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Abstract

In this report, we discuss our implementation of an ensemble of computer vision
methods that serve to help provide an estimate of the number of jellybeans in a glass jar,
a well-known parlor game. To do this, we decompose our methods into two spheres: 1.
volumetric stereo voxel carving of the jar’s convex hull (to estimate the total volume),
and 2. segmentation algorithms to count the number of jellybeans visible against the
glass wall. Although we did not succeed at ultimately integrating the two prongs of
our approach into a final estimate, we did achieve success in each of the two areas of
focus, correctly finding the 3D convex hull, and correctly segregating the heterogeneous
visible jellybeans.

1 Introduction

The challenge of estimating at a glance the number of jellybeans in a transparent jar has
been a classic parlor game for many years. Even as recently as last November, prizes as
large as $125,000 have been offered at carnivals for accurate counts of immense numbers of
colored beans in gigantic containers.

Despite being somewhat of a toy example, the problem still contains inherent difficul-
ties that we believe are particularly conducive to computer vision techniques. Successful
estimation of the total jellybean count requires:

1. An accurate estimation of the size of the containing jar.

2. Proper segmentation of the variegated and heterogeneous jellybeans visible against the
glass wall.

In addition, the problem is relatively tractable: the ground truth jellybean count provides
a simple measure of the accuracy of any computer vision estimate given. For our project,
we implemented an ensemble of computer vision methods to provide estimates for both of
these problems. The three-dimensional volume estimation proved particularly conducive to
volumetric stereo techniques, particularly an implementation of the voxel carving algorithm
discussed in class. And, the jellybean segmentation problem lent itself to a variety of seg-
mentation implementations, notably the watershed algorithm and the mean-shift algorithm.



2 Prior Works

The volumetric stereo methods we used to calculate the container’s convex hull are well-
researched and tested [1]. The space-carving algorithm that we used operates most success-
fully if the object does not contain any concavities; our purely convex jar fits this requirement.

In order for voxel carving to perform properly, the world coordinates of each of the
camera positions needs to be known via camera calibration. We used the Camera Calibration
Toolbox for Matlab, a tried and true software package for generating camera matrices from
photographs of a planar calibration target [2].

Finally, for guidance in the general voxel carving procedure, we used the report of Rob
Hess from Oregon State University [3].

There exists little research that we could find which sought to count heterogenous objects
in a single image (perhaps because of the apparent triviality of the problem); most work done
looks at counting objects that move over time, such as pedestrians in a crowd [4]. We relied
heavily on the mean-shift algorithm, which was first proposed in 1975 by Fukunaga and
Hostetler [5].

3 Approach

3.1 Voxel Carving

In order to estimate the number of jellybeans in our jar, we decided to use volumetric stereo
methods to first compute an estimate of the volume of the jar itself; specifically, we used
a binary (not RGB) analogue of the voxel coloring algorithm discussed in class, performed
on binarized jar images taken by a calibrated camera volume with the background removed.
On a binary image, this algorithm is effectively the voxel space-carving algorithm to find
the jar’s convex hull, but with the lambda threshold from voxel coloring. Then, together
with a separate calculation of the average size of the jellybean “unit cell” (a voxel-like block
representing the average amount of space each jellybean takes up, including the surrounding
air), the total count can be found by simply dividing the volume of the jar by the volume of
the average jellybean cell.

In order to perform voxel carving, we first had to acquire several different images of the
jar taken from different locations; then, the images had to be calibrated, yielding the intrinsic
camera parameters, and extrinsic parameters for each image. For reference, we followed the
general procedure outlined by [3]. A more detailed discussion of our methods follows:

3.1.1 Data Acquisition

Voxel carving requires that calibrated camera matrices be known for each image. To effect
this, we placed a planar calibration target on a table evenly lit by diffuse sunlight, and
captured 23 separate images of the target, from positions that formed a camera volume hull
above and around the table. For each image of the target taken, we took second photo of
the jar on top of the target, placed as exactly as possible in each image. This way, we could
reuse the camera matrices found for the images in the voxel carving algorithm.



Figure 1: Example image taken of the jar and calibration target.

It was important that the camera volume lie completely above the jar, in order to satisfy
the ordinal visibility constraint [1]. This ensures that no scene point falls within the convex
hull of the camera centers, which in turn ensures the correct behavior of what the carving
algorithm counts as occluded points. See Fig. 1 for an example of one of the images acquired.

3.1.2 Calibration

To calibrate our images, we used the Camera Calibration Toolbox for Matlab package [2].
This package works by gathering a hand-picked origin point on the calibration target, and
measures for each of the other corners of the grid (including a grid-spacing measure; ours
was 24mm per side). Using gradient descent and successive recalibration on the results,
this package helped us to yield a proper intrinsic camera matrix K, as well as extrinsic
parameters for each of the 23 cameras in our camera volume, which taken together yielded
23 full camera matrices M. The reprojection error of these camera matrices back onto the
target was sufficiently small, and centered around the true world origin (which we placed at
the bottom-left-hand corner of the calibration target.) See Fig. 3 for the reprojection errors
and visualization of the camera volume in relation to the target.

