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A Comparative Study of Color Edge Detection 
Techniques 
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Abstract—Edge detection has attracted the attention of many researchers and is one of the most important areas in low level 

computer vision. In recent years, the focus of edge detection has shifted from grayscale single component images to 

multicomponent color images that utilize the inter-spectral correlation of the neighboring color samples to eliminate color 

artifacts and increase the accuracy of edge detection process. This project presents the study of color edge detection based on 

vector order statistics operators. Variations are introduced in the vector order statistics color edge operator to improve noise 

performance and we demonstrate their ability to attenuate noise with added algorithm complexity. We present a performance 

evaluation framework to assess the quality of color edge detectors and compare it with the Canny edge detector which is the 

optimal edge detector used for grayscale images. The edge detectors are evaluated with subjective and objective tests using 

statistical indices by comparing it with human ground truth images extracted from the BSDS300 dataset. 

Index Terms—color edge detection, computer vision, vector techniques, performance evaluation  

——————————      —————————— 

1 INTRODUCTION

he capability to identify and segment edges along 
with texture regions in an image is critical to the anal-

ysis of natural scenes. It has been known for a long time 
that edges contain most of the information in an image 
while being represented far more compactly than the im-
age itself. For this reason edge detection is perhaps the 
most basic (and therefore most widely studied) problem 
in computer vision. It is theorized [1] to be the first step in 
contour detection and image segmentation, the partitioning 
of an image into meaningful regions, which can then be 
analyzed independently to recognize different parts of a 
scene, and hopefully the context of the scene as a whole. 
The subject of color image processing in computer vision 
has gained increasing attention recently because color 
images convey more information about objects in a scene 
than gray-scale images and this information can be used 
to further refine the performance of an imaging system. 
The multicomponent nature of a color image, however, 
adds considerable complexity to the processing system. 
One of the challenges facing color image processing is to 
extract the additional color information without incurring 
large complexity in the system. 

In monochrome images, an edge usually corresponds 
to object boundaries or change in physical properties of 
the image such as (illumination) luminance. In this sense, 
a color image (multi-spectral) contains more detailed 
edge information. Moreover, edge detection with mono-
chromatic images may fail in certain applications since no 
edges will be detected in monochrome images if neigh-
boring objects have different hue and saturation while 
their intensity values are same. Psychological research 
has concluded that color plays an important role in decid-
in object and scene contours in human visual system [2]. 
Since the capability to distinguish between different ob-

jects is crucial for applications such as object recognition 
image segmentation and scene understanding, the addi-
tional boundary information provided by color is of par-
amount importance. Color edge detection also outper-
forms monochrome edge detection in low contrast images 
[3]. There is thus a strong motivation to develop efficient 
color edge detectors that provide high quality edge maps. 
Numerous approaches of different complexities to color 
edge detection have been proposed. In this project we 
present the study of color edge detectors based on vector 
order statistics class [4]. It is important to identify their 
strengths and weaknesses in choosing the best color edge 
detector for an application. The major performance issues 
concerning edge detectors are their ability to extract edges 
accurately, their robustness to noise, and their computa-
tional efficiency. To provide a fair assessment, it is neces-
sary to have a set of effective performance evaluation 
frameowork. Though numerous evaluation methods for 
edge detection have been proposed, there has not been 
any standardized objective or subjective evaluation 
method. While objective evaluation can provide analytical 
data for comparison purposes, it is not sufficient to repre-
sent the complexity of the human visual systems. In most 
computer vision applications, human evaluation is the 
final step. Hence in this project, both types of evaluation 
methods are utilized for comparing various edge detec-
tors. 

