CS231A Project Final Report
Character Identification in TV Series from Partially
Labeled Data

Benjamin Paterson and Arthur Lacoste
{paterben,alacoste}@stanford.edu

March 19, 2014

Abstract

We present a framework for finding and identifying char-
acter faces in TV series. This method requires only
a video and a set of subtitles containing the names of
the speaking characters and the time at which they are
speaking. It relies on a processing pipeline incorporating
face detection, face tracking, mouth and speaker detec-
tion, featurization of face tracks and finally discrimina-
tive learning. We show an almost-complete implemen-
tation of this pipeline, where only speaker labeling has
been done manually. By itself, our learning algorithm
achieves an average accuracy of 74.8% on a publicly avail-
able dataset of featurized face tracks from 6 episodes of a
TV series where speakers have already been labeled. Us-
ing our own face tracker and manually labeled speakers,
the learning algorithm achieves 85.23% accuracy on the
first episode.

1 Introduction

In this paper we attempt to further the method and re-
sults presented in [1]. Specifically, we are interested in
the problem of automatic character identification in TV
series. Results from character identification can be used
in higher-level multimedia analysis applications, such as
video summarization or indexing. The problem is as fol-
lows: we are given one or more video episodes from a
TV series or movie, as well as synchronized and named
subtitle files for each of the videos. Using this data we
wish to locate all the face tracks in the video, and label
each track with the name of the character that it belongs
to.

The basic idea is to use the timing and name informa-
tion present in the subtitles to label a subset of the face
tracks. For every frame in a face track, we determine if
the face is speaking, and if it is the case we look at the
subtitle file to determine the name of the character that
is speaking at that instant. Ideally, every face track that
corresponds to a character that is speaking can be identi-

face detection and tracking

@0:03:35,500 --> 00:03:37,400
Leonard: We don't live together. I mean...

speaker detection and subtitle matching

Figure 1: The data processing pipeline. A face tracker
processes the video to find all face tracks. Speakers are
then detected by analysis of the mouth region of the face,
and are matched with names from the subtitle file. Fi-
nally, the faces are featurized using Discrete Cosine Tran-
form and the data is run through a learning algorithm
which outputs a name for each face track.

fied in this way. Face tracks corresponding to characters
that are silent, however, will remain unlabeled. A learn-
ing algorithm can then be trained on the labeled faces
and used to classify the remaining unlabeled faces.

The basic approach outlined above suffers from several
problems. First, there can be mistakes in the speaker de-
tection algorithm, caused by misaligned subtitles, several
characters speaking at the same time, a character open-

ing his mouth without speaking, the speaking character
not being present in the frame, or by mistakes made by
the face or mouth detection algorithms. We would like
to have an opportunity to correct these mistakes. Sec-
ond, since all the unlabeled faces are available at training
time, we would like to use them in some way to improve
the learned parameters. And finally, the learning algo-
rithm as suggested above does not incorporate some very
rich information given by the face tracker, namely that
all frames in the same track should belong to the same
character, and that frames in different face tracks that
overlap in time are unlikely to correspond to the same
character (unless the character is looking at himself in
the mirror or facing an evil twin).

The learning algorithm presented in [1] and which we
analyze here attempts to address these problems in a
unified way. The learned parameters are used to classify
labeled and unlabeled face tracks indiscriminately, which
allows recovery from mistakes made by the speaker de-
tection algorithm. The algorithm incorporates unlabeled
data into the learning process by penalizing parameters
that give a high uncertainty as to how to classify unla-
beled instances. And finally, the algorithm adds soft con-
straints which incorporate track information. These soft
constraints penalize frames which lie in the same track
but are classified differently, as well as frames which lie
in overlapping tracks but are classified the same.

A summary of the data processing pipeline is shown in
Fig. 1.

2 Related Work

There have been several attempts at automatic charac-
ter identification in the last few years, most of them (in-
cluding [2] and [3]) focusing on recognizing face tracks.
Extracting face tracks from a video is not trivial and
we have built our own face detection and tracking sys-
tem from the Viola-Jones [6] and KLT [7] primitives.
To make the whole identification process completely au-
tonomous, [2] proposed a method to weakly label tracks
by detecting speaking characters and matching them to
named subtitles (obtained by aligning standard subtitles
and transcripts). The second part of the problem is to
learn the identity of all tracks from these unreliable la-
bels. [12] propose loss functions that allow to learn from
both weakly labeled and unlabeled tracks. In this work,
we also make use of must-link and cannot-link constraints
that arise from the structure of the face tracks and inte-
grate those in a discriminative learning framework.

