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Abstract. The main goal of our project is to implement a keypoint descriptor 
inspired by the human retinal computation. To simulate the human visual 
system, we use the sampling patterns of Fast Retina Keypoint (FREAK) 
proposed in [1]. In FREAK, only two fields are used to compute a descriptor. 
To improve the discriminative power, we employ more than two fields for 
descriptor computation and carefully select the fields for computation by us-
ing the knowledge of the receptive fields of retinal ganglion cells. After we 
construct descriptors from a large dataset, we train them to reduce the num-
ber of features to 53. We show that our descriptor successfully matches and 
recognizes various objects including the test images provided in the problem 
set 3. 

 
1   Introduction 

Computers and machines cannot recognize and classify objects as human eyes 
can. The secret to Humans’ ability to recognize different objects lies in how 
their retina encodes the objects in the scene. FREAK [1], an efficiently imple-
mented keypoint descriptor, was inspired by the retinal computation. It is com-
pact and robust, using a binary descriptor constructed from a sampling pattern 
that is similar to retinal configuration. Even though it outperforms other de-
scriptors, such as SIFT, we find that understanding of the retinal receptive field 
is not fully utilized in the model. Receptive fields of the retinal ganglion cells 
are known to have center-surround spatial receptive fields, measuring correla-
tion of neighboring areas. This is different from FREAK implementation, which 
they select fields randomly. Therefore, in our project, we propose to improve 
FREAK by applying topologies similar to ganglion cells’ receptive field, labeling 
which topology works the best for objects with certain features. We trained our 
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model to find significant topologies with training data sets, and then verified 
our model with new images to see if biological constraints provide improvements. 

 
2   Related Work 

2.1   Review of previous work 

Inspired by the human retina, the authors of FREAK paper proposed to use a 
retinal sampling grid to compute a sequence of one-bit Difference of Gaussians. 
The retinal sampling grid is circular with inner circles symmetrically distributed, 
having higher density near the center. We find that FREAK algorithm is based 
on a simple computation, selecting two circles randomly and then looking for 
the pairs that give more information. The authors showed that FREAK de-
scriptor out performed SIFT in both accuracy and speed. 

 

 

Fig. 1. Sampling Pattern in FREAK implementation. The inner circles, or fields, rep-
resents receptive field of a ganglion cell, and pairs of fields are chosen. By comparing the 
mean intensity, it generates binary string. 

 
2.2   Key ideas and contributions of our work 

Authors’ idea of using retinal ganglion cells’ population density variation was 
very insightful. However, we considered the case where retinal ganglion cells 
have locally limited spatial receptive fields, mostly computing nearby scenes. 
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Thus, we removed the random selection of two Gaussian kernels, which are far 
apart. This allowed us to understand how spatial structure improves the per-
formance, because we can remove the number of irrelevant features. We con-
strained the selection of pairs to be within its neighbors. In addition, we not 
only tested for two circles, but also test for one and up to three neighboring 
circles. 

 
3   Technical Details 

3.1   Overview 

We used the same sampling pattern the authors used. However, as described 
above, we plan to constrain the selection of circles, or topology, to be neighbors 
and up to three circles. For each image patch (or keypoint), we stored all pos-
sible summation and subtraction combinations for each topology into an N-
dimensional binary string array, where N is the number of possible topologies. 
Thus, for all the test image patches (or keypoints), M, we produce M×N matrix 
of 0s and 1s as shown in Figure 4. The binary string array for each image is 
found by weighted summation of Gaussian filtered areas. The area integral is 
similar to the FREAK paper, computing average intensity, but we use Gaussian 
weighting whereas FREAK use a box filter. Using this matrix, we find the most 
significant topologies in distinguishing the different image patches by using ma-
chine learning, which will be described in Section 3.3. 

OpenCV provides a nice framework for detectors, descriptors, and matchers to 
work together in unison, including the original implementation of FREAK. We 
initially planned to modify a part of FREAK code, but we figured out that it 
would be much simpler for ourselves to write our own code that computes the 
descriptor. Most of our work was written in MATLAB code.  

3.2   Topology construction 

We construct binary descriptors by thresholding the sum of plus or minus in-
tensities among the set of receptive fields. The intensities are smoothed by cor-
responding Gaussian kernel. Unlike the original FREAK, we use multiple re-
ceptive fields, not just pairs. Thus, the resulting descriptors depends on the 
mechanism of receptive field selection. 

How do we select multiple receptive fields among 43 receptive fields? There are 
more than 10,000 combinations if we randomly choose three fields. Examining 
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all combinations is not feasible and is not relevant to the configuration of pixels 
on a 2D image nor the human visual system. Computing differences between 
adjacent fields is desirable to get maximum discriminative power. We first mod-
eled the position of receptive fields as vertices in a planar graph. The vertices 
are located at the center of receptive fields. The edges in the graph describe 
that if two nodes are connected by an edge, they are close enough and can be 
used to compute difference. 

