tion performance on a novel egocentric, multi-modal video
dataset of everyday activities. We contribute a new dataset
of video sequences with RGB, depth, and thermal data
along with thousands of ground truth bounding box hand
annotations. We run selective search on all of our data to
generate region proposals and finish a Tensorflow imple-
mentation of Fast R-CNN. We then test the hand detection
performance for RGB, depth, and thermal video frames and
find that the performance is best for the RGB data, followed
by the depth data, followed by the thermal data.

1. Introduction

Many recent works have explored the use of egocentric
camera systems for applications in fields such as augmented
reality, medical rehabilitation, and robotics, where the ma-
jority of activity analysis is driven by both the user's hand
pose and the way in which the hands interact with various
objects. Thus, hand detection and pose estimation are cru-
cial problems for making the aforementioned applications
realizable. Unfortunately, this problem can be difficult be-
cause hands performing daily activities can be severely oc-
cluded due to a combination of object handling and limited
field of view. Very recently, researchers have utilized RGB-
D data to show that depth-based cues from an egocentric
camera can supply more information to help ameliorate the
many challenges faced when observing hands from a first-
person viewpoint. However, detection results can still be
significantly improved.

Within the past year, thermal cameras have become
cheaper and more accessible for use in various applications.
Thermal image data has not yet been used for hand detec-
tion. Thus, the inclusion of thermal data into hand detection
and pose estimation analysis shows great promise for fur-
ther improvements. For this research project, the ultimate

long term goal is to leverage this novel thermal data to our
advantage for a deeper insight into the properties of human
motion for robotics applications. For instance, one practi-
cal application could be imitation learning, where a robot
uses thermal hand detection data to learn by watching hu-
mans perform various tasks. Within the scope of this class
project, we hope to implement the first step of this long-
term research project: an improved hand detection mecha-
nism using thermal data.

2. Related Work

In this section, we give an overview of various works that
relate to and influence our project.

2.1. Hand Detection and Pose Estimation with
Depth Data

Rogez et. al.[8] describe a successful approach to ego-
centric hand-pose estimation that makes use of depth cues,
and also uses strong priors over viewpoint, grasps, and in-
teracting objects. They implement a hierarchical cascade
architecture to efficiently evaluate a large number of pose-
specific classifiers, framing their learning task as a discrim-
inative multi-class classification problem.

In another recent work, Rogez er. al. utilize egocen-
tric RGB-D images to predict the 3D kinematic hand grasp,
contact points, and force vectors of a person's hand during
scenes of in-the-wild, everyday object interactions and ma-
nipulations [9]. They show that a combination of RGB and
depth data is important for hand detection and pose estima-
tion, where depth information is crucial for detection and
segmentation, while the richer RGB features allow for bet-
ter grasp recognition. These results provide a strong ratio-
nale for exploring new modes of data, as these new modes
can add new dimensions and insights for classification.

2.2. Region Proposal Methods

Some works have also explored various region proposal
methods for object recognition. J.R.R Uijlins e. al. in-
troduce the method of selective search, which combines the



strengths of both exhaustive search and segmentation. This
method attempts to diversify the search for possible objects,
yielding a smaller set of higher quality, data-driven, loca-
tions of interest [[10]]. Selective search reduces the number
of locations when compared to exhaustive search, which
enables the use of stronger machine learning techniques
for object recognition. Other region proposal algorithms
similar to selective search include RandomizedPrim’s [3],
Rantalankila [[6], Objectness [1l], and MCG [2]. We use
selective search as our region proposal method since it is
a very popular technique that is the method of choice for
many state-of-the-art object detectors such as Fast R-CNN
[4].

2.3. CNN Architectures

While there are a wide variety of CNN architectures
available, we choose to use Fast R-CNN for our hand detec-
tion task. Girshick proposes this CNN architecture, which
has several advantages over the traditional R-CNN, includ-
ing higher detection quality and single stage-training using
a multi-task loss [3]. Another more recent variant called
Faster R-CNN [7] also exists; however, we use a combina-
tion of selective search and Fast R-CNN in order to see how
well selective search does in comparison to the CNN used
for region proposals in Faster R-CNN.

