Shape Analogies via Group Shape Difference Analysis

LiYi
Stanford University

ericyi@stanford.edu

Abstract

In this project, we proposed a movel framework to
solve the shape analogies problem between 3D shape
collections. Instead of using geometric features based
on individuals to describe each shape, we leveraged
the idea that fine grained characteristic of a shape
can be defined by other similar shapes, and used rela-
tionship within collections to depict shapes. To cap-
ture the abstract relationship, a novel shape descrip-
tor, average shape difference, was proposed. Based
on the descriptor, we formulated the shape analogies
problem as a graph matching task and solved it via a
coarse to fine algorithm. We tested our algorithm on
several datasets and the result shows our framework
effectively solves the shape analogies problem without
knowing the cross-collection point correspondence in-
formation, which is a key factor for traditional shape
matching techniques but usually not easy to get.

1 Introduction

Analogy is a cognitive process of transferring infor-
mation or properties from one object to another. This
is a central part in human cognition process. While
looking at two objects, human can employ analogy
easily and usually unconciously to transfer abstract
information, e.g., style, structure, between the ob-
jects. These objects themselves can be some rela-
tionship. We often refer to such kind of analogy as
A is to B what C is to D. In other words, we want
to find an analogous object A for B so that how A
relates to B is similar to how C relates to D.

Image analogies have gained attention for provid-
ing a very natural means of specifying relationship
between images [2], which motivates many applica-
tions, e,g., super-resolution, texture transfer, image
colorization and artistic filters. Shape analogies, how-
ever, haven’t been well studied yet. Shape analogies,
like image analogies, have the potential to specify

abstract relationship among shapes, which will con-
tribute to many other applications like shape classifi-
cation, shape searching, semantic knowledge transfer,
shape style transfer. The idea that relationship can
be defined through analogies motivates us to conduct
shape analogies in the shape analysis context.

In many settings, we may desire relationship
among a shape collection instead of pairwise relation-
ship. This becomes more and more common as large
public repositories of 3D shapes continue to grow.
Thus it is required to consider analogies in shape col-
lections. For example, we may want to find the anal-
ogy that how shape A relates to a shape collection
is similar to how shape B relates to another shape
collection. By conducting analogies in a collection
setting, we are actually defining a shape by its neigh-
bors. This is reasonable since the fine grained char-
acteristic of an object can be obtained by comparing
it with the other similar objects. Shape analogy is
worth studying since it provides a way to specify the
variation in a collection and can thus be used in many
areas like shape retrieval, shape manipulation, shape
classification.

9"@‘@ LA A

Figure 1: Shape analogies between two facial expres-
sion collections

We aim to make analogies between different shape
collections. This is a very challenging task since usu-
ally the things we need to capture via shape analogies
are hard to describe by computers. For example, we
may want to make analogies between two facial ex-
pression collections of different people, as is shown in
Figure 1. For each facial expression in the first col-

lection, we want to find the corresponding expression
in the second collection. How to properly capture the
”expression” here is not an easy problem. We may
use some geometric features. However, the lack of
correspondences between different shape collections,
which is usually the case, makes it hard to compare
or transfer geometric features across collections.

In our framework, instead of comparing geometric
features across different collections, we choose to de-
scribe the shape relationship in each collection and
compare these relationships across different collec-
tions. By doing so, we are able to ”align” different
shape collections at once, which means for all the
shapes from one collection we are able to simulta-
neously find the analogizing shapes in the other col-
lection. We formulate the shape analogies task as a
graph matching problem. Our work focuses on how to
describe the relationship within a collection and use a
weighted graph to represent such information. After
getting the graph for each collection, we match graphs
using spectral matching. Our framework makes full
use of the structure of each collection and avoids com-
paring geometric features directly across different col-
lections, powerful for the usual condition when it is
hard to compare or transfer geometric features across
collections.

2 Related Work

Shape analogy is performed between different objects.
These objects can be shapes or the relationship be-
tween shapes. Previous shape analogy work mainly
focuses on analogy between shapes, which includes
a lot of topics like global registration, shape match-
ing, complete or partial correspondence calculation.
Our focus lies in analogy between the relationship of
shapes. This is similar to shape matching in a way
that we are trying to find similar shapes. But our
work differs from traditional shape matching in how
to define the similarity metric and the descriptor.

Traditional shape matching owns the prototype of
solving nearest search problem in a shape descrip-
tor space under certain similarity measure. Different
shape descriptors have been proposed to capture the
geometric or topologic information of 3D shapes and
can be categorized according to the representation
of shape descriptors as feature based, graph based,
histogram or distribution based and 3D object recog-
nition based. We will refer the reader to [7] for a
detailed review of different shape descriptors.

