
Scene Geometry Generation for Augmented Reality using Markers for
Interactive Experiences

Thaminda Edirisooriya
Stanford University

450 Serra Mall, Stanford, CA 94305
tediris@stanford.edu

Abstract

I present an application of Computer Vision and graph-
ics techniques used in tandem to generate an interactive ex-
perience where users unfamiliar with augmented reality ap-
plications can see and interact with a real-time simulation
with simple physics. The system depends on the use of aug-
mented reality markers to localize the world, and to allow
for user interaction - moving the markers in space moves
objects in the simulation, as other objects remain static rel-
ative to the motion of some markers. Objects can bump
one another and simple rigid body physics will govern the
interactions. Vision algorithms such as Canny edge detec-
tion, Homography transformations, and Pose estimation are
all used in conjunction with OpenGL 3 drawing pipelines
and the react3D physics engine to deliver an experience
that delivers richer interactions to the user. The project
extends existing literature by combining methods that have
been developed and applying them in new ways that create
interesting experiences for users, especially those unfamil-
iar with modern augmented reality methods and possibili-
ties. Most of the work presented here pertains to combining
subsytems developed in previous works in ways that allow
for real-time, augmented reality simulations of rigidbodies
controlled by markers positioned by users.

1. Introduction

Many augmented reality applications allow users to
project 3d images and models onto markers and surfaces
in images taken of the real world. However, they often
stop there, with few capabilities beyond that. Interactions
with the applications are limited to moving the camera
around, switching the models, and simple interactions be-
tween models.

I sought to create a more interesting, tangible applica-
tion that leverages augmented reality methods, as well as
techniques from computer graphics and game development.

The application provides an experience that can be manip-
ulated in real time by anyone without understanding of the
underlying system.

Before anything, the camera is calibrated, and the inter-
nal camera parameters stored for later use.The application
pipeline works as follows: first, the camera images are cap-
tured and processed, and the Canny edge detection algo-
rithm is run [2]. Second, edges are filtered to find the outer
borders of the augmented reality markers. Third, the mark-
ers are identified, and their pose and position computed.
Fourth, the pose and position of each detected marker is
calculated and fed into the graphics stage. Next, the graph-
ics stage uses the pose and position of the markers to lo-
calize the virtual world and position elements of the simu-
lation in the world. Finally, all the information is used in
the physics simulation to update the physics of the world
on each timestep, and the final results of this are sent to the
OpenGL rendering engine to provide the visualization.

The vision aspects of the algorithm were initially done
in python using OpenCV for functions such as Canny edge
detection, and homography computations, but the online na-
ture of the application required faster computation, and we
instead used a C++ implementation of the marker detection.
The marker detection module used is part of OpenCV. The
bulk of the application is the rendering engine which was
implemented using raw OpenGL, and tying in the data from
the vision pipeline and combining it with a simple physics
engine, as well as building a ”game loop” that could keep
the simulation running at a constant time, regardless of CPU
usage.

2. Previous Work
2.1. Existing Work

The main inspiration for this project, as well as one the
enablers for this work and much of the existing work in aug-
mented reality, comes from [3]. The paper illustrates a solid
ground work for detecting augmented reality markers and
solving for their position and pose. However, it ends there

1



without presenting many of the interesting applications of
the methods it develops.

Other existing works [5] talk about non-marker related
methods for solving for world positions for augmented re-
ality applications, but again do not delve into more interac-
tive experiences involving high precision markers and sim-
ulations of worlds.

2.2. Our Methods

The methods we present here take advantage of the
groundwork and ideas put forth in the aforementioned
works and applies them in a novel way - in the form of
an application which users can interact with to create tan-
gible differences in the simulated world. We present an
extended graphics pipeline that uses OpenGL 3 shaders to
quickly make use of the vision information to render the vi-
sualization, and we construct an underlying physics model
that uses information from the vision pipeline to position
objects in the simulation relative to each other.

The result is a system that allows users to physically
move markers around, even bump them into each other, and
see the effects in a gravity-less physics world of simple box
shapes bouncing off of each other. It is expandable to other
even more interesting applications, such as an augmented
reality pong game, due to all the required systems (vision,
graphics, and physics) being implemented and working in
tandem.

3. Technical Solution

3.1. Summary

As discussed earlier, the pipeline consists of a vision
component, a graphics component, and a physics compo-
nent. The vision component exists to detect the augmented
reality marker, and compute its pose by setting up a linear
system and solving for it’s nullspace. Afterwards, the infor-
mation is fed to the simulation engine, where it is used to
update physical locations for objects in the scene. Finally,
the outputs of both the vision pipeline and the physics sim-
ulation are output to the graphics pipeline, where OpenGL
shaders are used to render the supplied 3D models onto the
scene either on top of markers present in the scene, or rel-
ative to a base marker in the scene that describes the origin
of the simulation world.