3 Character Identification

3.1 Face Detection

General approach

We are using the Viola-Jones algorithm [6] (cascade of
classifiers based on Haar-like features) to detect faces in
static images. Our implementation uses two pre-trained
cascades of classifiers: one detecting frontal faces and one
detecting profile faces. Viola-Jones is not rotation invari-
ant and our initial implementation performed poorly at
detecting inclined faces, so we are actually running both
our classifiers on several slightly rotated versions of the
image ({—6,—4,—2,0,+2,+4,+6} degrees). Thus, even
after the built-in non-max supression of the Viola-Jones
primitive we are using, each face can yield multiple detec-
tions. We perform a custom aggregation, in the process
of which we filter out some of the false positive detec-
tions.

Aggregation of detections

For Ry, Ry two axis-aligned rectangles and R; N Ry the
rectangle over which they overlap, we define the following
metrics:

e A measure of how similar they are:

2 - area(R1 N Ra)
area(R;) + area(Ry)

sim(Rl, RQ) =
which takes values in [0, 1], 0 if and only if Ry and
Ry do not overlap, 1 if and only if Ry = Rs.
e A measure of how much they intersect:

area(Ry N Ra)
min(area(R;), area(Rz))

inter(R1 R RQ) =

which takes values in [0, 1], 0 if and only if Ry and
R5 do not overlap, 1 if and only if one rectangle is
completely inside the other one.

We use the following algorithm to produce consoli-
dated and non-redundant face detections:

1. For each detection, rotate back the bounding rectan-
gle to be axis aligned if necessary (keeping its center
and size constant).

2. Given a similarity threshold Dy, (empirically set to
65%), select the detection R* that is at least Dy,
similar with the most other detections. This yields
a group of k detections that are all at least Dg;p,
similar to a single detection R*.

3. If k is less than a given threshold D ynt (empirically
set to 3), discard all remaining detections and return
the current set of consolidated detections.

4. Otherwise, compute the average of all these detec-
tions R,y and add it to the set of consolidated de-
tections.

5. Then, given an intersection threshold Di,te, (em-
pirically set to 20%), discard all detections whose
intersection with Rg,g is at least Djper (this will
remove all the detections that were R4, but will
also remove slightly off yet overlapping detections).

6. Go to 2.

This aggregation technique is fairly simple but proved
very accurate and robust, so we did not deem worth it
to further improve it.

3.1.1 Performance

In our dataset (images for the the first episode of ‘The
Big Bang Theory’ Season 1), Viola-Jones alone (with-
out rotations) cannot achieve a high detection rate with-
out also picking up a lot of false positives. At constant
detection rate, introducing rotations and aggregation of
detections slightly reduces the number of false positives.
Tracking will allow us to further prune spurious detec-
tions, so we sacrificed some precision to improve recall in
our thresholds tuning.

3.2 Face Tracking

General approach

We first detect the time boundaries of the camera shots
in our video (instants at which the camera switches to
another view), at which point shots can be treated in-
dependently from each other with regard to face track-
ing. We run our face detection technique on a sub-
set of frames in the shot. These ”anchor” frames are
regularly spaced throughout the shot, and there are
max(6, nShotFrames/10) of them. Each consolidated
face detection inside an anchor frame is then tracked
across the whole shot using the Kanade, Lucas & Tomasi
algorithm. A face is likely to be detected several times
in different anchor frames and the corresponding tracks
should overlap, so that we can again perform a custom
aggregation to produce consolidated tracks and filter out
some of the false positive consolidated detections.

Detecting shot boundaries

We run the following algorithm on every pair of neighbor
frames f() and f(® to determine whether there is a shot
change between them:

1. Change the encoding of the frames to be HSV (Hue,
Saturation, Value) instead of RGB (Red, Green,
Blue).

2. Split each frame in four quadrants (top-left, top-
right, bottom-left, bottom-right).

3. For each quadrant ¢ in both frames, compute the
histogram of colors Hy(h, s). The hue is discretized
into 30 bins, the saturation into 32 bins, and the
value is ignored.