A similarity measure (or a dissimilarity measure)

can be formalized by a function defined on pairs of de-
scriptors indicating the degree of their resemblance.
From our point view, most of existing metrics suffer
from certain drawbacks. First of all, the notion of
shape difference is not made explicit at best only a
shape distance is defined. With that it is impossible
to understand precisely where the variation happens
on a shape, as each shape is treated as atom typically,
a point in a fixed-dimensional Euclidean space. Fur-
thermore, it is hard to compare differences between
shapes to express differences among the shape dif-
ferences, for the same reason. Second, large amounts
of information about the shapes is ignored, and this
can affect the results. For example, the connectivity
of the landmarks can be just as important as their ab-
solute positions. Third, most of existing metrics are
used to support discriminating shapes under large-
scale variations (e.g., cars from humans), not capable
of handling fine variability, which has been popular in
the computer vision community in the last few years
(see, e.g., [1] and the references in the papers therein).

[5] develops a novel formulation for the notion of
shape differences, which provides an easy way to help
us compare two shapes intrinsicly. Their proposed
difference operator, derived from a shape map, makes
shape difference itself becomes an object which could
be compared and manipulated. Also their approach
is based on a linear algebraic framework and makes
it possible to use many common linear algebra tools
for studying a matrix representation of the operator.
In their work, they tried to conduct shape analogies
in a collection setting without knowing cross shape
correspondences between two collections. However,
their approach fails rapidly when the collection size
increases. The increase of collection size can actu-
ally provides more information about the character-
istic of a shape, since more comparision can be con-
ducted within the collection and thus defines shape
properties in a clearer way. We hope to leverage this
property to solve shape analogies with large shape
collections.

Another similar work described in [6], which makes
use of the idea of using analogy to specify the defor-
mation of objects, successfully achieves deformation
transfer for triangle meshes. In their work, analogies
are made to synthesize new shapes. Basically the in-
put is one source shape collection and a target shape
model. The output of their algorithm is the target
shape collection ”aligned” with the source shape col-
lection. The ”align” here means finding the analogies
of the source shapes for target shapes. However the

work in [6] requires cross-collection point correspon-
dence information to transfer geometric properties so
that the analogy can be made, which is indeed a lim-
itation of the work.

In our work, we are doing analogy in a more chal-
lenging condition without the cross-collection point
correspondence information. Our goal is a bit dif-
ferent from [6]. We are not considering synthesizing
a target shape collection, but given both source and
target shape collections, we would like to ”align” the
two collections. The lack of correspondence infor-
mation makes it difficult for the approach in [6] to
succeed. Even if it is possible to estimate the cross-
collection point correspondence, limited by the es-
timation accuracy, the approach is still not able to
obtain satisfactory results. We follow the work in [5]
and propose to explore the relationship among shapes
to achieve our goal. We expand the shape difference
descriptor designed in [5] to better capture the re-
lationship information within a collection. Different
experiments show the effectiveness of our proposed
descriptor. Making use of the descriptor, we are able
to simultaneously ”align” one collection to another by
a coarse to fine iterateable algorithm. The impressive
results we obtained prove the power of our machin-
ery. Our algorithm works great without the cross-
collection correspondence, since our approach doesn’t
directly compare geometric features between collec-
tions but the abstract within-collection relationship.
We do analogy to capture the common structures
shared by different collections. Our approach pro-
vides a novel view to conduct cross collection shape
analysis by using shape relationship as an alterna-
tive to geometric correspondence information, which
is usually not available.

3 Technical Part

Shape analogies between different collections with-
out cross correspondences are very challenging. In
the most general case, it is even difficult for human
being to successfuly make such analogies. Thus, we
choose to regularize our problem setting. We will
consider two similar collections as the target to con-
duct shape analogies. ”Similar” here has two mean-
ings. One is that the two collections are basically
the same category, since there is no reason to trans-
fer chair shape difference to human facial expression
shapes. The other is that the two collections con-
tain the same structure. Take the facial expression
shape collections as an example, two collections from

different people should contain the same set of expres-
sions. Another condition is that we know the point-
wise correspondences among shapes within each col-
lection. This makes it easy for us to compare shapes
within each collection. Therefore, in our setting, each
shape in the first collection has one ground truth cor-
responding shape in the second collection, and vice
versa. Our goal is to find out all the shape corre-
spondences between two collections.

