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1 Abstract

We tackle the problem of producing depth maps from stereo video. Some algorithms for doing
this using correspondences produce noisy output. Chan et al. (2011) [2] use convex optimization
techniques to reduce noise and also smooth out the depth maps over time. We start with the
noisy output of OpenCV and apply this technique to smooth it, developing some refinements
along the way. Specifically, we ignore pixels with the highest possible depth value (as this
indicates that no correspondence was found for the pixel), and we make the smoothing less
aggressive if the pixels differ by color. These refinements improve the smoothing to yield more
accurate depth estimates. We test the algorithm on multiple videos and find that it generally
performs well as long as OpenCV’s output was somewhat reasonable.

2 Review of previous work

Given stereo images, it is possible to retrieve depth maps by finding correspondences between
the left and right images. This technique is used by OpenCV (http://docs.opencv.org/
trunk/doc/py_tutorials/py_calib3d/py_depthmap/py_depthmap.html). We ran OpenCV’s
StereoBM algorithm with a SADWindowSize parameter of 5, which increases accuracy by
matching smaller regions but increases noise. It is straightforward to find depth maps for
stereo video by simply finding maps for each frame independently. However, in addition to in-
heriting all the problems of the original algorithm, the result is usually choppy, lacking smooth
changes over time. Chan et al. (2011) [2] apply a smoothing algorithm to stitch together
frame-by-frame depth maps, which succeeds in both reducing the noise of each depth map and
increasing continuity over time. They solve the following optimization problem:

/Bm(fi-l-l,j,k - fi,j,k)
minimize p1 Y | fijr = Gigrl + D || By(figrn — fijn)
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where ¢ is a 3D matrix containing depth estimates from a frame-by-frame algorithm, f is a 3D
matrix of smoothed depth estimates, and p, 3;, 3,, and ; are non-negative parameters.


http://docs.opencv.org/trunk/doc/py_tutorials/py_calib3d/py_depthmap/py_depthmap.html
http://docs.opencv.org/trunk/doc/py_tutorials/py_calib3d/py_depthmap/py_depthmap.html
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3 Improvements on Previous Work

We found that OpenCV produced very noisy output. Additionally, many pixels (in some cases
the majority) were labeled as the furthest possible depth value. Usually, these pixels did not
actually have such high depths; instead, they were scattered around the image at many different
depth values. It is likely that OpenCV found no correspondences for these pixels, and gave
them the highest depth value as a default. Therefore, we adjusted the smoothing algorithm to
ignore these pixels’ depth values. This way, the algorithm is free to vary the smoothed depth
estimate corresponding to these pixels in order to produce more continuity.

Additionally, we changed the smoothing to place less emphasis on smoothness for pixels
with similar colors. This captures the intuition that depth changes should happen where color
changes happen. To do this, we created a weight for each pixel proportional to where
A is a vector combining color differences in the x, y, and time directions.

As explained later, Chan et al. [2] include smoothness constraints between pixels at op-
posite ends of the image, or between the final and first frame, just as there are smoothness
constraints between neighboring pixels or frames. Including these constraints is necessary to
make optimization much more efficient. We do not drop these constraints, but we reduce the
weight of pixels on edges that correspond to these wrapped constraints (to 1/3 of the original
weight) to make these constraints less cumbersome.
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4 Summary of Technical Solution

To obtain a smoothed depth map for the video, we solve a convex optimization problem. We
regard the video as a time space volume, where each pixel has an z,y, and t coordinate. The
x axis corresponds to the pixel column, the y axis to the pixel row, and the ¢ axis to the pixel
frame.

Let g be a 3D matrix of pixel depth estimates indexed by x,y, and t. ¢ is obtained by
estimating a depth map for each frame of the video independently. Some pixels may not be
assigned a depth by the frame-by-frame algorithm. We call such pixels unlabeled. Let E be the
set of labeled pixels in g.

