Sketch-based Object Recognition

Bo Zhu*
Stanford University

Abstract

We present a system that performs sketch-based image retrieval and
classification. The system enables the user to draw sketches that are
used as queries against a dataset of 20,000 sketched images span-
ning 250 categories. The system returns top matches and uses a
weighted voting scheme to estimate the most likely classifications
of the user’s sketch based on those matches. This work demon-
strates the potential of the computer to compare and classify hand-
drawn images in addition to the more frequently researched digital
photographs.

Keywords: sketch recognition, image retrieval, histogram of gra-
dients

1 Introduction

Image-based search is a valuable tool that is closely tied to the com-
puter vision problem of object recognition and classification. In
a system that performs image searches, it is desirable both to find
close image matches and to classify a query image. Often, however,
a user may not have a digital photograph of an object for which he
or she desires to perform a search. In this case, it is desirable that
the user be able to perform the search using a rough sketch of the
desired object.

Our system is focused on the specific problems of matching
sketched query images to a database of sketches and classifying
those query images. The work is meaningful because it demon-
strates the potential of the computer to classify and compare hand-
drawn sketches, which are imperfect and sparse relative to actual
photos. We use techniques developed in [Eitz et al. 2012a] and
[Eitz et al. 2011] to implement a system that performs sketch-based
object recognition and matching.

2 Background

In this section we reference relevant work in the areas of sketch-
based image search and recognition and summarize the contribu-
tions made by our project.

2.1 Previous Work

Problems related to object recognition constitute a broad category
of computer vision. Recently, the ability to recognize real world
objects using rough hand-drawn sketches has been of particular in-
terest. The MindFinder system, described in [Cao et al. 2010] and
[Wang et al. 2010], performs image search based on a rough sketch
provided by the user. [Sun et al. 2013] is a another image searching
system that allows the user to provide both edge and color infor-
mation in a sketch. [Chen et al. 2009] uses annotated sketches as
a blueprint for creating composited scenes using images available
online. A method for returning three dimensional objects based
on query sketches is described in [Eitz et al. 2012b]. [Cole et al.
2008] presents the results of a study on how artists sketch objects.

*e-mail: boolzhu@stanford.edu
fe-mail: equigley @stanford.edu

Ed Quigley'
Stanford University

A sketch-based image retrieval tool that can be used on mobile de-
vices due to its low memory consumption is detailed in [Tseng et al.
2012]. [Ribeiro and Igarashi 2012] considers sketches in the con-
text of games. We base our project primarily on [Eitz et al. 2012a],
which allows a user to draw an object while interactively providing
ranked guesses at the object’s category.

2.2 Our Contribution

Our work does not add new research to the body of work referred
to in the previous section. Instead, we attempt to synthesize the
functionality of the categorization and image search systems in or-
der to provide both “closest match” image results as well as ranked
guesses at the object portrayed in a query sketch. Further, by creat-
ing a system that successfully accomplishes these goals, we verify
that the techniques described in [Eitz et al. 2011] and [Eitz et al.
2012a] are able to perform sketch recognition tasks. This verifica-
tion of reproducability is an important factor in the progress of any
scientific field.

3 User Interface

We provide the user with an interface for creating sketches and per-
forming searches based on those sketches. The system interface is
depicted in Figure 1. The upper-left section of the interface pro-
vides a canvas on which the user can sketch a query image. Con-
trols to the right of the canvas include, from top to bottom, paint
brush, eraser, clear screen, and search. When the user performs a
search, the right side of the window is populated with the 30 closest
matches from the sketch dataset. The closest match is in the upper
left, and images are listed in decreasing order from left to right, top
to bottom. Below the canvas, the top five most likely object classes
are listed in decreasing order from top to bottom.

4 Algorithm

In this section we describe the implementation of the sketch-based
object matching system. The overall system pipeline is illustrated
in Figure 2.