The challenges in this problem lie in following as-
pects. Firstly, it is difficult to compare geometric
features between collections due to lack of cross col-
lection pointwise correspondence, so we need to find
some alternative approach to link the two collections.
Secondly, it is unknown how to effectively define a
shapes intrinsic characteristic in a collection setting.
A collection is more than the sum of individuals so
we need to define a shape not only based on itself,
but also based on other shapes in the collection.

We managed to deal with these challenges in our
proposed framework. We first expand the shape dif-
ference descriptor and propose to use a combination
of both pairwise shape difference and average shape
difference in a collection setting. The average shape
difference is designed to capture the intrinsic charac-
teristics of a shape in a collection. We use two exper-
iments to show the effectiveness of this new descrip-
tor. Then secondly, we depict intrinsic relationship in
each collection with a weighted graph and formulate
the shape analogies task as a graph matching prob-
lem. The graph vertexes denote different shapes in
the collection and the edge weights are generated us-
ing the shape descriptors described in the first step.
Finally a coarse to fine iterateabe algorithm is pro-
posed to simultaneously analogize all the shapes from
one collection to another based on spectral matching.
Our main technical focus lies on three parts: describe
shapes and the relationship of shapes within a collec-
tion, form weighted graphs for a collecion to synthe-
size all descriptors, iteratively refine the results by al-
ternating between matching two graphs and getting
better weighted graph for each collection. We will
introduce these in the following part of this report.

3.1 Expanded Shape Difference De-
scriptor

According to [5], shape difference can be defined as is
shown in Figure 2. Given two shapes M, N, endowed
with inner products h™ and R respectively, and a
functional map F : L?(M) — L?(N), there exists

a unique linear operator Dy~ : L?(M) — L?(M)
satisfying:

hM(faDthhN (g)) = hN(F(f),F(g)),vag
N 4

i

. @

Figure 2: An explanation about the concept of shape
difference. Here V' denotes an linear operator which
is just the special case of D when the inner products
defined on M, N are all area based inner products.

V(f2)

Here we use L%(-) to denote a set of square inte-
grable real-valued functions on a surface. And we
will refer to the operator Dy~ as the difference
between hM and hV. It can be seen that the linear
operator D modifies g so as to exactly compensate
for the distortions introduced by the map F. It is
explained in [5] that D is a universal compensator
a single such operator works simultaneously for all
functions f and g. Stated differently, D depends only
on the given inner products on M and N, and the
functional map F' . It is also important to note that
D is a linear self-map of the space of functions over
M. And in the discrete setting, D can be denoted as
a matrix.

Different kinds of inner product can actually in-
duce different D according to the definition above.
Several kinds of inner products are proposed in [5],
including area based inner product h, and conformal
inner product h.. For simplicity, we will not discrim-
inate different kinds of inner product and simply use
an operator D,y to denote the shape difference be-
tween shape M and N. All our discussions apply to
shape difference based on any kind of inner product.

Based on the above shape difference concept, we
firstly expanded the pairwise shape difference and
proposed a new shape descriptor called average shape
difference, to synthesize pairwise shape difference in
a shape collection. The average shape difference,

combined with pairwise shape difference, can cap-
ture what makes a shape different from all the other
shapes in the collection. We verified the effectiveness
of the average shape difference by visualizing the syn-
thesized average shape difference and seeing whether
it agrees with human observation. Also based on the
average shape difference, we implemented an interest-
ing application, exaggerating the shapes. The success
of this application also shows the average shape differ-
ence captures the intrinsic characteristics of a shape
as we expected.

In our following discussion, we use {A4;},] =
1,2,...,n to denote a shape collection containing n
shapes. We use Dy,, 4, to denote the shape differ-
ence between A; and A;, where ¢,j € {1,2,...,n}.

Figure 3: Visualization of average shape difference.
In the bumpy sphere collection, average shape dif-
ference for the sphere with two bumpies shows large
area increase in the top bump area and slight area
increase in the side bump area. In the human face
collection, target shape has relatively smaller area on
the cheek and larger area on the chin.

Given pairwise shape difference D4, ,4,, we define
average shape difference Dy, as

l’ﬂ
Da, =~ Dua.a,
A; nj_l AirAj

Average shape difference Dy, reveals the difference
from A; to the mean shape defined in the collection,
thus could to some degree reveal what makes shape
A; special. To visualize D 4,, we choose to visualize
their effect on different functions. For every vertex v
on the shape, we can define a locally supported func-
”Illj’f T\Lb to denote the effect of
D 4, on this vertex. We choose area based shape dif-
D
T
vere the area around v changes after functional map-

ping. And we use red color to denote area increase,

tion f,, then we use

ference in our visualization, so reveals how se-

blue color to denote area decrease. Then we can vi-
sualize the average shape difference as is shown in
Figure 3. The visualization result is reasonable and
agrees with human observation.

