Identifying Products in the Real World

Oliver Toole
toolebox@stanford.edu

Dave Dolben
ddolben@stanford.edu

Kevin Laube
kevlaube@stanford.edu

CS 231A Final Project
March 19, 2014

Abstract

The goal of this project is to successfully identify and locate products in photos by using
a classifier trained on images taken from the web. Additionally, the goal was for the process
to be mostly unsupervised; aside from setting up the data sets our algorithm had no prior
knowledge about the products in the images. To achieve this, we constructed training sets
consisting of multiple products. For each product in the training set, we included a vary-
ing number of images of the product taken from different viewpoints. We then used SIFT
features[1] to construct a set of frequently occurring features for each product. For classifi-
cation of new 1mages, we compared each SIFT descriptor in the input image to our trained

classifier and used a best matching algorithm to make a prediction.

Our algorithm was very successful on smaller image sets, and retained good accuracy
as the size of the set grew. We felt this small loss in accuracy was reasonable, given the
limitations of SIFT descriptors and training sets we could pull from the internet.

1. Introduction

Product identification offers many unique
challenges in the field of computer vision.
Typical methods include sliding window, lin-
ear classifiers, and other expensive methods.
We propose a method in which SIFT descrip-
tors for each product are collected from a
large set of training images, and used to lo-
cate and classify a product in a query image.

Our method is designed to be trained in
an unsupervised manner on a set of images
of a product. Ideally, the training set would
contain many images of the product from dif-
ferent angles, so that we can both capture
many views of the product and give our train-
ing algorithm multiple images to use to iden-
tify the object in question.

Each training set we used consisted of
a number of categories, each labeled with a

product (e.g. Coca-Cola can). Each category
had a number of images, similar across each
category. The goal was to find a relatively di-
verse set of products/images while avoiding
having two sets be overly similar. We also
created multiple data sets of different sizes,
both number of categories and number of im-
ages per category.

The final goal of the system is to take in
an input image and assign it a label corre-
sponding to the most similar category from
the training set. In this way, we will identify
the product that is in the input images.

2.1 Review of Previous Work

In the field of object identification and
classification, many new and exciting algo-
rithms attempt to increase accuracy, while
decreasing computational complexity. The
tradeoff between these two goals creates an

array of methods, which lend themselves
nicely to different types of problems. In our
case, we are attempting to locate and classify
products in a query image.

One of the most accurate object iden-
tification algorithms is the sliding window
method. A a heat map is generated, indicat-
ing where the object is likely to be located.
This heat map is very expensive, with compu-
tational complexity dependent on the size of
the image, the scale and angle of the object,
and the number of classes. Another shortfall
is that many products in the real world are
not rectangular in shape, which reduces the
accuracy of this method significantly.

The bag of words representation of an im-
age reduces computation by first clustering
key points, which can then be used in a clas-
sifier such as an SVM. The major shortfall
of this method is that locality of the object is
completely lost. We would also like a method
for which the location of the object in the
query image is recoverable.

2.2 Methodology

Our method’s advantages over those
stated in the previous section have al-
ready been mentioned. The sliding-
window/heatmap approach is expensive in
both training and testing, and while it might
provide higher accuracy, would not be suit-
able for fast lookup in a potentially real-time
scenario such as video.

The main shortcoming with the bag-of-
words approach is that it abandons orienta-
tion and location information about the ob-
ject in question. This makes it impossible
given the results to locate the object in the
test image. Also, it requires the creation of a
large dictionary of codewords via clustering,
which would require more fine tuning to do
in an unsupervised manner than our method.

3.1 Technical Summary

Before breaking down our technical ap-
proach to the problem, we will describe it at a
high level. We broke the problem of product
detection into two main subproblems:

1. Deciding how to train a classifer from a
set of training images.

2. Picking good metrics for making a pre-
diction given a new input image.

Our initial plan was to train a classifier cor-
responding to every label in our training set,
and make predictions based on minimizing
the prediction value across all classifiers on a
new input image. While this method showed
some promise, it didn’t result in the high ac-
curacy we were hoping for.