4.1 Technical Summary

Our implementation consists of matching HoG features of a query
image to a dictionary of codewords. This dictionary is generated by
clustering the histograms of gradients computed from our training
set, which is a group of 20,000 human-sketched images in 250 cat-
egories provided by [Fitz et al. 2012a]. The details of this method
are provided in Section 4.2.

4.2 Technical Details

In the following subsections we describe the implementation details
of our system.

4.2.1 Dataset

We use the dataset provided by [Eitz et al. 2012a] which contains
20,000 manually drawn sketches collected from Amazon Mechan-

Sketch Canvas

face (25.8%)

head (18%)

dam clock (6.26%)
skl (552%)
snowman (4.95%)
strawberry (3.76%)

Top Categories
(ranked highest to lowest)

Sketch tools: Brush, Eraser, Clear Screen, Search

=

Top Matches
(ranked from left to right, top to bottom)

Figure 1: User interface, with labeled components

ical Turk. The dataset includes 250 categories of objects ranging
from simple (e.g., apple, sun, mug) to complex (e.g., clock, angle,
face). Each category has 80 images, and the images contain only
the sketch lines of the object (i.e., no other scene context is con-
tained within the sketches). All images shown as search results in
this report come from this dataset.

4.2.2 Feature Extraction

Our system extracts features from a sketch using HoG descriptors,
based on the method described in [Eitz et al. 2012a]. We first map
each input sketch onto a 256 x 256 image by isotropically rescaling
it using the ratio of the length of the longest axis of the bounding
box of the sketch and the edge length of the rescaled image. This
step ensures the scale and translation invariance of the feature de-
scriptor for each sketch, though we note that our algorithm does not
ensure invariance to rotation.

We sample the rescaled image at 1,024 points regularly spaced
in a square grid on the image. Each of these points is used as
the center of a window whose area is approximately nine percent
of the total image area. Neighboring windows have a high de-
gree of overlap because of our dense sampling. Each window is
divided into 16 bins, four along the x-axis and four along the y-
axis. For each pixel of each bin, the gradient is determined by ap-
plying the filters [~1 0 1] and [—1 0 1]7. This results in one of
eight possible gradient values, because we ignore the ninth possi-
ble gradient that corresponds to no color change, (0,0). Each bin
is given the value of the most frequently occuring gradient within

Figure 3: A 4 x 4 window corresponding to a single feature vector,
with nonzero gradients displayed.

the bin. Thus each image has 1, 024 feature vectors, each of length
4xbins X 4ybins x 8orientations = 128. An illustration
of a single window is given by Figure 3.

Preprocessing
Feature Windows
L~ * 4x4grid

/ e Covers about 10% area of the image
N"‘/Z’\L . Regularly sampled over the bounding
z L box of the sketch

. Overlap between windows

Dataset
. 250 categories of objects
e Each category 80 image

object
e [Eitzet.al. 2012]

Runtime Computing

Best Fit Images

e Thetop Nimages in the sorted list

Output

—

. Each image sketches a single

Dictionary Image BoW Histogram

e 1000 visual words . Pre-compute the BoW for each image
e Each visual word is a 128-vector in the dataset

. Trained by k-clustering over features . Gaussian kernel is used to measure

distances between samples
. Load these BoWs in runtime
1
\—> h(D) = > q(d)/ |la(d:)],
Pl iz

g(d) = [K(d. py), .- K(d, py))"

of 20000 images
[Vl Vs 5""v128]

[VHVZ’“"V]ZS]

K(d, p) = exp(— ||d — || /20%)
[V1>V2=“'>V128]

Matching

Calculates the L2 distance between Q

User Input BoW of the Input Sketch of the input ZkeFFh a:d;ac'“
e Sketch ona OpenGL Window e Calculates the BoW of the input sketch . ?;?:zgp?:e agllll:litzez uas?ssetthread
e Supports basic user operations based on the precomputed dictionary ona 16—Eorepdeskt0p machir%ep

such as brush, eraser, clear. _ [] e Sort the image index based on their
e Calculate the bounding box O =199+ q 1000 calculated distances

e The matching operation for one image
can be done in about 2 seconds

Best Fit Categories
e Weighted Voting from the top N images

MUG (33%), TEACUP (20%), TABLE (16%),
CUP (15%), SUBMARINE (12%), ASHTRAY (4%)