3.1.3 Voxel Carving

Once the cameras were correctly calibrated, we could implemented the voxel carving algo-
rithm to get an estimate of the jar volume, taken from the convex hull it returns.

Before we could begin traversing the voxels of the scene, however, we had to remove
the backgrounds from a subset of the images using Adobe Photoshop, setting each to pure
green. In this way, we simulated the green/blue chroma key backgrounds usually used in
volumetric stereo implementations. Not needing to use all 23 images to avoid expensive
computational redundancy, we chose a subset of 5 images that were spaced evenly around



Calibration images

Figure 2: Calibration array of all 23 images.

Reprojection eror(in pixel]

T T T T T
3k i
+ +
2 * + .
+ o+
+
L + 4 + B
+
3+ o +
+
o
[ i
+
+ + +
Fe
1L T .
N
+
+ o+
b
ol i
o
+ + *
3L 4 K i
+
4Lt 4
! L L I I L L I !
6 5 4 -3 2 1 ] 1 2

Figure 3: Reprojection error of the images.
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Figure 4: External world parameters for all 23 calibration images.

the jar, yielding a 360-degree view. After this background removal, we transformed the
RGB images into binary images, changing the background to white and using a very high
threshold of .95 to render the jar as almost completely black. We decided to do this because
the reflective, refractive, and highly non-Lambertian surface of the glass jar (as well as the
somewhat inconsistent illumination between images) was rendering prohibitive our attempts
at true voxel coloring.

After background removal and image binarization, we performed the algorithm proper.
To implement the algorithm, we generalized the voxel coloring algorithm implemented in
Problem Set 3 to three dimensions. From the input, we take the edge length, in mm, of
the voxel size to be measured. Then, we started traversing each voxel in the scene once,
starting from the top layer and working layer by layer down to the bottom. Per the ordinal
visibility constraint outlined above, it is essential that voxel traversal be carried out top to
bottom; this way, voxels chosen in the top layer are properly understood as occluding the
voxels behind them in each image, which ensures that the occlusion maps function correctly.

For each voxel traversed, we calculated its projection onto each of the images by applying
the proper camera matrix found in the calibration step. This step was a touch more complex
than its analogue in Problem Set 3: as opposed to the simple line segments generated in the
one-dimensional images there, the result of voxel projections onto 2D images were irregular
hexagons. To simply the ability to later index into these projections, we estimated these
hexagons using a bounding box around each one. The coordinates of each bounding box
were put into a cell array, the elements corresponding to each image’s projection.



This projection array was then analyzed for photoconsistency: a background threshold
was heuristically chosen to be .1 (this value seemed to work best). If the mean value for the
given voxel’s projection pixels fell within this threshold of 1 (the pure white background) for
any of the images, it was removed from consideration and not counted as part of the jar.
Otherwise, the pixel values for each camera’s projection pixels not present in the images’
occlusion maps were put into an array, and the variance was calculated. If the variance was
less than the threshold value given by the user (which needs to vary with the voxel size,
as shown in PS3), then the voxel was counted as being part of the jar’s convex hull. The
occlusion arrays for each image were updated, the bits for each projection bounding box
being set to 1.

3.2 Segmentation

We tried multiple approaches for solving the segmentation problem. The difficulty with
using segmentation to count the number of objects in an image is that the algorithm must
be robust to both false positives and false negatives; the count must be exact. The greater
the number of objects in the scene, the more difficult this becomes.

3.2.1 Watershed

We tried a couple classic blob detectors to count the number of beans and found limited
success. The watershed algorithm, developed by Lindeberg (1993), detects blobs using lo-
cal extrema in the image space [6]. We treat the grayscale image as a topographic surface,
with lighter areas corresponding to maxima. Intuitively, we imagine flooding the topographic
surface from its minima, and treat each resulting basin as a separate cluster. To reduce over-
segmentation due to noise, we can flood the topographic surface from pre-defined markers.
OpenCV contains an implementation of watershed but requires the markers to be passed in
by the user; we wrote a short algorithm using OpenCV functions like adaptive thresholding
to isolate foreground regions of the image to use as markers. Ultimately (see below) this
performed at a sub-par level and served as a baseline to the mean-shift approach.

3.2.2 Mean-shift

Intuitively, mean-shift [7] seeks the modes of a feature space. That is, given a certain
distribution in some feature space, mean-shift seeks the local maxima of the density of the
distribution. Mean-shift associates a kernel window around each data point, then computes
the mean of the data within the window. It then shifts the window to its mean and repeats
until the window location converges.

More precisely, we initialize one window at each pixel location. Next, we perform mean
shift at each window until convergence. The mean shift vector for a given point in feature-
space x is given by:




(a) 8mm, 8 images (b) 5mm, 5 images (¢) 2 mm, 5 images

Figure 5: Convex hull results for varying voxel sizes.