Let f be a matrix variable representing the smoothed pixel depth estimates. Then our
optimization problem is given by

Be(fixrgk — fijk)
minimize /i Z | fijk = Gigrl + Z Wik || By(fijerke — fijk)
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w, i, Bz, By, and B; are non-negative parameters.

The optimization problem finds an f that is close to the original depth estimates g but
has fewer sharp changes in depth. Specifically, the term Z(i, iR |fijk — Gijk| penalizes f’s
deviation from labeled pixels in g while the term

Be(fivrgn — figk)
Z Wik || By(figrie — fijn)
0,5,k 5t(fz‘,j,k+1 - fi,j,k) 9
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penalizes large depth gradients in f. The balance between these terms is controlled by the
parameter f.

The parameter w is a matrix with a non-negative weight for each pixel. The weight w; ; x
determines how heavily the gradient at f; ;; is penalized. To choose w we followed the principle
that neighboring pixels with similar colors or intensities are likely to belong to the same surface
and thus be at similar depths. Conversely, neighboring pixels with very different colors or
intensities likely belong to different objects and thus could have very different depths.

Bz, By, and B are global weights applied to the component of the gradient in z,y, and
t dimensions, respectively. The [ parameters allow changes in depth in certain dimensions
to be weighted more (or less) heavily. Empirically, setting f; less than £, and S, improves
performance. This makes sense given that moving a single frame typically makes more of a
difference to depth than moving a single pixel.

5 Details of Technical Solution

Our optimization problem is extremely high dimensional, since a video contains millions of
pixels and we estimate a depth for every pixel. There is no generic solver for convex opti-
mization problems capable of solving our problem in a reasonable amount of time. Hence, we
implemented a custom solver for our problem based on the work by Chan et al. (2011) [2].
Like Chan et al., our solver uses an iterative algorithm where each iteration runs in O(n logn).
Here n is the total number of pixels in the video. This runtime is an important distinction of
our algorithm, since a generic convex optimization algorithm would run in O(n?) or O(n?) [2].
We obtain an O(nlogn) runtime per iteration by exploiting special structure in our problem.

5.1 The ADMM Algorithm

Our algorithm uses the Alternating Direction Method of Multipliers (ADMM). ADMM is an
iterative method designed for convex optimization problems too large for standard interior point
methods [1].

ADMM solves problems of the form

minimize f(x) + g(z)
subject to Ax + Bz =c¢

where f, g are convex functions. ADMM operates on the so-called augmented Lagrangian

Ly(z,2,y) = f(z) + g(z) + y" (Az + Bz — ¢) + (p/2) | Az + Bz — ¢|;
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where y is the dual variable. ADMM consists of the following algorithm:
Data: A,B.c
Result: Primal optimal z, z and dual optimal y
Initialize (@, 2(0) /).
while The stopping conditions are not met do
2+ = argmin, L,(x, 2, y®);
2+ = arg min, L (x(k“ z,y™);
(k1) = o) 4 p(Ax (k+1) 4 Bz( +1
end

) o):

The initialization depends on the problem. ADMM will converge faster if it is initialized
near the solution.
The stopping condition is based on the L2 norms of the primal residual

rtD) = Ag*tD) 4 gD ¢

and dual residual
S(k—H) _ pATB(Z(k—H) . Z(k))

When [|7*+D||5 and ||s®*+1)||, are both small it indicates that ADMM is near the correct solution.

Boyd et al. [I] recommend using both a relative and absolute metric for measuring conver-
gence. Specifically, they suggest terminating when

HT,(kJrl)”2 < 6pri and Hs(k+1)H2 < edual
where

P =\ /pe™™ + € max {HAx(k)HQa 1Bz, llell2}
dual \/_eabs + 6ml”jélT ||

abs rel

p is the number of rows in A and n is the number of columns. ¢*”® and €™ are chosen based

on the desired accuracy and the problem scale.