Next question is how to construct edges from the set of vertices. Our approach 
is to subdivide the planar graph into triangles. The planar graph can be trian-
gulated by adding random edges until no edges can be inserted without inter-
secting other edges. However, the initial triangulation does not represent geo-
metrically correct adjacencies. We performed Delaunay Triangulation to get a 
nice set of triangles. The result of triangulation is depicted in Figure 2. 

 

Fig. 2. Delaunay Triangulation. Delaunay triangulations maximize the minimum angle 
of all the angles of the triangles in the triangulation. 

 
Next, we generated a set of receptive fields as following. The example cases are 
shown in Figure 3. 

One receptors. It is trivial case. Each vertex in the graph is selected once. 

Two receptors. Select each edge and group the vertices on both ends. 

Three or more receptors. Perform depth-first search. Visit a vertex only 
when one of its neighbors are visited before. 
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Fig. 3. Examples of produced topologies with two fields (top) and three fields (bottom). 
The radii of circles indicate the sizes of Gaussian kernel. 

 

3.3   Feature matrix construction and Machine Learning 

Intensity between the fields are compared, similar to FREAK, but we con-
strained it to be the neighboring fields. We compute the feature values by com-
paring the mean intensity. For the case of pairs, it’s just the difference between 
two. For the case of three circles, we consider all combinations of different 
choice of plus and minus signs. 
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We computed the feature matrix by computing T for each pair or triple. Each 
field is computed in gray and RGB, making four features for each field. There 
are total 1,416 features, and we used 53 features that has the highest entropy 
where the average value is close to 0.5. 

 

 

Fig. 4. Produced feature matrix. Each row indicates a binary descriptor for a test image 
where the values are T for each topology. 

 
While considering different topologies, some had more significant features than 
others. For example, one topology (selected from the top row) has evenly dis-
tributed values of 0s and 1s for different image patches (keypoints; correspond-
ing row values of that column); the corresponding values are computed from 
different image patches (keypoints) for that topology. In this case, average is 
close to 0.5. On the other hand, when the feature values are 0 for most of the 
time or 1, such topologies is not as significant as other topologies. In our com-
putations, we used only these significant topologies, selecting 53 features, and 
we determined the best topologies from our training data set based on the 
aforementioned criteria. 

 
3.4   Training 

We used the same training data as the original FREAK algorithm did [3]. For 
each image, we found keypoints using the SIFT detector. Then, we created a 
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matrix, in which the number of rows is the same as the number of keypoints 
(or image patches we computed) and the number of columns is the same as the 
number of topologies. For each keypoint, we computed the scores for different 
topologies, and write the results to a vector. We performed this for every key 
point in an image, and as the last step, we averaged the scores for the same 
topology in all keypoints (average of a column vector) and put each average 
value in a topology score vector.  We repeated the same procedure for all images 
in the training data set, and averaged the topology score vectors to create the 
final topology score vector. Lastly, we sorted the topologies by how close the 
score is to 0.5. We started from 128 features (topologies) close to 0.5, and re-
duced so that we can improve the speed. 

Depending on the number of topologies, the matching accuracy varied. When 
we included more topologies, only few keypoints were matched, but with very 
high accuracy. As we decreased the number of topologies, more keypoints were 
matched, with lower accuracy. We converged to using 53 features (topologies), 
finding that this number gave both good accuracy and good speed. Importantly, 
using this number, our model showed good performance of object recognition. 

 
4   Experiments 

Figure 5 shows our approach works well on the simplest case matching all the 
keypoints on the same image. 

  

Fig. 5. Preliminary result. Both left and right images are same. We experimented this 
for the purpose of verification. 
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Figure 6 shows the comparison between our approach and SIFT. Our approach 
is not always perfect. We think we need to tune parameters further so that it 
can be comparable to SIFT. 

 

 

 

 

 

 

 

Fig. 6. Correspondences of our approach (left) and SIFT (right). Our approach has a 
few outliers. We believe this can be reduced by tuning parameters. 



 
 
 

Keypoint Descriptor Model Inspired by Retinal Computation        9 

 

 

 

Fig. 7. Object Recognition. The given image patches are successfully recognized by 
using our descriptor, which only uses 53 features. 

 

5   Conclusions 

Considering the number of features we used, we achieved relatively good per-
formance. We used only 53 features, which was significantly less than both 
SIFT and the original FREAK. Since there are less features, it takes less time 
to compute descriptors. Thus, in the case when fast approximation of object 
detection and recognition is needed, our approach can be used with less features 
achieving almost online computation. 

For some test images, our model worked well in recognition. However, it per-
formed poorly when the object was transformed significantly. Since we are just 
considering the simplest case which is a linear averaging of the intensities of the 
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neighboring fields, the limitation in performance seems to be coming from the 
simple approximation of biophysical computation.  

In this project, we used the neighboring fields of retinal sampling pattern in-
spired by human visual properties. Biology, however, is more complicated. Our 
work might be improved by including higher order features from retinal com-
putational properties, having more complex and nonlinear features. 
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