Where g(z) = k'(x), i.e. ¢ is the derivative of the kernel profile of our choosing. We
selected to use the Gaussian kernel, which is the standard approach when using mean-shift.
h is a user-defined parameter which determines the bandwidth of the kernel window. The
smaller h is, the larger the window

We define convergence as when the total sum of all mean-shift vectors is less than a given
€, i.e.

Z m(x;) < €

In practice, we found € = 1 performed well without taking too many iterations to reach.
To find the clusters, we simply count the number of unique rounded values of one dimension
of the final clustered feature set.

We used a five-dimension feature space consisting of the coordinates and RGB values
of each pixel. To reduce cluster noise and speed up convergence, we bucketed the feature
values into 10 buckets for each dimension (Instead of using the 255 values for each color
space dimension).

4 Experiments

4.1 Voxel Carving

We used the PATCH3Darray function by Adam Aitkenhead [8] to generate 3D plots of the
convex hulls from the voxels that were counted as part of the jar. See Fig. 5 for examples
of the jar’s shape found for varying voxel sizes (in mm). The algorithm we implemented
seemed to work successfully, generating, faithful representations of the three-dimensional
shape from all angles. From these hulls, the jar’s volume was estimated to be 956.8 cm?.
The jar’s actual volume, as measured by us, is 890 cm?.

4.2 Segmentation

Different segmentation approaches were testing on the same small (60x60) cropped image of
jellybeans (Fig. 6a). A cropped image was used to speed up runtime while iterating through



(a) Unaltered. (b) Watershed. (c) Mean-shift.

Figure 6: Unaltered photo (a). Watershed (b) and mean shift (¢) segmentation results.
Different colors represent different clusters. (The black lines in the watershed picture are for
clarity; they are omitted in the mean-shift picture due to the number of small clusters.)

(a) All clusters. (b) Filtered clusters. (c) Over image.

Figure 7: Cluster centroids found using mean-shift.

refinements; this was necessary for mean-shift, which runs in O(n?) and has two user defined
parameters that drastically affect the final result.

Watershed (Fig. 6b) performs poorly compared to mean-shift; it is able to correctly iden-
tify one jellybean (in maroon) and otherwise grossly underestimates the number of clusters.

Mean-shift (Fig. 6¢) performs much better. However, we can see from the image that it
is susceptible to noise and texture (for example, see the number of small clusters it detects
on the speckled jellybean at the top) and thus overestimates the number of clusters.

However, we can mitigate this overestimate by culling the clusters using a simple heuristic.
We calculate the centroid, area, and variance of each cluster detected by the mean-shift
algorithm. If the area is below and the variance above user-set thresholds, then the cluster
is ignored. We see the results in Fig. 7. Fig. 7a shows all of the cluster centroids detected by
mean-shift (N = 78), and Fig. 7b shows only the clusters with area > 25 and variance < 1000
(N = 24). These threshold values are obviously affected by the scale of the image; however,
because the noisy clusters are all small and all of the jellybeans are roughly the same size,



Figure 8: Mean-shift results using different values of h.

the threshold values can be estimated roughly (i.e. they do not have to be fine-tuned for
good performance.)

Quantitatively, we see that this cluster detection algorithm performs remarkably well
(Fig. 7c). It is able to correctly count all but one jellybean on the front layer, and even
correctly identifies some of the occluded jellybeans below the front layer.

One difficulty with mean-shift is that the two user-defined parameters (h and bucket
count) drastically affect the final cluster output. There is no automatic way to tune these;
one must simply inspect and tune them based on the output. If A is too small, the algorithm
will be too sensitive and it will detect too many clusters; also, the algorithm will take much
longer to converge. On the other hand, if A is too large, the algorithm will incorrectly merge
distinct clusters.

We see this demonstrated in Fig. 8. Fig. 8a-c¢ show the algorithm run with A~ = 0.8, 0.5,
and 1.2 respectively. We see that with low A, clusters are more susceptible to noise and more
likely to bisect jellybeans. With high h, multiple jellybeans are more likely to be clustered
together.

5 Conclusion

In summary, we found limited success in merging our two approaches to the jellybean count-
ing problem together into a single estimate. Although a successful and reasonably accurate
measure of convex hull volume was found from our volumetric stereo branch, and despite a
measure of success at segregating and counting the jellybeans against the surface of the jar,
we could not find a clear way to bring our results together into a final guess.

We suspect this lack of success in integration may be a result of the difficulty of calculating
the volume of the jellybean ”unit cell” discussed above, which must both include an estimate
of the average jellybean volume, as well as the air around it that it takes up. We believe
that a successful implementation of voxel coloring, as opposed to voxel carving, may have
allowed us to estimate this jellybean unit cell to be the largest possible voxel size that yields a
reasonable convex hull (because then each voxel would correspond roughly to each jellybean;
any larger and the different colors of each jellybean would blend together, severely reducing
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photoconsistency). However, the reflective, non-Lambertian surface of the glass jar stymied
our efforts at voxel coloring, forcing us to binarize the images in our space carving algorithm,
abandoning the color data that the jellybeans provide.
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