Figure 2: Overview of sketch matching and classification algorithm

4.2.3 Dictionary

By performing the feature extraction described in Section 4.2.2 for
each image in the dataset, we get 20, 000 matrices with dimensions
1024 x 128. In order to perform image searches in a reasonable
amount of time, we want to reduce the size of these image descrip-
tions. To accomplish this, we use a bag of words model. Once we
have computed the HoG features for each training image, we gen-
erate a dictionary of codewords by clustering the HoG descriptors
using the k-means algorithm. One would expect the accuracy of
the method to vary directly with the number of codewords, and the
speed of the search to vary inversely with the number of codewords.
Based on the findings reported by [Eitz et al. 2011], we chose to use
a dictionary of 1, 000 codewords.

4.2.4 BoW Histogram

Using the trained dictionary, each sketch can be described by a bag
of words (BoW) histogram. The histogram is calculated using a
Gaussian kernel as in [Eitz et al. 2012a]. Each feature descriptor
f from the input sketch is compared with each codeword d in the
dictionary using the equation

Spa=e W/)

where J is the length scale of the Gaussian kernel (we use 6 = 0.1
as in [Eitz et al. 2012a]). The histogram of feature f is then given
by the n dimensional vector

F: (Sf,d17Sf,d2""7Sf,dn) (2)

in which di,da, ..., d, are n visual words in the dictionary. The
Gaussian kernel allows a smoothed distribution of a feature in the
feature space spanned by the n visual words. This histogram is

normalized as F' = F/|F| to eliminate the influence of the local
window size.

The BoW histogram of a sketch is calculated as the average of its n

noo.
extracted features, H = > F;/n. Thus H is also an n dimensional
i=1
vector. We precompute H for the 20,000 dataset images and store

them as a binary file. At runtime this file is loaded into memory for
computing the smallest distances to query sketches. This method
provides a compact representation of a sketch image.

4.2.5 Matching and Voting

When a search is performed, a histogram of codeword occurances
for the query sketch is computed in the same way as the his-
togram for a training image. The closest n dataset images (we use
n = 100) are then found by comparing the query histogram to the
dataset histograms using their Euclidean distance. The top 30 clos-
est matches are presented to the user. All 100 of the matches, sorted
by their distance to the query sketch, are used to vote for the most
likely class of the query sketch. In general, the class of the sorted
image ¢ is given a weighted vote of n — ¢ 4+ 1. Thus the first im-
age votes for its class with a weight of 100, the second votes with a
weight of 99, and so on. The top five class results, along with their
vote percentages, are reported to the user.

5 Experiments

Most of our experiments involved testing the ability of the system
to classify a set of images drawn by our team members. In these
experiments, we found that the method was effective both at dis-
tinguishing very different classes (e.g., shirt vs face) as well as dis-
criminating between similar classes (e.g., apple, tomato, and pear).

In the following subsections we discuss specific results produced
by our system.

5.1 User Sketch Recognition

We tested our system by sketching a variety of different objects. A
subset of our sketches along with the top ten closest matches from
the dataset and the top object class is given in Figure 5.

5.2 Incremental Sketch Editing

Our system supports incrementally editing the sketch to improve
the accuracy of the search results. As shown in Figure 4, the recog-
nized best fit category can be corrected from “pear” to “strawberry”
by incrementally adding more local features (seeds).

pear (749%) strawberry (9.92%)
apple (65%) angel (655%)
lightbub (562%) 5/, wheel (6.36%)
hot ar bdloon (5.52%) dam clock (6.2%)
tooth (349%) teddy—bear (501%)

winedlass (347%) froa (396%)

Figure 4: Incremental sketch editing.

5.3 AQuantitative Analysis

In order to quantify our results, we split our dataset into a training
subset and a test subset. We generated a new codeword dictionary
based on the first 75% of the sketches from each category, then used
the remaining 25% of the dataset as query sketches. We found that
in 82% of these cases, the correct object class was within the top
five guesses produced by our weighted voting scheme.