5.2 Applying ADMM

To use ADMM we must reformulate our problem to match the ADMM standard form. Let
f e REXEXF Denote N = CRF. We define new variables r € R @) @) & ¢ RN,

Let vec(f) denote the vectorized version of f. Specifically, to vectorize f we flatten
each frame in row-major order and concatenate the frame vectors. We now define matrices
D,,D,, D, € RN*N D, Dy, D, are forward shift operators in the z,y, and ¢ dimensions re-
spectively. [D,vec(f)]; is the difference between the depth at the pixel one space forward in
x from pixel ¢ and the depth at pixel i. [D,vec(f)]; and [D;vec(f)]; are defined similarly.
Formally, if pixel ¢ occurs at location z, vy, t:

[Dyvec(f)]; = f(z +1mod C,y,t) — f(z,y,2)
[Dyvec(f)]i = f(z,y +1mod R, t) — f(z,y,2)
[Dtvec(f)]’i = f(x7y7t+ 1 mod F) - f(l’ay,Z)
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We use periodic boundary conditions, meaning that for pixels on the boundaries of f we
look at the depth difference between that pixel and the next pixel in the flattened version of f.
For example, if x = C' — 1 we look at the difference

f(x+1mod C,y,t) — f(x,y,2) = f(0,y+ 1,t) — f(z,y, 2)

These boundary conditions are not natural, but they are necessary for the matrices D,, D,, D,
to be block-circulant. A matrix is defined as block-circulant if every kth column of the matrix
is the first column rotated k — 1 steps forward. Visually the matrix has the form below

Co Ch—1 ... C
C1 Co ... G
Co C1 ... C3
Ch—1 Cp—2 ... Cp

Let ¢ be the first column of a block circulant matrix C'. Multiplying a vector z by C' is
equivalent to a circular convolution of ¢ with x [3]:

Cr=c*zx

In the Fourier domain, circular convolution is equivalent to elementwise multiplication. Thus
applying the discrete fourier transform operator F,

Flexx) = Flc)- F(x)

Remark 5.1. We can thus use the DFT to solve linear equations C'r = b where C' is a block-
circulant matrix in time O(nlogn). Observe,

F(b
T = J’_'fl ( )
F(c)
Returning to our formulation of the optimization problem, we make two more definitions to
simplify notation

w® D,
u= |uW |, D= D,
u® D,

subject tor = f — g
u = Dvec(f)
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The augmented Lagrangian is
u(m)
Lp(f,u,r,y, = U Z |r13k|+zw$ Z(y) —ZTVGC(T—f+g>

(i,5,k)eE )
2

+(p/2) |vec(r — f + g)ll; — y" (u — Dvec(f)) + (p/2) |u — Dvec(f)];

(z)
Y
where y = [y | € RN,z € RN are dual variables.
(t)
Y

5.3 Computing ADMM Iterations

We now explain how we compute each iteration of ADMM. The structure of our problem allows
us to compute each step of the iteration in at most time O(nlogn) where n is the number of
pixels in the video. Without taking advantage of structure, an iteration would take time O(n?),
which is far less feasible given that we have millions of pixels.
For our problem the ADMM algorithm takes the following form:
Data: g
Result: Primal optimal f, u,r and dual optimal y, z
Initialize f(© = g,u® = Dvec(g),r® = 2 =y = 0;
while The stopping conditions are not met do
u*) = arg min, Lp(f(k),u, r®) y®) R,
r+1) = arg min, L (f(k (k1) () (R
f(k+1 = argmin; L (f u(k+1) r(k+1) y(k) (k));
YO =y — p(uH) — Dyec( f0-+D))
20+ = 20 pyec(r(+D) — fD 4 g).
end

Initializing f© = g,u® = Dvec(f©),r® = f© — g = 0 is useful because starting ADMM
near its eventual solution decreases the number of iterations needed. There is no obvious
starting estimate for the dual variables, so we initialize them to 0.

We next explain how the u,r, and f updates are computed.