2.4. Our Approach

Since a combination of RGB and depth images can be
successfully used for hand detection, we believe that adding
thermal as a third mode of data can further improve results.
We experiment with thermal videos as a new mode of data
for hand detection.

3. Methods
3.1. Technical Overview

The general pipeline for our project can be seen in Figure
First, we acquire egocentric multi-modal video data of
people performing various everyday tasks. After the data
acquisition, we annotate ground truth bounding boxes for
the RGB, depth, and thermal video frames. In parallel, we
run selective search on those same video frames to obtain
region proposals for possible objects in each image. The
images, along with their ground truth bounding boxes and
the selective search region proposals, are then fed into a
Fast R-CNN architecture (which we finished implementing
in Tensorflow) for training. Finally, the Fast R-CNN outputs
predictions for bounding boxes around hands for a test data
set, and we look at the results from each modality - RGB,
depth, and thermal. The next section delves more deeply
into the details of each step in the pipeline.
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Figure 1. Pipeline for the hand detection project

3.2. Technical Details

Data collection

We built a chest-mounted egocentric camera setup consist-
ing of a Flir One thermal and RGB camera and an Intel
DepthSense depth and RGB camera attached to a GoPro
chest harness, as shown in Figure 2] in order to collect
multi-modal video data. We then recorded egocentric video
sequences of different people performing various everyday
tasks, such as washing dishes, opening doors, typing, and
preparing food. By recording many different types of tasks
for several different people, our training data can portray
a more varied range of hand positions and gestures and be
more robust and generalizable. A short sample of a few
video frames from one video sequence in which the user
heats up food in a microwave can be seen in Figure[3] From
top to bottom, these rows correspond to the RGB (from the
Intel camera), depth, RGB (from the Flir camera), and ther-
mal video sequences. The RGB and depth video frames
are 640x480 pixels each, and the thermal video frames are
160x120 pixels each.

Ground Truth Annotation

We needed ground truth bounding-box annotations for each
image in order to train our Fast R-CNN model. To find these
ground truth bounding boxes for all hands or partial hands,



Figure 2. Chest-mounted egocentric camera setup with both RGB-

T and RGB-D cameras attached to a GoPro chest harness

Figure 3. Multi-modal video data sequence. From top to bottom:
RGB (from depth camera), depth, RGB (from thermal camera),
and thermal video sequences

we manually annotated about 2000 RGB images, 1000 ther-
mal images, and 1000 depth images. Each bounding box
was defined by its top left corner and its bottom right cor-
ner, and we used a tool written as a Matlab GUI to expe-
dite the annotation process. The annotations for each image
were saved as .mat files, and we then wrote a Matlab script
to save these files in the .txt format required by our Tensor-
flow implementation of Fast R-CNN. Our annotation tool is
shown in Figure [d]
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Figure 4. Annotation tool used for capturing ground truth bound-
ing box annotations

Selective Search

We implement and run the selective search algorithm for
every video frame for every video sequence in our dataset.
Selective search greedily merges superpixels based on en-
gineered low level features [10]. It produces a bounding
box around anything that might be an object in an image,
and these bounding boxes can then be used as region pro-
posals. An example of the top 20 bounding boxes returned
from selective search can be seen in Figure[5] After obtain-
ing all selective search results, we wrote a Matlab script to
save these files in the .txt format required by our Tensorflow
implementation of Fast R-CNN.