4. Define the ”distance” d between the two frames to
be:

30 32

d= ZZZ|H(§1)(h,s) —H§2)(h, s)|

g=1h=1s=1

5. Compare d to an empirically set threshold.

This algorithm tolerates camera movements inside a shot
(up to a certain speed), and can detect shot boundaries
even if the overall color histogram of the image remains
roughly the same (even then, the histograms taken quad-
rant by quadrant are likely to be significantly different).
We tested it on a substantial amount (about 50) of shot
boundaries in our video file and it did not make any mis-
take (the worst positive example was about 50% over the
threshold and the worst negative example about 50% un-
der the threshold). Therefore, we did not try to make it
even more robust to complex situations (such as a flash
of light inside a shot).

Tracking a single face across a shot

To track a consolidated face detection across the whole
shot, we first find the 50 strongest corners inside the cor-
responding initial bounding rectangle using the method
from [8]. These points are then tracked frame by
frame forwards and backwards inside the shot using the
Kanade, Lucas & Tomasi algorithm [7].

We first compute the initial displacement v; of each
point p; to the center ¢ of the provided bounding rectan-
gle: v; = c—p;. At each step of the tracking, the reported
tracking error is used to evict badly tracked points (us-
ing an empirically set threshold). Then, we fit the best
translation + scaling transformation between the initial
and new points to reconstruct the bounding rectangle for
the face at that point. Specifically, find s, ¢}, ¢; solving
the least squares problem:

min » [lp; — (¢ — s - v)|?
s,C -
i

We then further filter points that are tracked well but
strongly diagree with others: we associate a vote for ¢
to each point ¢, = p, + s - v; and compute d; = ||c} —
||, then eliminate points for which d} > 3.50 + 1pz,
o being the standard deviation of the d;. This allows
to eventually eliminate points that are attached to the
background instead of the actual face.

We use the number of tracking points remaining as
a measure of the quality ¢(j) of our tracking at each
frame j. We think the significance of that measure might
have been improved by taking a non linear (sigmoid-type)
function of the number of remaining points (the tracking
is still very good with 40 points remaining, but from
practical testing its quality drops significantly in the 23-
30 points region), but we did not have time to implement
it. The standard deviation of the votes for ¢’ also bears
meaning as to the quality of the tracking, so it could have
been used as basis for a metric as well.

Reconstructing all the face tracks of a shot

We define a merge procedure that takes two tracks ¢, to
and returns a merged track t,, such that, for each frame
7 in the shot

e The quality of the merged track is ¢, (5) = q1(j) +
2(J)
e The rectangle of the merged track is the weighted

average of the rectangles of the merged tracks, i.e.
it has center and size:

Note that this operation is associative, i.e. the final result
of our aggregation procedure will be the same as long as
we eventually merge the same tracks together.

To decide on which tracks to merge, we define a similarity
measure among tracks:

> 01(7) - q2(5) - sim(r1(5), r2(5))
> a1(d) - a2(5)

This measure takes its values in [0,1], 0 if and only
if both tracks’s rectangles have zero-similarity in every
frame where both tracks have non-zero quality, and 1 if
and only if the two tracks perfectly agree (identical rect-
angles) in every frame where both tracks have non-zero
quality. The intuition behind it is that it does not mat-
ter much if both tracks only overlap shortly, as long as
they totally agree when they do, and conversely tracks
that slightly agree but across a long period of time should
probably not be merged. Given these two definitions, our
aggregation algorithm is a follows:

sim(tl, tg) =

1. While there exist a pair of tracks with similarity
Smaz greater than a threshold Ty;,, (empirically set
to 60%), merge the two tracks with highest similar-

1ty.

2. When no pair of tracks is similar enough anymore,
retain all tracks with top-quality greater than a
threshold Tyyqiity (empirically set to 2.0). The top-
quality @ of a track is defined as: @ = max; q(j).

While the merging order can theoretically matter (some
mergings may only be allowed depending on the order),
we could not find any situation where it actually proved
to be the case. Similarly, the retaining threshold might
seem strange, but in our testing it turned out to be al-
most equivalent to selecting all tracks that are the result
of the merging of at least 3 original tracks (and slightly
easier to implement).