5.3.1 u update
Recall the u update is the solution to the problem
o
u = arg minz wi || u!? || —y"(u— Dvec(f)) + (p/2) |lu — Dvec(f)||;

2

The u update can be expressed in closed form using the shrinkage formula defined by Li [4].
We define

1
0@ = B,D,vec(f) + —y@
p



Steven Diamond, Jessica Taylor 5 DETAILS OF TECHNICAL SOLUTION

with v®, v® defined analogously. We further define v € RN such that

o= e+ 0+ (00

for all 7.
Then for each pixel ¢ with gradient weight w; the updated value of ugx) is given by

. (@)
ul™ = max{vi — %,O} U
P (%

The updates for u? 4 are analogous.

At )

5.3.2 r update

Recall the r update is the solution to the problem

r=argming ) |rigul = 2Tvee(r — f +g) + (p/2) [lvec(r — f + g)ll;
(i,5,k)EE

For a pixel (i,7,k) ¢ E, the value r; ;, does not change. For a pixel (7,7, k) € E, a similar
shrinkage formula gives a closed form expression for the r update. We use ¢ to indicate the

index of (7, j, k) in the vectorized image.
. 1
- H, 0} - S1gn <fi,j,k — Gijk t+ —Ze)
p p

1
Tijk = max{ Jijk — Gijk + ;Ze

5.3.3 f update
Recall the f update is the solution to the problem

J = argmin(p/2) vee(r — f + 9)ll5 + (p/2) lu — Dvee(f)ll; +y" Dvec(f) + 2" vec(f)

The optimal f satisfies the normal equations

p(I + D" D)vec(f) = pg

p(I + Dy D, + Dy D, + D Dy)vec(f) = pg + (pr — z) + D" (pu — y)
Recall that D,, D,, D, are block-circulant matrices. This means D7, DZ, DT are also block
circulant. The identity matrix I is block circulant as well. Thus by Remark [5.1] we can solve

the normal equations in time O(nlogn) using the DFT operator F and the FFT algorithm.
Denote M = p(I + DI D, + D} D, + D] D;). Then applying F to Mvec(f) yields

F(Mvec(f)) = p(F(I) + F(Dy) - F(Dy) + F(Dy) - F(D,) + F(Dy) - F(Dy)) - F(vee(f))
F(M) - F(vec(f))
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Here F(I), F(DI), F(D,), etc., mean the DFT operator applied to the first column of each
matrix.
F (M) need only be computed once, before the ADMM loop begins. We use F(M) to solve

the normal equations

Mvec(f) = pg+ (pr — z) + D" (pu —y)
F(Mvec(f)) = F(pg + (pr — z) + D' (pu — y))
F(M) - F(vec(f)) = Flpg + (pr — 2) + DT (pu — y))
_ 1 (Flpg + (pr — 2) + DT (pu —y))
vec(f) = F ( F(M) )

5.3.4 Convergence

We use the stopping criteria described in Section with €2 = le* and € = le*. This is
different from the criteria used by Chan et al. [2]. Our stopping criteria results in more ADMM
iterations, but it corresponds much better to the accuracy of the ADMM solution. We were
still able to get convergence in relatively few iterations by scaling g so all entries were in [0, 1].

We used a consistent value of p = 1 rather than updating p each iteration as done by Chan
et al. [2]. We found that updating p prevented ADMM from converging.

6 Experiments

We tested this algorithm on a video also used in [2], specifically the “Horse” video found at
http://sp.cs.tut.fi/mobile3dtv/stereo-video/. We scaled the video down to be 180 by
120 pixels and used all 140 frames. We optimized over the 3.09 million variables in 980 seconds,
or 7 seconds per frame. As there is no ground truth provided for this dataset, qualitative com-
parison is necessary. We compare depth maps of a single frame of the video (original, OpenCV,
and our algorithm):

The smoothed depth map is much less noisy than the original depth map, containing clearly
defined regions of similar depth. Black pixels in the original depth map (representing unla-
beled pixels with no depth estimate) have been smoothed over with neighboring depth values,
improving accuracy.