Then we can make use of the average shape differ-
ence to do shape exaggeration in a relatively simple
setting. Exaggeration here means making the charac-
teristics of shapes more prominent. Shape difference
is a linear operator and it is manipulatable and com-
parable. This property makes it possible for us to
manipulate shape difference and generate shape dif-
ference for some new shapes. Exaggerated shape is
just one kind.

In our setting, we firstly manipulate shape differ-
ence D4, to get the shape difference D 4, for exagger-
ated shape and then do nearest search in the whole
shape collection to get a shape A;, whose average
shape difference D4, is the closest to f)Ai. There
are two problems here, how to manipulate the shape
difference and how to compare different shape differ-
ence. To figure out the first problem, we do eigen de-
composition for D4,. When we use area based inner
product, D4, is symmetric, so we get D4, = Vv,
The eigenvalues and eigenvectors of Dy, reveals the
property of shape A;. Each eigenvector represents a
certain pattern and the corresponding eigenvalue de-
notes how severely A; differs from the other shapes
in A; on this certain pattern. We can exaggerate a
shape A; by adjusting the eigenvalues of D,,. We
use a stretching factor § to adjust the eigenvalues of
D4, and generate D A, as below

Dy, =VI(I 462 -1)V

As for the second problem, we simply use ||[Da, —
Dy, ||F as a metric to compare how similar Dy, and
D4, is. The described procedure is shown in Figure
4. Following the procedure, we can achieve shape
exaggeration as is shown in Figure 5.

D, =VAV"

Spectrum didg([\)

D, =VAV’

\\sw diag(A)

Scaling
—

Figure 4: The procedure of how shape exaggeration
is conducted.

Figure 5: An example of shape exaggeration. In this
experiment we have 6 pair of shapes. In each pair of
shapes, the left one is the initial shape. We manipu-
late the average shape difference of the initial shape
and do nearest search to get an exaggerated shape,
which is the right shape in each pair.

By far, we demonstrate the effectiveness of average
shape difference from two different view. One is to
visualize the average shape difference directly. The
other is to evaluate it in an application. Both shows
that average shape difference can capture the char-
acteristics of shapes in a collection as we expected.
Then we will make use of both pairwise shape differ-
ence and average shape difference to tackle the shape
analogy problem.

3.2 Graph Matching Formulation

In this part, we will show how we formulate the shape
analogies task as a graph matching problem. Using
weighted graph to denote a collection is a very natu-
raly idea under the assumption that all pairwise rela-
tionship can to some degree encode the overall prop-
erty of a collection. We use graph vertexes to denote
different shapes and use the edges between vertexes to
denote the relationship between shapes. This repre-
sentation approach is shown in Figure 6. A complete
graph will be used and we need to associate each edge
with some proper edge weight so that the structure
of the collection can be captured. Then for collec-
tions sharing similar structures, the edge weights of
corresponding edges will also be similar. Thus the
main task should be assigning proper edge weights to
weighted graphs so that the corresponding edges in
two collections A and B own similar edge weight.The
edge weights here can be of multiple forms like scalar,
vector, matrix, or even higher order tensors. We will

use a combination of scalar and vector in our formu-
lation.

Firstly, we will introduce the idea of sample func-
tions and pattern functions. As is stated in [4],
each shape can be associated with a functional space.
Sample functions is just some sampling points in the
functional space. In our problem setting, shapes in a
collection only contains isometric deformation among
each other, therefore each collection can be associated
with a functional space. In collection A, every sample
function p4 can induce a set of edge weights ga,,a;
defined by

GAL A = ||DA¢7Aij||2
v |lpall2

The same for collection B. This is shown in Figure
6 as wll. This implies if we could find some relation-
ship between a set of p4’s and ppg’s, it will be possible
to conduct analogy between two collections. Two re-
quirements for these sample functions p’s and pg’s
are they should be supported in areas with large vari-
ation and their relationship should be accessible. The
small set of sample functions satisfying these two re-
quirements are called pattern functions. We will ex-
plain why we set these two requirements. Firstly, if
a sample function is supported in areas with little
variation, the introduced edge weight will have little
variation in a weighted graph thus contain little in-
formation. In this case, the weighted graph doesn’t
capture the structure of the collection and cannot
be compared. Secondly, if the relationship between
the pattern functions from different collection is not
available, we cannot ensure the edge weights of cor-
responding edges are similar and the graph matching
cannot be conducted. Given these two requirements,
the problems fall on how to find out a set of pattern
functions.