Our next plan was then to train one big
classifier, containing descriptor data from all
labels in our training set. With this new clas-
sifier, our prediction scheme was to match
each descriptor in the input image with its
best match in the classifier set, and make a
prediction based on which label received the
most votes in this manner.

This second method proved much more
successful, and we were able to achieve very
high success rates on smaller testing sets.
However, scalability was a bit of an issue with
larger data sets. The reasoning behind this
decreased accuracy will be discussed later.

3.2.1 Initial Approach

First, we would like to go into some de-
tails about our first classifier model and ex-
plain how its fallacies lead to the intuition
behind a better model. The training scheme
behind the classifiers worked as follows. For
a given data set, we would have K differ-
ent object labels, each of which came with
N images. For a given label i, classifier K;
would be trained by comparing all N im-
ages corresponding to label ¢ against each

other, for a total of w comparisons.

For each comparison, we would first extract
the SIFT keypoints and descriptors of each
image. We would then run the SIFT algo-
rithm to remove keypoints that didn’t pass
the SIF'T ratio test, and eliminate remaining
outliers via RANSAC. At this point, we
would be left with sets A = (a4, ag, ...a,) and
B = (b1, bs, ..., b,) of keypoints in the two im-
ages being compared. For each of these key-
points, we would then give it a vote. After all
w comparisons, we would then have a
histogram for each image, showing how many
votes each keypoint in the image received dur-
ing training. We would then keep a subset of
these descriptors for classifier K;, correspond-
ing to the descriptors with the most votes.

After all K classifiers were trained, the
model was ready to make predictions. For a
prediction, the SIFT keypoints and descrip-
tors were extracted from the input image Q).
Then the set of descriptors from () were com-
pared to each of the K classifiers. For each
descriptor d, in @, (where ¢ € {1...S} and
S is the number of descriptors in @), the al-
gorithm would find the descriptor dopt, g, in
classifier K; that was a minimal distance from
d, (measurement was based on L2 norm).
The prediction value for classifier K; would
then be Py = 3.7 ||doptyx, — dgl|2. The fi-
nal prediction for the image was then the la-
bel corresponding to the classifier with the
minimum value for P,.

Unfortunately, this method was only
marginally successful. It was able to achieve
70% accuracy on a smaller testing set but
was unable to do better then 40% on the
bigger sets. The biggest issue we saw was
that the prediction values P; were very sim-
ilar. This pointed to a shortcoming with
the sum of norms method that we were go-
ing for; it failed to produce enough variance

between similar keypoints and very different
keypoints.

3.2.2 Single Set Classifier

Our final algorithm design was to instead
train one classifier set, consisting of (descrip-
tor, label) pairs drawn from all images in
our training set. The new training scheme
was the same as the previous classifier, but
now all descriptors remaining after SIFT and
RANSAC were added to one single set, to
make our classifier C. One issue we were con-
cerned with was varying number of descrip-
tors from different labels. This was in part
due to different image sizes, but also due to
the lack of consistency in keypoints that pass
the SIFT and RANSAC metrics. To control
for these, we would allow at most ND de-
scriptors per image label in C'. Thus, C' would
contain at most ND x K elements, where K
is the number of labels in the training set.

For our new classification scheme, we
would begin with an input image (); and com-
pute its SIFT keypoints and descriptors. The
program then initializes a histogram H; with
K buckets, initially all set to 0. Next, the
program iterates through every descriptor d;
in); and finds the descriptor ¢; o, in C' that
minimizes ||¢; opt—d;||2. Considering the large
size of C, this lookup step had to be very ef-
ficient. To facilitate this, we used a k-d tree
structure to organize the descriptors in C.
Once we found c;op, wWe also knew the la-
bel corresponding to c¢;op. This label would
correspond to an index of H;, and we would
then increment the appropriate bucket by 1.
Thus, the prediction on image ¢ would be the
bucket of maximum size in H; after all de-
scriptors were examined.