3.2. Camera Calibration

The camera is calibrated using a variation of the OpenCV
findChessBoard corners that makes use of the augmented
reality markers to allow for occlusion of the board [1]. Fig-
ure 1 below shows the image used for calibration. Fig-
ure 2 shows a snapshot of the calibration process. A stan-
dard method of solving for point correspondences at known

Figure 1. Raw calibration board image

Figure 2. image from webcam during calibration process

board z-positions was used to solve for the camera parame-
ters matrix.

3.3. Marker Detection

Once the camera has been calibrated, we can attempt to
extract the markers from the image. We do so first by using
the Canny edge detection algorithm, which works as fol-
lows: We apply a Gaussian filter to the image to smooth it,
and proceed by applying gradient convolution masks in the

x

2



Figure 3. Pose and position of markers on the calibration board

and
y

directions to get the corresponding gradients of the image.
We then combine these to come up with the magnitude and
angle matrices for the image using the following:

mag =
√
x2 + y2

θ = arctan
y

x

Next, we use non-maximum suppression to shrink the
edges into thin lines. In the final step, we use a high thresh-
old to consider the start of an edge, and a lower threshold to
allow for an edge to continue, when identifying whether a
set of pixels is part of an edge. For performance reasons, the
OpenCV Canny Edge Detector implementation was used.

We then leverage the OpenCV findContours method to
come up with contours from the edge information gathered
by Canny. We remove all candidates contours with too few
contours, too many, and contours that have too few points.
Rectangles that are overlapped by other rectangles are also
removed. We then finally choose the most external border
in the sets of rectangles we found to find the marker edges.
This was initially implemented in python using OpenCV
cmethods for each step, but for performance reasons we
opted for the optimized pipeline in the ArUco library.

Having found the marker positions, we use the OpenCV
findHomography method to convert our skewed marker
edges into a square image that we can partition into a grid
to identify white and black squares. Finally, given the grid
of white and black sections, we can identify each marker
[4]. As a last step, we use the corners of the markers as 4
points to solve for the pose and position of the marker. This
is using the OpenCV solvePnP method, which uses 4 point
correspondences, as well as the camera calibration matrix,
to solve for the rotation matrix and translation vector asso-
ciated with those 4 points. An example of this is shown in
figure 3 with the calibration board.

3.4. World Localization

Given the pose and position of each of the markers, we
now create our virtual world model. Each of the markers
has an ID associated with the pattern they contain, and we
chose the marker with ID 3 as the origin point for the world.
We use the other markers in the world as the positions for
which objects are placed in the simulation.

We compute the position of the objects associated with
non-origin markers in our virtual world using the pose and
position matrices for each marker. If Mo is the matrix that
transforms a point from the origin of the screen in OpenGL
coordinates to the origin marker in world space, and Mi

is the matrix that transforms the origin of the screen in
OpenGL to marker i in world space, we can do the follow-
ing:

originworld =Mo ∗

00
0



xworld =Mo ∗

10
0

− originworld

yworld =Mo ∗

01
0

− originworld

zworld =Mo ∗

00
1

− originworld

Piworld =Mi ∗

00
0

− originworld

Pix = xworld · Piworld

Piy = yworld · Piworld

Piz = zworld · Piworld

We project out all the points we care about into the
OpenGL world space, as well as the x, y, and z axes for just
the origin marker. We then subtract out the position of the
origin marker from all of these, giving us vectors relative to
the origin marker to its axes and the other markers. We then
take dot products of the desired marker points and the origin
axes to get expressions for the positions of these points in
the frame of the origin marker. We feed this information to
the simulation engine as the positions of non-origin markers
so that we can accurately render and simulate the physics of
these objects.

3



Figure 4. World simulation running, rendering 3D mesh boxes on
marker locations based on origin

3.5. Simulation and Graphics

We implemented a simple ”game” engine akin to those
used for simple 3D games in order to make use of the vi-
sion pipeline information, organize the data structures we
were using, and maintain the timestep of the simulation and
visualization. On each loop, we fetch a frame from the cam-
era and perform the marker detection and pose estimation.
We then compute how long it took the game loop to run
from its last execution start, and run the physics simulation
for that long, as well as any logic updates. We then extract
the position and rotation information from the physics sim-
ulation for each of the objects we are simulating, and feed
these into custom OpenGL vertex shaders, along with Mo,
the transformation from the origin in OpenGL space to the
point where the marker exists in world space. For each ver-
tex we want to render, we compute its position as follows:

p′ = P ∗Mo ∗ T ∗ p

Where p is the location of the point in the model, p′ is
the position of the point in OpenGL space, T is the trans-
formation matrix extracted from the physics simulation,Mo

is the model-view matrix we use to transform points to their
correct position in the world, and P is the projection matrix
that we calculate from the camera intrinsic parameters we
obtained during calibration. See figure 4 for an example of
the basic rendering process.