3.3 Speaker Detection and Subtitle

Matching

After face tracks have been identified, we wish to deter-
mine which of them are speaking. For this, we use a
method close to that presented in [2]. First, the mouth
region is identified in each frame using a pre-trained Haar
cascade. The mouth regions are resized to a unique size,
and the mean pixel-by-pixel squared difference between
two consecutive frames is computed. If it is above a cer-
tain threshold, then the character is deemed to be speak-
ing at that instant. There are two sources of noise that
then need to be eliminated. First, to make the algorithm
robust to small translations of the detected mouth re-
gion, we recompute the mean pixel-by-pixel squared dif-
ference for several positions of the second detected mouth
region in a small search window around its original posi-
tion, and take the minimum of the detected values. We
also require that the mean squared difference between
frames be higher than the threshold for several consecu-
tive frames to eliminate noise.

As we were implementing the above algorithm, we
soon realized that the pre-trained mouth detector we
were using had very likely been trained to identify only
closed mouths, and this meant that we needed a different
method for detecting the mouth region. Due to lack of
time, we decided to forego speaker detection, and label
speaking characters manually.

3.4 Learning with Constraints
Featurization of Face Frames

Each face frame is featurized using the Discrete Cosine
Transform [4]. First, each face is resized to a 56-by-56
pixel image and converted to grayscale. Then the Dis-
crete Cosine Transform is applied to each of the 49 8-
by-8 pixel blocks in the image. For each transformed
block, we keep only the entries corresponding to the 5
lowest frequencies (at the top-left corner of the image),
disregarding the top-leftmost component which repre-
sents average brightness of the image. This results in
a d =49 x 5 = 245-dimensional feature vector x for each
frame. In [11], the authors show that these low-frequency
components carry most of the information useful for fa-
cial recognition.

Model

For learning, we use a Multinomial Logistic Regression
model inspired from [1]. The set of all possible names
is determined using the output from speaker detection
and each name is mapped to a number from 1 to K. For
each frame x and given a parameter vector § € R*K|
the model tries to predict the probability of the frame
belonging to character k, Py (x), using the formula:

QEx
Py =klx:0) = PF(x) = S
6 ZK 0Tx

zle

Supervised loss

Let X be the set of labeled frames and X' () be the set
of unlabeled frames. Let N = |X®)| and M = |X)| be
the cardinalities of these sets. We define the regularized
supervised loss to be the negative log-likelihood of the
labeled frames:

1NK
(1
—5 2o 2 = B () + A6

k=1

—

1=

Its gradient with respect to the k-th column of 6 is
given by:

0L _ 1 zNj(n[i — PEINxY 4 2a0,
90 - T n yi=k] — Lo \%X; i
9, N =

This loss function operates only on the labeled frames.
However as outlined earlier we have two extra sources of
information: the unlabeled frames and the information
about which track each frame belongs to. This motivates
the use of the following loss functions.

Unsupervised loss

Intuitively, we would like the unlabeled data to lie far
away from the decision boundaries that result from the
parameters 6, so that the labeling decision is more ro-
bust. We can achieve this by incorporating a loss term
that penalizes uncertainty in the classification decision
for the unlabeled data. We define the unsupervised loss
to be the average entropy of the classification probability
distribution of the unlabeled frames:

1 M K
—F 2 F(x x{") In P (x™))

i=1 k=1

Its gradient with respect to the k-th column of 6 is
given by (we correct here a minor mistake in [1]):

0L, 1 (W) ph (5 ()
aak__MZ{lP“)

(Lppmq — P (x$")) (1 + In Pg ("))

M=

Positive and negative constraints loss

Finally, we would like to incorporate a penalty whenever
we make a classification decision that is incoherent with
the structure of the face tracks: different frames in the
same face track should be labeled the same, and if two
face tracks overlap in time, the frames in those two tracks
should be classified differently. To achieve this, we gen-
erate two lists of constraints. Between any two frames
x;, and x;, in the same face track, we generate a posi-
tive constraint c(p) = (xi,,Xi,). Let L®P) = |cP)|. Let
P(yi, = vi,) be the probability that x;, and x;, belong
to the same class:

K
P(yll = ylz) = ZPg)@(Xil)PGk(xiz)

k=1
We then define the positive constraints loss:

1
T 2

(%iy ,Xiy) ECP)

L,(0) = In P(yi, = yi,)

The smaller the probability that x;, and x;, belong to
the same class, the higher their contribution to the loss.
Similarly, between any frames belonging to two differ-
ent tracks whose timespans have a non-empty intersec-
tion, we generate a negative constraint cl(-n) = (Xiy, Xiy)-
Let L(™ = |¢(™)|. We then define the negative constraints

loss:

1
(xiq Xiy) €t
The gradients with respect to 8 of the above loss func-
tions are given by (we again correct a mistake in the

original paper):

a‘cp 1 Péc(xll)PGk(Xm)
-=r _ ___ X, + Xy,)BT
00k L) . ;EC(H) (:) P(yi, = yi,)

i1 Xig

(Xilpek(xil) + XiQPGk(XiQ))]

Bﬁn 1 Péc(xh)PGk(Xm)
zn X+ x;,)l 032
20, L™ s XZ:)EC(H) i :) P(yi, # yi,)

i1 Xig

(xi, Py (xi,) + Xz'gPek(Xiz))P(yil:yb)]

P(yll 7& yzz)

The number of constraints generated per face track is
quadratic in the number of frames in that track. This is
undesirable since it gives a much higher weight to longer
face tracks. Instead, we subsample a number of con-
straints that is only linear in the length of each face
track. This also helps keep the number of constraints
under control (in our implementation, an episode of 20
minutes generated over a million constraints).

3.4.1 Increasing the dimensionality of the fea-
ture space

The dimensionality of the feature space (d = 245) is quite
small relative to the number of data points, especially
considering the number of constraints - in the tens of
thousands. However, kernelization here would be pro-
hibitively expensive. Instead, we increase the parameter
d by taking a random sample of the features correspond-
ing to the L2 kernel. This allows to fine-tune the di-
mensionality of the feature space depending on consider-
ations such as available memory or speed of the learning
algorithm. In practice, adding these new features helps
performance significantly.

Training and prediction

The final loss function is given by:

L="Ly+ply +7PL, ++4ML,

where p, 7 and (™ are hyperparameters to be
tuned. The loss function can be minimized using a
pseudo-Newton method such as L-BFGS [5]. Once a pre-
diction has been made for each frame, we need to decide
on a prediction for the entire track. According to the
model, the prediction should be:

¢l

= In P} (x"
Yi argmgXE n Py (x;")

However, the authors of [1] suggest discarding the log-
arithm in the expression above, as summing probabilities
seems to work better in practice than multiplying them.
We find that this is indeed the case. A possible interpre-
tation is that summing probabilities is more robust than
multiplying them, since a mistake in a single frame can
radically change the product but not the sum.

4 Experimental Results

4.1 Face detection and tracking results

We implemented the described face detection and track-
ing process in C++ using the OpenCV framework, where
an implementation for several primitives we use is avail-
able (Viola-Jones detection with pre-trained cascades for

Figure 2: Result of Viola-Jones face detection without
(top) vs. with (bottom) rotations to the original image.
Green rectangles are frontal face detections, blue rect-
angles are profile face detections, and red rectangles are
consolidated face detections.

faces, corner detection, KLT tracking using the imple-
mentation described in [9]). Because the end-goal of
our project is learning performance and because ground
truths must be manually collected, most of our results
regarding this part of the project are qualitative, but we
still collected quantitative recall and precision figures of
our overall face tracking results on the first episode of
‘The Big Bang Theory’ Season 1.

Face detection

Fig. 2 shows an example of a situation where applying
Viola-Jones not only to the original image but also on
slightly rotated versions of it and aggregating the results
is able to eliminate false positive detections.

Face tracking

Fig. 3 shows the result of the technique we use to track
a single detection throughout a shot (using corner detec-
tion + KLT algorithm 4 bounding rectangle reconstruc-
tion). It is very robust and the number of remaining
points in the tracking provides a clear and reliable signal
as to the quality of the track.

Fig. 4 shows the results of the technique we use to
aggregate tracks. In this case, the face of Sheldon was
not detected in any of the anchor frames, so there is

Figure 3: Tracking of a single face throughout a shot.
The top image shows the initial detection (green) and
the corresponding strong corners (red), and the bottom
image shows the corners after tracking and the recon-
structed face bounding rectangle.

Figure 4: Result of the track-level aggregation. The top
image shows all the tracks at a specific frame in the shot,
and the bottom image shows the consolidated tracks for
the same frame.

no way to recover from that. However, there were two
false positives among the consolidated detections that
are correctly evicted in the aggregation procedure, and
all tracks that correspond to detections of Leonard’s face
are correctly merged together.