3.2.3 Optimizing Classifier
Our new classifier initially performed at
least as well as the old classifiers on all

datasets, and even outperformed them in
some instances. However, there was clearly
a lot of tweaking to be done. The biggest
issue was the variable N D, which controlled
how many descriptors we allowed in our fi-
nal classifier. The variance in number of de-
scriptors obtained after SIFT and RANSAC
ran across different labels was huge; some la-
bels produced a couple hundred descriptors
while others produced thousands. This lead
to the idea of setting a ceiling on the num-
ber of descriptors we would allow in the final
classifier from any one label. Different values
of ND produced very different results as well;
too few and the model lost too much informa-
tion from training, too many and images with
more descriptors from training would tend to
dominate the predictions. This indicated the
optimal value for ND was a function of the
number of images per label, and to test this
theory we ran tests on multiple data sets with
different values for ND. These tests were
done on deterministic training and test sets,
so there was no random elements. Figure 1
below shows the results obtained.

Based on the results from testing, we set
different values for N D based on the number
of images per label in each data set.

Additionally, we tried a few different
schemes for summing up histogram votes.
Initially, we would just increment each bin
of the histogram by 1 every time the given

Training set | N=100 | N=300 | N=400 | N=500 | N=600 |N=1000|N=1500|N=3000
images 0.7 0.9 0.8 0.9 0.9 0.9 0.9 0.9
images_2 035 | 055 | 055 | 06 | 045 | 045 | 055 | 0.6
small_images | 0.3 | 0.53 | 0.69 | 0.77 | 0.69 | 0.77 | 0.77 | 0.77
table_images | 0.5 0.5 0.5 0.5 0.5 1 0.75 | 0.75

Figure 1: Different accuracies achieved with
different numbers of descriptors. Number of
images per label in each set increased from
top to bottom.

Figure 2: Example of the histogram showing
a correctly labeled goldish product.

index got a vote. Our next idea was to ap-
ply the SIFT ratio test to filter out less likely
matches. To do this, we compared the la-
bels of the 2 nearest neighbors found for each
descriptor d after the k-d tree search, my
and my. If ||[d — mqlla < .75 x ||d — mal|a,
we would conclude m; was a suitable match
and increment the appropriate bin in the his-
togram. Otherwise, we would throw out the
vote. This method improved our results sub-
stantially.

Additionally, we considered scaling the
value we would add to the histogram. The
intuition behind this was that certain descrip-
tors would be 'more indicative’ than others.
As an example, consider a prominent descrip-
tor on a Coca-Cola can. Intuitively, it seems
that this descriptor would receive many votes
when training the classifier, and would be
more indicative then others of a product be-
ing Coca-Cola. Thus, if this descriptor were
matched during training, we would increment
the appropriate bin of the histogram by a
larger value corresponding to the number of
times it remained after SIFT and RANSAC.
This optimization didn’t prove very effective,
but it didn’t hurt performance and did help
in some cases, so we decided to keep it.

3.2.4 GrabCut Segmentation
Once we have the final set of query im-

age descriptors, we can now identify the ob-

ject in the scene by using the GrabCut li-

brary from openCV. The idea is that after
SIFT and RANSAC find the best matches
in the query image, only those keypoints ly-
ing on the object contribute to its classifica-
tion. From there, we can estimate a bound-
ing box for the object based on the distri-
bution of the keypoints. Lets call the set
of valid keypoints in the query image S. In
our system, we calculate the centroid of the
points in S and call that ¢. We then cal-
culate the width and height of the semiaxes
of a bounding ellipsoid of the keypoints, h,
[. We pass in the ellipsoid defined these pa-
rameters (c+h/2,c-w/2), (c+h/2,c+w/2), (c-
h/2,c-h/2), (c-h/2,c+h/2) into the GrabCut
function, as an estimate of the object posi-
tion. With some certainty, we can claim that
the object roughly lies inside the ellipsoid,
and the background of the image is roughly
everything outside of the ellipsoid.

For correctly classified objects, this
method was suprisingly succesful. Complete
object segmentation occured in many cases,
specifically when the keypoints distributed
evenly around the object.

4 Experiments

After we ran a sufficient amount of deter-
ministic tests to tune our model, we ran more
exhaustive, non-deterministic tests on several
data sets. As a proof-of-concept, we wanted
to verify that we would get around 100% ac-
curacy when our training data set included
images from the test set. Unsurprisingly, we
had 100% accuracy on all sets with this test-
ing methodology.