6 Limitations and Discussion

One of the major limitations of a sketch based recognition system is
its accuracy. Although our system can achieve about 80% accuracy
within the top five categories (as discussed in Section 5.3), there are
still failure cases that may be worthwhile to explore and improve.
Based on our experiment results, we group the failure cases into
four different categories: inter-class ambiguity, intra-class ambigu-
ity, perspective, and stroke style.

6.1 Inter-class ambiguity

Different categories of objects may share similar shapes or features,
which introduces inter-class ambiguity to our recognition system.
As shown in Figure 6, objects like a fork, watch, carrot, leaf, mi-
crophone, etc. have similar global shapes. Although there are dif-
ferences in the local features of these objects, the dominant feature
in the diagonal direction overwhelms the local differences and cre-
ates an inter-class ambiguity. This ambiguity due to similar global
shapes may be solved by using a higher resolution window with a
smaller area for feature extraction. However, given the requirement
of interactive performance, our system uses a window that achieves
results with an acceptable tradeoff between accuracy and speed.

In addition to global shape ambiguities due to global features, local
features may introduce inter-class ambiguities. As shown in Fig-
ure 7, our algorithm mistakenly classifies the input sketch (on the
left of the figure) as a “sponge bob” instead of a “house” based
on the voting results. This ambiguity comes from the local square
shapes in both the “house” and the “sponge bob” categories. Since

Figure 6: Example of inter-class ambiguity due to global shape
similarities.

methods based on local features consider only the similarity be-
tween local descriptors and the relationships between different fea-
tures in the entire image is not taken into account, repetitive local
features in the feature space may overwhelm other important global
features in the image space. To solve this problem, a more advanced
recognition algorithm taking the spatial relationships into account
(e.g. [Savarese and Fei-Fei 2007]) would be needed.

A ‘f

oQa
4o

Figure 7: Example of inter-class ambiguity due to local shape sim-
ilarities.

6.2 Intra-class ambiguity

Intra-class ambiguity comes mainly from the multiple representa-
tives of the same category in our dataset. For example, Figure 8
shows eight of the different representations of bread in the dataset
[Eitz et al. 2012a]. Even if a query sketch matches one of these
eight entries perfectly, the voting results may still be wrong due to
an insufficient number of matches within the “bread” category. A
simple solution to this problem is to significantly expand the num-
ber of images in the dataset.

Figure 8: Examples of intra-class ambiguity.

6.3 Perspective

Orientation and perspective of a sketch may cause problems in
recognition since our algorithm is not invariant to rotation. As
shown in Figure 9, a query sketch can match an axe drawn facing in
one direction while missing the axes drawn in all other directions.
The insufficient number of samples in the “axe” category facing the
same direction may lead to incorrect voting results. In addition to
two dimensional orientation, three dimensional perspective changes
of a sketch also make recognition more complex.

User Input

N/

/
O
/7

Best Fit Images

Best Fit Images

Best Category

Apple

SIS

4

7=
D)

Pear

Pumpkin

Tomato

Strawberry

Mug

Umbrella

Flower
with Stem

Cloud

Book

e BB D

Best Category User Input
Sun ?
Wheel ;
Face
Alarm
-Clock !
Envelope
g
Computer
Monitor @
T-Shirt ?
Trousers f
House
Octopus
\ ’/
p
Snowman %

Basket

Figure 5: Results.

Figure 9: Failure case due to variable orientations.

6.4 Stroke styles

Figure 10 shows an interesting failure case due to different stroke
styles. The main difference between the two query sketches is the
style of the corners (sharp vs round), which leads to a significant
difference in the accuracy of the search results. The round corner
style, which is prevalent in many other categories (e.g., cactus, ele-
phant, camel, etc.), negatively affects the accuracy of the search re-
sults while the sharp corner style, which is rare in other categories,
lead to successful matching. This difference is understandable since
our matching algorithm is sensitive to local features. However, con-
sidering that different users may have different drawing styles, the
effect of the difference should ideally be made as small as possible.