Quantitative results

We evaluated the performance of our overall face detec-
tion and tracking on the first episode of ‘The Big Bang
Theory’ Season 1. We counted a total of 553 actual ap-
paritions of faces inside a shot, out of which 423 were
correctly picked up by our algorithm, and we counted
50 false positive tracks. This yields the following perfor-
mance:

e Recall: 76.5%
e Precision: 89.4%
Note that:

e Characters facing away from the camera for the in-
tegrality of the shot were not counted.

e Face tracks that are split in two in the middle of a
shot (because a character faces away from the cam-
era for a moment or moves his head too fast) were
counted as successes.

e Face tracks that fail to capture the integrality of a
face screen time (but don’t miss it completely) were
counted as successes if the face is tracked for at least
half of its screen time.

4.2 Learning results

We developed our learning algorithm using a dataset
made public by the authors of [1]. This dataset contains
face tracks that have been featurized frame by frame, and
ground truth labels as well as labels from speaker detec-
tion, for 6 episodes of ‘The Big Bang Theory’ Season 1.
Hyperparameter tuning was executed on the first episode
of the series. Our results are summarized in Table 1. The
optimal hyperparameters we found were:

e \=5.10"*
o 1=0.7
ey =15
o 7P =1

In our experience, adding the soft constraints loss func-
tions had a considerable beneficial impact, in particular
for the positive constraints. The authors of [1] report a
much smaller impact, though it is unclear whether they
incorporated both positive and negative constraints.

Some examples of classifications made by our algo-
rithm are shown in Fig. 6. The learning algorithm is able
to recover from mistakes made by speaker detection. For
characters which speak often, the classification is almost
always correct. For characters which rarely speak, clas-
sification is very often incorrect. Characters which never
speak cannot be identified.

Using the hyperparameters found above, we report re-
sults on the first 6 episodes of ‘The Big Bang Theory’
Season 1 in Table 2. The results are most impressive on
Episode 1, where there is the smallest number of charac-
ters. Of course, since our parameters were optimized to
work well on this episode, overfitting accounts for part of
the high performance reported on it. We obtain an aver-
age track classification accuracy of 74.78% over these 6
episodes.

For ‘The Big Bang Theory’ Season 1 Episode 1, we
manually labeled groud truth and correct speaker for the
473 face tracks we had detected. We labeled false positive
detections in a separate ‘ignore’ ground truth category
and marked them as not speaking. We then ran our
learning algorithm with the same hyperparameters on
this dataset. We obtained the following results:

e Frame labeling accuracy: 79.93%

e Track labeling accuracy: 85.23%

It is important to note that since false positives are
always labeled as not speaking, the learning algorithm
has no chance of ever correctly labeling them (it does not
have any examples of the ‘ignore’ category). This bounds
the theoretical maximum track accuracy to 89.4%. The
authors of [1] report an accuracy of 95.18% when speak-
ers are labeled manually instead of being found automat-
ically. However, in the dataset they provide, there is not
a single false positive detection, which is likely a result
of manual pruning and helps accuracy considerably.

We show the resulting confusion matrix for track iden-
tification in Fig. 5. Most errors come from not iden-
tifying false positives (‘ignore’ category), which as we
pointed out above is not possible.

Loss function Accuracy | Accuracy
(frames) | (tracks)
Max prior 37.39 37.94
L 70.72 82.15
L+ pLly, 71.77 81.67
Ly4 ply +~yM™L, 72.86 83.44
Lp+ply +yM™L, ++4PL, | 80.28 89.55

Table 1: Frame and track classification accuracy in ‘The
Big Bang Theory’ Season 1 Episode 1 for various loss
functions.

Episode | Accuracy | Accuracy
(frames) | (tracks)
BBT-1 80.28 89.55
BBT-2 75.18 82.48
BBT-3 67.57 70.15
BBT-4 74.46 73.49
BBT-5 62.63 63.98
BBT-6 69.97 69.02
Average 71.68 74.78

Table 2: Frame and track classification accuracy for var-
ious episodes in ‘The Big Bang Theory’ Season 1.

Howard 16 0 0 0 0 1 0

= Leonard 3 149 1 0 0 0 0
5 Penny 0 3 [76 | o 1 0 0
-'-é Raj 1 3 1 8 2 0 0
3 Sheldon 0 0 1 0 [149 | 0 0
@ Unknown 2 1 0 0 3 6 0
Ignore 25 8 11 0 2 1 0

H L P R S U I

recognized as

Figure 5: Confusion matrix of the learning algorithm on
‘The Big Bang Theory’ SO1EO01, using our face tracker
and manually labeled speakers and ground truths.