Next we began the real testing phase. For
these tests, we removed one image from the
image sets corresponding to each label, and
put these images in a testing set. The re-
mainder of the images were placed in a train-
ing set, and a model was trained on this set.
Finally, we fed the testing images we had set

aside back in to the classifier to see the predic-
tion results. Some figures and explanations
are given below.

i1 o0 1 0 1 1 o 0O O 0D 0 1 0 O
012 o 0 OO0 O O OCODOCODODI1 D0 0
60112 1 o 0 0 0O O O O O O O O
000 015 00 0O O O O O O O O O
0o o0 013 00O O0CODODO0OD0O DD 2
12 0 2 0 2 0 0O OO O 2 2 0 1
001 0 0 0O 011 0 1 0 0 0 1 1 0
0o o 0 0O 0 D13 0O O 0 0 0O 1 1
0o o0 o0 1 0 3 7 1 0 2 0 1 0
0o 0 1 00 0 0 010 0 0 1 0 O
0o 00 00 0O 0 0 013 0 0 0 1
01 0 0 O0O0CO0OCODOODOO0OI14 0 0 O
04 00O OOCOODO 1 0 010 0 O
00 o 01 00 0 1 0 0 0 0 012 1
03 0o 2 1, 0 1 0 0 0O 1 0O O O 7

Figure 3: The confusion matrix above shows

the distribution of correct and incorrect
guesses after testing.
Data Set Accuracy
images 2 0.72
images 0.78
small_images D.77
table_images D.68

Figure 4: The results above were obtained
via non-deterministic testing on randomized
training /testing images

1000 1500 2000

Figure 5: Keypoints of test image matched
with training images of a Coca-Cola can.

100}

200

300

400

500

600

700+

800 F
0 100 200 300 400 500

Figure 6: Keypoints and estimated bounding
ellipse for Coca-Cola can.

Figure 7: Keypoints and estimated bounding
ellipse for HP Printer.

[

100}

200+

300+

400+

500

600 -

700+

800 |-
0 100 200 300 400 500

Figure 8: Final results showing segmented
image for Coca-Cola can.

Figure 9: Final results showing segmented
image for HP Printer.

5 Conclusions

Overall, we were very satisfied with the
performance of our classifier. It often
achieved 100% accuracy during testing, even
on the bigger data sets, and when correct the
histograms usually indicated a strong consen-
sus towards the correct label. We would
also like to discuss issues we see with the
scalability of our algorithm to much larger
data sets. Given the massive amount of time
training took, we didn’t run our algorithm
on datasets with more then 20 different la-
bels. However, even in the increase from 10
to 20 labels we noticed about a 10% drop in
accuracy. After looking at the results and the
images the classifier failed to recognize, a few
common themes emerged for areas where it
had trouble.

The first major issue was bad sets of train-
ing images extracted from the web. This was
easy to control for, but for our algorithm to
be able to recognize any object, it would need
to scrape images corresponding to millions of
product queries in an unsupervised manner
and train itself on those images. This removes
the long-term solution of manually combing
through scraped image results. We weren’t
able to come up with a great solution to this,

opting instead to take some pictures ourselves
or manually remove bad matches from web
data sets.

The next major area the classifier failed
in was products with mostly uniform color.
This pointed to a limitation of an algorithm
based solely on SIFT descriptors; it relies pri-
marily on differences in orientation and color
gradients. A more robust algorithm would
have to consider the shape of objects in an
input image, and consider a sufficient amount
of features to have different products cluster
in distinct locations in the feature space. Our
model was good at clustering for smaller data
sets, but SIFT features didn’t produce suffi-
ciently distinct clusters as the number of la-
bels in consideration increased.

References

[1] D. G. Lowe, Distinctive image features
from scale-invariant key-points. 1JCV,
Nov. 2004.

[2] Fischler, Bolles, Random sample consen-
sus: a paradigm for model fitting with
applications to image analysis and auto-
mated cartography. Magazine Communi-
cations of the ACM, 1981.

[3] The OpenCV Library Dr. Dobbs Journal
of Software Tools (2000) by G. Bradski

[4] Rother, et. al, "GrabCut - interactive
foreground extraction using iterated graph
cuts, (2004)