A simple OpenGL fragment shader without lighting
modeling was implemented to render textured models as
well, and was verified using a wooden box texture. The
physics simulation was initially implemented for 2 dimen-
sions assuming a planar world, but was later swapped out
for an off-the-shelf engine capable of handling 3D physics
with box colliders.

Finally, a separate OpenGL shader is used to render the
camera image onto the back of the OpenGL world. A tex-
tured quad is placed there, and the camera images are con-
verted into texture buffers which are then sent to the GPU so

Figure 5. World simulation running, rendering 3D mesh boxes on
marker locations based on origin

Figure 6. World simulation running, rendering 3D mesh boxes on
marker locations based on origin

that OpenGL can make use of them to draw them, to make
it appear that the objects being rendered appear on top of
the markers that control their locations.

4. Experiments
We ran the simulation program on a variety of different

markers, with cameras at different positions and angles rela-
tive to the markers, and using different 3D models. We first
ran the simulation environment without any physics to test
the rendering engine with simple models and no textures, to
make sure that vision information was being captured prop-
erly and sent forward through the pipeline. The results of
this are visible in figures 5 and 6.

Next, we test the full pipeline with collisions enabled
on simple 3D boxes, with the camera at low, medium, and
high angles to the planes containing the markers. Figures 7,
8, and 9 demonstrates that the results are consistent, and the
vision information is propagated forward in a useful manner
to effect the simulation. In the video presented in the intro-
duction, we can see that a user can move a marker around
and effect the simulation world in real time.

The application was tested using both a Macbook Pro
camera, as well as a Logitech C920 web camera. Perfor-
mance was better with the web camera, in part likely due

4



Figure 7. World simulation running, rendering 3D mesh boxes on
marker locations based on origin

Figure 8. World simulation running, rendering 3D mesh boxes on
marker locations based on origin

Figure 9. World simulation running, rendering 3D mesh boxes on
marker locations based on origin

to its higher resolution, and smaller distortion coefficients
when comparing the calibration values obtained for the two
cameras.

Both setups were tested in various lighting environ-
ments, and unsurprisingly, the marker detection algorithm
did not work well on low-light images. Because accurate
edges need to be found from image gradients at the start of
the process, poor lighting inhibits the application at the very
beginning. Different camera angles were tested as well,
with much more success - as long as the marker is not oc-
cluded, the marker detection phase will find the marker re-
gardless of skew, and often properly detect the marker ID as
well.

5. Conclusion

The application presented here showcases a novel way of
applying augmented reality techniques to enhance user ex-
perience and interactions. It is built of a pipeline that uses
both vision techniques, as well as computer graphics and
game development methods, to create a more tangible ex-
ample of the things augmented reality can do. The result
is expandable to many other potential applications, games,
and interactive demos, since it develops the groundwork and
connects the underlying systems in a way that is not exclu-
sive to the presented example.

One of the biggest challenges with this project was fitting
the computation into a short enough amount of time to allow
for real-time rendering. An augmented reality application
that cannot function in real-time is effectively useless, since
a user cannot move around and experiment with reposition-
ing the markers. Some features, such as lighting for tex-
tures, as well as a homebrew implementation of the marker
detection algorithm, were scrapped due to the timestep con-
straint.

Combining the different pieces of the pipeline was also a
source of challenge - the values returned by OpenCV detec-
tion were not quite right when sent directly to OpenGL, due
to the scaling of the pixel space being different, as well as
the positioning and alignment of the coordinate axes. The y
and z axes specifically are flipped, and this was a source of a
lot of painful debugging and confusion. Designing the data
structures which held the information relevant to each phys-
ical object in the simulation also required a large amount of
code and time, just because the information that controlled
their positions and interactions was coming from multiple
sources. Finally, while ideally I would have finished writ-
ing a simple 3D physics engine myself, there wasn’t enough
time to build one that was fast enough and robust to use in
the application.

5.1. Links to Content

Youtube: https://youtu.be/pHEf27VqGBA
Github: https://github.com/tediris/CS231AProject

References
[1] G. Bradski. Dr. Dobb’s Journal of Software Tools.
[2] J. Canny. A computational approach to edge detection. IEEE

Trans. Pattern Anal. Mach. Intell., 8(6):679–698, June 1986.
[3] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and

M. Marı́n-Jiménez. Automatic generation and detection of
highly reliable fiducial markers under occlusion. Pattern
Recognition, 47(6):2280 – 2292, 2014.

[4] S. Garrido-Jurado, R. M. noz Salinas, F. Madrid-Cuevas, and
R. Medina-Carnicer. Generation of fiducial marker dictionar-
ies using mixed integer linear programming. Pattern Recog-
nition, 51:481 – 491, 2016.

5



[5] W. E. Mackay. Augmented reality: Linking real and virtual
worlds: A new paradigm for interacting with computers. In
Proceedings of the Working Conference on Advanced Visual
Interfaces, AVI ’98, pages 13–21, New York, NY, USA, 1998.
ACM.

6