Figure 10: Different stroke styles affect the search results.

7 Conclusions

Sketch processing, recognition, and search are interesting lines of
work in current computer vision research. The computer’s ability to
recognize human drawings has potential applications in the areas of
image search and educational gaming. For example, image search
could potentially be performed by only providing a rough sketch of
the desired object. In the area of education, young children could
learn to draw objects in a computer game that automatically evalu-
ates the category of the sketched object.

We find that using a bag of words algorithm with HoG descriptors
is a reasonable technique for solving the problem of classifying and
matching human-drawn sketches. However, since a sketched image
is very different from a digital photograph (e.g., it contains no color
information, is sparser than a photograph, varies with a human’s
drawing style, etc), it may be that alternative methods that are ill-
suited to actual photos may be effectively employed in processing
sketches. Thus, problems related to sketched images are a fruitful
avenue for continued computer vision research.

7.1 Source Code

Our source code is available for download at https:
//bitbucket.org/equigley/cs23la_project/
get/master.zip.

References

CAo0, Y., WANG, H., WANG, C., L1, Z., ZHANG, L., AND
ZHANG, L. 2010. Mindfinder: interactive sketch-based image
search on millions of images. In Proceedings of the international
conference on Multimedia, ACM, 1605-1608.

CHEN, T., CHENG, M.-M., TAN, P., SHAMIR, A., AND HuU, S.-
M. 2009. Sketch2photo: internet image montage. In ACM
Transactions on Graphics (TOG), vol. 28, ACM, 124.

COLE, F., GOLOVINSKIY, A., LIMPAECHER, A., BARROS, H. S.,
FINKELSTEIN, A., FUNKHOUSER, T., AND RUSINKIEWICZ,
S. 2008. Where do people draw lines? In ACM Transactions on
Graphics (TOG), vol. 27, ACM, 88.

EiTz, M., HILDEBRAND, K., BOUBEKEUR, T., AND ALEXA,
M. 2011. Sketch-based image retrieval: Benchmark and bag-
of-features descriptors. Visualization and Computer Graphics,
IEEE Transactions on 17, 11, 1624-1636.

Eirz, M., HAYS, J., AND ALEXA, M. 2012. How do humans
sketch objects? ACM Transactions on Graphics (TOG) 31, 4,
44,

EITz, M., RICHTER, R., BOUBEKEUR, T., HILDEBRAND, K.,
AND ALEXA, M. 2012. Sketch-based shape retrieval. ACM
Transactions on Graphics (TOG) 31, 4, 31.

RIBEIRO, A., AND IGARASHI, T. 2012. Sketch-editing games:
human-machine communication, game theory and applications.
In Proceedings of the 25th annual ACM symposium on User in-
terface software and technology, ACM, 287-298.

SAVARESE, S., AND FEI-FEI, L. 2007. 3d generic object cate-
gorization, localization and pose estimation. In Computer Vi-
sion, 2007. ICCV 2007. IEEE 11th International Conference on,
IEEE, 1-8.

SUN, X., WANG, C., SuD, A., Xu, C., AND ZHANG, L. 2013.
Magicbrush: image search by color sketch. In Proceedings of
the 21st ACM international conference on Multimedia, ACM,
475-476.

TSENG, K.-Y., LIN, Y.-L., CHEN, Y.-H., AND Hsu, W. H. 2012.
Sketch-based image retrieval on mobile devices using compact
hash bits. In Proceedings of the 20th ACM international confer-
ence on Multimedia, ACM, 913-916.

WANG, C., L1, Z., AND ZHANG, L. 2010. Mindfinder: im-
age search by interactive sketching and tagging. In Proceedings
of the 19th international conference on World wide web, ACM,
1309-1312.

https://bitbucket.org/equigley/cs231a_project/get/master.zip
https://bitbucket.org/equigley/cs231a_project/get/master.zip
https://bitbucket.org/equigley/cs231a_project/get/master.zip