Figure 5. Visualization of the top 20 region proposals output by
the selective search algorithm for one image

Fast R-CNN

Fast R-CNN is a method for efficiently classifying object
proposals using deep convolutional networks [3]. It takes in
an image and multiple regions of interest (Rols) as inputs
into a fully convolutional network. These Rols are then



pooled into fixed-size feature maps and mapped into fea-
ture vectors through fully connected layers. Fast R-CNN
outputs two vectors for each Rol: softmax probabilities and
per-class bounding-box offsets. There exist other CNN ar-
chitectures for object detection such as Faster R-CNN; how-
ever, we chose to use Fast R-CNN because we wanted to
see if selective search returns better region proposals for our
purposes than the CNN used for region proposals in Faster
R-CNN. In the future, we also plan to do hand detection on
our dataset in Faster R-CNN and compare results from the
two architectures.

The Fast R-CNN architecture is natively implemented
in Caffe [3]], and this code is open source. However, we
wanted to use the Tensorflow framework in case we wanted
to use RNNs with our videos in the future. Thus, we fin-
ished a Tensorflow implementation of Fast R-CNN, and this
process comprised the majority of the time spent on this
project. After finishing and debugging the implementation,
we wrote a Python class for our “hands” dataset, and di-
vided our video sequences into training and test categories.
We used five video sequences for training, and one video
sequence for testing. Each video sequence includes a few
thousand frames. We initialize the Fast R-CNN with pre-
trained weights from ImageNet, and then trained it for the
RGB video sequences, the depth video sequences, and the
thermal video sequences.

4. Experiments

We divided our dataset into five video sequences for
training and one video sequence for testing, where each
video sequence contained a few thousand frames. We then
trained our Tensorflow implementation of Fast R-CNN for
hand detection on the RGB video frames, the depth video
frames, and the thermal video frames, and the results are
below.

4.1. RGB Results

For the RGB video frames, we trained our Fast R-CNN
implementation for 40,000 iterations with a learning rate of
0.001 (that decayed after 30,000 iterations), a momentum
of 0.9, and a batch size of two images (with a few thousand
corresponding region proposals). The training loss is shown
in Figure [6]below.

We then tested our model on the remaining video se-
quence with non maximum suppression, and wrote a Mat-
lab script to visualize the output bounding boxes. We found
that our model returned many potential “hands” bounding
boxes, but most of them had very low confidence scores.
When we used a threshold confidence level above which
any regions output by Fast R-CNN could be considered
“hands” but below which the regions were considered “not
hands,” the results looked much better. Several examples of
the hand detections for our RGB video frames are shown
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Figure 6. The training loss for the RGB video data over 40,000
iterations

below in Figures [7] [B] 0] Three images show successful
hand detections, one image that includes no hands shows a
successful lack of hands detected, and one image shows a
missed hand detection.

After testing our model with the test data, we wrote Mat-
lab scripts to generate precision-recall curves and compute
the average precision. For this test sequence, our model had
an average precision of 45.1. The precision-recall curve is
shown in Figure [T0]

4.2. Depth Results

For the depth video frames, we again trained our Fast
R-CNN implementation for 40,000 iterations with a learn-
ing rate of 0.001 (that decayed after 30,000 iterations), a
momentum of 0.9, and a batch size of two images (with a
few thousand corresponding region proposals). The training
loss is shown in Figure [TT|below.

We again found that our model returned many potential
“hands” bounding boxes, mostly with very low confidence
scores. Thus, we thresholded the output regions by con-
fidence level as before, and show several examples of the
resulting hand detections below in Figures [12] 3] [T4 We
found that a lower confidence threshold was needed for the
depth images than for the RGB images.

For this test sequence, our model had an average preci-
sion of 26.6. The precision-recall curve is shown in Figure

4.3. Thermal Results

For the thermal video frames, we trained our Fast R-
CNN implementation for 40,000 iterations with the same
hyperparameters as before: a learning rate of 0.001 (that
decayed after 30,000 iterations), a momentum of 0.9, and a
batch size of two images (with a few thousand correspond-
ing region proposals). The training loss is shown in Figure



Figure 7. Three examples of successful hand detections for the
RGB video data

below.