Shape Collection A

@ '}\

8’ ¢ Q
00 o
0 0 @ %..00

"Dy Pyl
B Byl

Shape Collection B

0o
0

B2

Figure 6: Show shape analogy from a graph matching
view.

A set of pattern functions are found out in the
following way. We use ep, ’s to denote the eigen-
functions of D4,. All the efgenfunctions of Dy, for
1 =1,...,n are gathered together and form an eigen-
function pool. Then we pick up big cluster centers
as the pattern functions’ candidates. By putting a
threshold on the variation of edge weights introduced
by each candidate, we can filter out the candidates
supported in areas with little variation and the re-
maining candidates will serve as pattern functions.

eno '\ Camera (Euclidean view)

Figure 7: The pattern functions got for two facial ex-
pression collections. The first two rows correspond
to the first collection and the last two rows corre-
sponds to the second collection. It can be seen that a
simple permutation-like linear relationship exists be-
tween two collections although there are some outliers
as are shown in the brown circles.

For different shape collections, we can use this ap-
proach to find their own pattern functions set. Al-
though we get pattern functions for different collec-
tions purely based on each individual collection, we
observed in our experiments that for collections shar-
ing similar structures, the pattern functions obtained
in this way own simple permutation-like linear rela-
tionship between different collections. See Figure 7
for an explanation. The linear relationship are eas-
ier to get access to than an arbitrary relationship.
We will show how we make use of this observation
to alternatively refine this linear relationship and re-

fine the graph matching results based on such linear
relationship.

3.3 Graph Matching Algorithm

For each shape collection, we will use a set of m pat-
tern functions. We use p4®, pp® (k=1, ..., m) to
denote these pattern functions. Each pattern func-
tion will introduce a set of edge weights. We use
GA;»A; (%) to denote the edge weights introduced by
pa®), namely

(k) _ HDAi, YA pA(k) | |2

Gaids RRIE

If there exists a perfect correspondence between
pa® and pg®), namely pa*) corresponds to pg¥)
for k=1, ..., m, then the vector edge weight
(94,4, Y, 94,,4,?, .., ga,, 4, ™) will corresponds to
(gBi yBj) »9B;»B; (2)7 -2 9B;»B; (m)) and we can di-
rectly use these vector edge weights to conduct graph
matching based on spectral graph matching tech-
nique described in [3]. Unfortunately, this is not the
case. We do not know the relationship between pat-
tern functions of different collections. Thus we need
to calculate the relationship. We notice that con-
ducting graph matching and calculating pattern func-
tions’ relationship are mutually reinforcing processes.
Once we have a rough graph matching result, we can
calculate the relationship between pattern functions.
With the pattern functions’ relationship, we will get
better graph matching accuracy. These two processes
can be executed alternatively in a iterative way. Our
coarse to fine iterateable algorithm is just based on
this idea.

In our approach, we first synthesize all the edge
weights ga,,4, (%) to a single scalar edge weight

Z CLbS(gAl. sA; (k) — 1)
k=1

Then based on this scalar edge weight, we will con-
duct a rough shape matching step simply using spec-
tral graph matching technique described in [3]. This
procedure is shown in Figure 8.

After the rough matching step, we will use the re-
sult to calculate the linear relationship between pat-
tern functions of different collections. Each pattern
function will introduce a set of scalar edge weight.
Therefore, each pattern function corresponds to a
weighted graph. These weighted graphs can be com-

pared between different collections and can serve as
feature for different pattern functions. This is shown
in Figure 9. Based on these graph features, we can
calculate a similarity score for each pair of pattern
functions. Then we are able to match each pattern
function from collecion A to several pattern func-
tions from B by transforming these pairwise simi-
larity scores into some probabilistic matching con-
fidence. After this, we will know the edge weight
GAi»A, (%) has its correspondence in collecion B being
2211 PKIYB;B; (. Here py; denotes the probabilis-
tic matching confidence and }_;", pr; = 1. Knowing
the relationship between pattern functions of differ-
ent collections enables us to use vector edge weights
to conduct graph matching as is shown in Figure 10.