Although it is difficult to show this in paper form, the depth maps are choppy when they
are not smoothed over time (only smoothed over pixel locations). Smoothing over time reduces
choppiness without sacrificing accuracy.


http://sp.cs.tut.fi/mobile3dtv/stereo-video/
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We also tried some alternative datasets. Specifically, we used stereo videos found at http://
hci.iwr.uni-heidelberg.de/Benchmarks/document/Challenging Data_for_Stereo_and_Optical_
Flow/, which do not contain ground truth. The algorithm performed well on some of these
videos but not others, mostly in line with how OpenCV’s algorithm did on these videos. It
performed relatively well on the CrossingCars video:

- PERRPN e s

Our algorithm succeeded in filling in black regions and handling occlusions over time. When
an occluded car becomes visible again, it maintains roughly the same depth that it had origi-
nally.

Additionally, we tried using the Indoor 1 dataset found at http://research.microsoft.
com/en-us/downloads/29d28301-1079-4435-9810-74709376bcel/ because this dataset con-
tained ground truth. Unfortunately, none of the frame-by-frame algorithms we tested produced
reasonable results on this dataset.

We tried algorithms other than OpenCV’s StereoBM, but none was very accurate for the
datasets we used. These algorithms were OpenCV'’s StereoSGBM, the MRF minimization-based
algorithm found at http://vision.middlebury.edu/MRF/code/, and the Microsoft Research
StereoMatcher package at http://research.microsoft.com/en-us/downloads/9bc7fd74-
5953-4064-9732-76405573aaef/default .aspx (with a patch from http://vision.middlebury.
edu/stereo/code/)). None of these algorithms produced reasonable depth maps for our datasets.

For a more quantitative evaluation, we downloaded depth maps from top-ranked algorithms
at http://vision.middlebury.edu/stereo/ and ran our algorithm on them. We counted
bad pixels in the same way the website does (proportion of non-occluded pixels that are more
than 4 intensity units away from the ground truth value) on the teddy image.

Algorithm | Original Bad Pixels | New Bad Pixels | Percent Change
TSGO 8.08980% 8.09342% 0.04485%
AdaptingBP 7.05619% 7.05075% -0.07714%
DoubleBP 8.30027% 8.30813% 0.09472%
ADCensus 6.21613% 6.19859% -0.28215%
CoopRegion 8.30994% 8.31539% 0.06550%

In general, smoothing made very little difference to the accuracy of the depth maps. This is
most likely because the output of the top algorithms is already relatively smooth.
7 Conclusion

Our improvements to the smoothing algorithm in [2] make it appropriate for use with OpenCV’s
depth maps. The algorithm succeeds in smoothing depth maps over space and time as long


http://hci.iwr.uni-heidelberg.de/Benchmarks/document/Challenging_Data_for_Stereo_and_Optical_Flow/
http://hci.iwr.uni-heidelberg.de/Benchmarks/document/Challenging_Data_for_Stereo_and_Optical_Flow/
http://hci.iwr.uni-heidelberg.de/Benchmarks/document/Challenging_Data_for_Stereo_and_Optical_Flow/
http://research.microsoft.com/en-us/downloads/29d28301-1079-4435-9810-74709376bce1/
http://research.microsoft.com/en-us/downloads/29d28301-1079-4435-9810-74709376bce1/
http://vision.middlebury.edu/MRF/code/
http://research.microsoft.com/en-us/downloads/9bc7fd74-5953-4064-9732-76405573aaef/default.aspx
http://research.microsoft.com/en-us/downloads/9bc7fd74-5953-4064-9732-76405573aaef/default.aspx
http://vision.middlebury.edu/stereo/code/
http://vision.middlebury.edu/stereo/code/
http://vision.middlebury.edu/stereo/
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as the original depth maps are reasonable. Our extensions to the algorithm handle unlabeled
pixels and improve performance around edges. We implement the ADMM algorithm, which
greatly improves performance to O(nlogn) per iteration, allowing entire videos to be smoothed.
Due to its quality and reasonable performance, our algorithm is appropriate for practical use
in smoothing noisy but relatively accurate depth maps. In particular, our algorithm works well
when only a small proportion of pixels (such as only pixels near edges) initially have depth
estimates and others are unlabeled.
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