We thresholded the output regions by confidence level as
before, and found that the thermal images required an even
lower confidence threshold than either RGB or depth. Sev-
eral examples of the resulting hand detections are in Figures

T7, [18} 19

For this test sequence, our model had an average preci-

Figure 8. An example of a successful lack of hands detected for
the RGB video data

Figure 9. An example of a missed hand detection for the RGB
video data
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Figure 10. The precision-recall curve for the RGB video data

sion of 12.7. The precision-recall curve is shown in Figure

20



Training Loss for Depth Video Data
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Figure 11. The training loss for the depth video data over 40,000
iterations

4.4. Discussion

Hand detection using the RGB video data seems to per-
form best on our dataset, both visually and in terms of the
average precision. The depth video data seems to be the
next best, followed by the thermal video data. One hypothe-
sis for the relatively poor thermal detection results is that the
thermal images are much smaller, with only 1/16 the pix-
els of the other images, and thus the hands are also smaller
and harder to detect. Additionally, because the Fast R-CNN
architecture includes Rol pooling layers, the already-small
bounding boxes shrink even more. One way to test this hy-
pothesis is by rescaling the thermal images and re-training
our model - we initially only trained our model with the
original size images due to time constraints. Another po-
tential reason for the lower thermal performance is that our
model for the thermal data may be more easily fooled by
bright spots in images. Because the test data that we used
was a video sequence in which the user heated up food in
a microwave, there were several bright spots in each image
that were often mistaken for hands - these false positives ex-
plain the low precision shown in the precision-recall curve.

The depth data falls between the RGB and the thermal
data in terms of its performance, and the RGB data performs
the best. One interesting item of note in the RGB precision-
recall curve is the sharp drop in precision in the middle of
the plot. This steep cutoff suggests that above a certain con-
fidence threshold, the detection results are very good, but
below that threshold, the results are very poor. This idea
is also supported through visualizations of the hand detec-
tions.

5. Future Work

There are many directions that we can take with this
project in the future. First, we could try to improve the

Figure 12. Three examples of successful hand detections for the
depth video data

thermal detection results, for instance by rescaling the ther-
mal images. We could also implement hand detection in
Faster R-CNN to compare results between these methods.
Next, we could use all three data modalities together (RGB,
depth, and thermal) to make improved hand detection pre-
dictions. One method that we had in mind for combining
these data modalities is to concatenate the RGB, depth, and



Figure 13. An example of a successful lack of hands detected for
the depth video data

Figure 14. An example of a mistaken hand detection for the depth
video data
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Figure 15. The precision-recall curve for the depth video data

thermal images into an input volume with a depth of five
(instead of the usual three) to input into a CNN and change
the architecture of the first layer to accept a depth of five.
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Figure 16. The training loss for the thermal video data over 40,000
iterations

Figure 17. Two examples of successful hand detections for the
depth video data

Figure 18. Two examples of successful lack of hands detected for
the thermal video data
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Figure 19. Two examples with too many hand detections for the
thermal video data

To come up with the new region proposals, we could select



Thermal Average Precision = 12.7

Precision

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Recall

Figure 20. The precision-recall curve for the thermal video data

areas where the original region proposals for the different
data modalities overlap significantly and take the smallest
rectangular area that still includes all three original region
proposals. Finally, we could extend the hand detections to
hand pose estimations.

6. Conclusions

We implemented hand detection methods using novel
egocentric, multi-modal video data of everyday activities.
We built an egocentric, chest-mounted, multi-camera setup,
recorded many video sequences of everyday activities, an-
notated thousands of video frames, ran selective search on
all of our data, finished a Tensorflow implementation of Fast
R-CNN, visualized our output hand detections, and pro-
vided some discussion of our results. We found that the
hand detection performed best on the RGB data, followed
by the depth data, followed by the thermal data; however,
we hope to further improve the thermal hand detections in
the future and combine all three modalities for even better
results. Some of the issues that we faced during this project
included debugging the Tensorflow code for Fast R-CNN,
and using only very small thermal images. Code will be
submitted privately to the TAs.
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