Figure 6: Examples of classification results. Characters
which rarely speak (such as Raj in the first image above)
are often misidentified. However, the learning algorithm
also corrects some mistakes made by the speaker detec-
tion algorithm (such as Penny in the second image).

5 Conclusion

We have presented a full pipeline which takes only a raw
video file and subtitle file and which outputs labeled face
tracks. We have built a robust face tracker based on
Viola-Jones detector and KLT tracker, implemented a
learning algorithm that incorporates loss terms from var-
ious sources and tested it both on a publicly available
dataset and on a dataset we built ourselves. We achieve
performance close to that of [1].

In practice, most subtitle files do not include the names
of the speaking characters, and to automate the process
further the names should be obtained by matching subti-
tle files (which contain timing information) with episode
transcripts (which contain no timing information but do
contain the names of the speaking characters). We did
not implement this but it should be relatively straightfor-
ward. More importantly, the next step to full automation
would be to implement a working speaker detection al-
gorithm. This could either be done using the method we
detailed or using a threshold on the average pixel inten-
sity of the mouth region as detailed in [10].

Another possible area of improvement is in the learn-
ing algorithm itself. As implemented, the learning algo-
rithm is agnostic of the tracks themselves except for the
positive and negative constraints we impose, and these
constraints cannot be hard constraints because there is
no way to enforce it in this framework. We could modify
our model to use a hidden class variable Y for each track
specifying its character. Then, weak labels are priors on
the class of certain tracks, and frame by frame features x
are noisy observations of the class variable, for example
with distribution (with uniform prior on x):

P(Y = klx) - P(x)
P(Y =k)

Positive constraints inside a track are automatically en-
forced, and negative constraints can be added as mutual
exclusion constraints on the hidden class variables of two
tracks. Parameters of such a graphical model can then be
learned using Expectation Maximization, and performing
a prediction for all tracks consists in finding the MAP as-
signment to all hidden class variables.

P|Y =k) =

x P(Y = k[x)

References

[1] M. Bauml, M. Tapaswi and R. Stiefelhagen. Semi-supervised
Learning with Constraints for Person Identification in Multi-
media Data. In CVPR, 2013.

[2] M. Everingham, J. Sivic and A. Zisserman. “Hello! My name
is... Buffy” - Automatic Naming of Characters in TV Video.
In BMVC, 2006.

(3] J. Sivic, M. Everingham and A. Zisserman. “Who are you?”
Learning person specific classifiers from video. In CVPR, 2009.

[4] H. Ekenel and R. Stiefelhagen. Analysis of Local Appearance-

Based Face Recognition: Effects of Feature Selection and Fea-
ture Normalization. In CVPR Biometrics Workshop, 2006.

[5]

[7]

(8]
[9]

(10]

11]

(12]

D. C. Liu and J. Nocedal. On the limited memory BFGS
method for large scale optimization. In Mathematical Pro-
gramming, 45:503528, 1989.

P. Viola and M. Jones. Rapid Object Detection using a
Boosted Cascade of Simple Features. In CVPR, 2001.

B. Lucas and T. Kanade. An Iterative Image Registration
Technique with an Application to Stereo Vision. In Proceed-
ings of the 7Tth International Joint Conference on Artificial
Intelligence, pp. 674-679, 1981.

J. Shi and C. Tomasi. Good Features to Track, 1994.

J.-Y. Bouguet. Pyramidal Implementation of the Lucas
Kanade Feature Tracker. In Intel Corporation Microprocessor
Research Labs, 2000.

S. Siatras, N. Nikolaidis, M. Krinidis and I. Pitas. Visual Lip
Activity Detection and Speaker Detection Using Mouth Re-
gion Intensities. In IEEE Trans. Circuits Syst. Video Techn.,
19(1):133-137, 2009.

K. Manikantan, V. Govindarajan, V. Kiran and S. Ramachan-
dran. Face Recognition using Block-Based DCT Feature Ex-
traction. In Journal of Advanced Computer Science and Tech-
nology, 1(4):266-283, 2012.

M. Kostinger, P. Wohlhart, P. M. Roth, and H. Bischof. Learn-
ing to Recognize Faces from Videos and Weakly Related In-
formation Cues. In AVSS, 2011