Shape Collection A

Shape Collection B

Figure 9: Each pattern function is associated with
a weighted graph which can serve as a kind of fea-
ture. We can evaluate similarity scores between pat-
tern functions using these graph features.

"h F L &5
(8L g8y 804 - Z ,
T if

) . 3)
Tuy (D Pulsly DPusy DPulily)
- r ;

A 2

Spectral Matching

Figure 10: Using vector edge weights for graph

matching.

The above two steps, probabilistic pattern function
matching and graph matching based on vector edge
weights, can be run iteratively. We will call each pass
one refining iteration. We can run the algorithm until
the analogies result converges.

4 Experiments

To evaluate our proposed alorithm, we test it on a
facial expression dataset used in [5], which contains
2*40=80 face models from 2 people. Each person cor-
responds to a set of 40 face models which contains the
same set of expressions. This means the ground truth
of shape analogy is known. Pointwise correspondence
within model collection of each person is known and
cross collection correspondence is unknown. Figure
11 shows how the shape analogies accuracy changes
with the algorithm goes on. It can be seen that rough
matching only achieves a 20% accuracy. But with
the refining iteration step, the algorithm will achieves
100% shape analogies accuracy after 3 iterations.

Shape Analogizing

120

100

80 /
o /
40 /

/

20

Analogizing Accuracy (%)

rought
matching

refining
iterationl

refining
iteration2

refining
iteration3

Figure 11: The overall shape analogies accuracy.

We pick up a few shape analogies results and show
them in Figure 12. It can be seen that our shape
analogies perfectly align two collections according to
the facial expressions, which is quite abstract and not
easy to capture. This shows the power of specifying
shape variation via shape analogies.

Figure 12: Shape analogies results.

5 Conclusions

In this report, we proposed a novel framework to
tackle the shape analogies problem between two colle-
cions in a graph matching way. We use novel descrip-
tors to capture the intrinsic characteristics of shapes
and based on these descriptors we are able to for-
mulate the shape analogies task as a graph matching
problem. We use a coarse to fine iterateable algo-
rithm to solve the graph matching problem and thus
solve the initial shape analogies problem. The experi-
ment results show the effectiveness of our framework.

The most important meaning of this report lies
in following two aspects. Firstly, we propose to use
analogy to specify the variation between 3D shapes,
which has intense application in many areas like
shape retrieval, shape manipulation, shape synthe-
sization. Secondly, instead of using geometric fea-
tures purely based on individuals to describe shapes,
we suggest using shape relationship as an alternative.
This means we try to define a shape by its neighbor
shapes. Using relationship to describe shapes will
be much more effective and discriminative compared
with purely geometric features as the shape collecion
grows larger and larger. Also the relationship can
be compared between different collections much more
freely.

Some future directions are handling shape analo-
gies between collections only sharing partial common
structures, expanding this framework to handle much
more heterogeneous shape collections like man-made
object collection. Of course, this framework should
be tested in larger dataset to further verify its effec-
tiveness.

References

[1] Second workshop on fine-grained visual catego-
rization (fgvc) at cvpr 2013. http://www.fgvc.

org.

Aaron Hertzmann, Charles E Jacobs, Nuria
Oliver, Brian Curless, and David H Salesin. Im-
age analogies. In Proceedings of the 28th annual
conference on Computer graphics and interactive

techniques, pages 327-340. ACM, 2001.

Marius Leordeanu and Martial Hebert. A spec-
tral technique for correspondence problems using
pairwise constraints. In Computer Vision, 2005.
ICCV 2005. Tenth IEEE International Confer-
ence on, volume 2, pages 1482-1489. IEEE, 2005.

Maks Ovsjanikov, Mirela Ben-Chen, Justin
Solomon, Adrian Butscher, and Leonidas Guibas.
Functional maps: A flexible representation of

maps between shapes. ACM Transactions on
Graphics (TOG), 31(4):30, 2012.

Raif M Rustamov, Maks Ovsjanikov, Omri Azen-
cot, Mirela Ben-Chen, Frédéric Chazal, and
Leonidas Guibas. Map-based exploration of in-
trinsic shape differences and variability. ACM
Transactions on Graphics (TOG), 32(4):72, 2013.

Robert W Sumner and Jovan Popovié¢. Deforma-
tion transfer for triangle meshes. In ACM Trans-
actions on Graphics (TOG), volume 23, pages
399-405. ACM, 2004.

Johan WH Tangelder and Remco C Veltkamp.
A survey of content based 3d shape retrieval
methods. Multimedia tools and applications,
39(3):441-471, 2008.