We start with an overview of techniques used in mon-
ochrome edge detection in Section 2. The edge detector 
illustrated and described in this section is the Canny Edge 
Detector [5] which is the optimal edge detector and the 
most widely used for monochrome images. Section 3 
gives an overview of color edge detection techniques, 
where early approaches extended from monochrome 
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edge detection, as well as more recent vector space ap-
proaches and difference vector approaches [6] are ad-
dressed. Color edge detection based on vector-order sta-
tistics method [4] and a family of edge detectors based on 
this class is studied in detail in Section 4. Section 5 gives 
details of quantative performance evaluation procedure 
using BSDS300 [7] dataset for statistical evaluation of 
edge detectors. The evaluation results from both objective 
and subjective tests are listed in Section 6 followed by our 
conclusions in Section 7.        

2 MONOCHROME EDGE DETECTION 

In monochrome grayscale images, edges are commonly 
defined as sharp intensity discontinuities, as physical 
edges often coincide with places of strong illumination 
and reflection changes. Hence the most common method 
of edge detection in gray-scale images use some form of 
differential operators that detect intensity discontinuities. 
Another group of gradient-based edge operators locates 
an edge by finding the zero crossing of the second deriva-
tive of the image intensity function. The zero crossing 
carries the information about the local extremum of the 
first derivative and indicates a point of rapid change of 
the intensity function. By detecting zero crossings, edges 
of one pixel thickness can be obtained, which is hardly 
possible with the differential based methods. 

2.1 Canny Edge Detection Algorithm 

The Canny Edge Detector proposed by John F. Canny in 
1986 [5] is one of the most widely used image processing 
tools in computer vision for detecting edges in mono-
chrome images. The algorithm runs in 5 separate steps: 

1. Smoothing 

Images taken from a camera will contain some amount of 
noise. To prevent that noise to be mistaken for edges, 
noise must be reduced. Therefore the image is first 
smoothed by applying a Gaussian filter. The kernel of a 
Gaussian filter with a standard deviation of σ = 1.4 is 
shown in Equation (1) 
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2. Finding Gradients 

The Canny algorithm basically finds edges where the 
grayscale intensity of the image changes the most. These 
areas are found by determining gradients of the image. 
The gradient of the image f(x,y) can be computed by con-
volving it with the first derivative of the the Gaussian 
filter used in step 1 in x and y directions as given by equa-
tion (2) and (3) 








 








 


2

22

2 2
exp),(),(



yxx
yxfyxf x

 (2) 








 








 


2

22

2 2
exp),(),(



yxy
yxfyxf y

 (3) 

The gradient magnitudes (also known as the edge 
strengths) can then be determined as a Euclidean distance 
measure as shown in Equation (4). It is sometimes simpli-
fied by applying Manhattan distance measure as shown 
in Equation (5) to reduce the computational complexity. 
The Euclidean distance measure has been used in our 
implementation. 
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Image of the gradient magnitude often indicate the edges 
quite clearly. However, the edges are typically broad and 
thus, do not indicate exactly the orientation of the edge. 
To determine this, the direction of the edges must be 
computed as shown in Equation (6). 
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3. Non-Maxima Suppression 

The purpose of this step is to convert the “blurred” edges 
in the image of the gradient magnitudes to “sharp” edges. 
Basically this is done by preserving all local maxima in 
the gradient image, and deleting everything else. The al-
gorithm for each pixel in the gradient image is: 

a. Round the gradient direction to nearest 45 
degree corresponding to the use of 8-
connected neighborhood. 

b. Compare the edge strength of the current 
pixel with the edge strength of the pixel in 
the positive and negative gradient direction, 
i.e. if the gradient direction is north (Theta = 
90 degree), compare with pixels in north and 
south.  

c. If the edge strength of the current pixel is 
largest; preserve the value of the edge 
strength. If not, suppress (i.e. remove) the 
value. 

4. Min-Max Thresholding 

The edge-pixels remaining after the non-maximum sup-
pression step are (still) marked with their strength pixel 
by pixel. Many of these will probably be true edges in the 
image, but some may be caused by noise or color varia-
tions for instance due to rough surfaces. The simplest way 
to discern between these would be to use a threshold, so 
that only edges stronger that a certain value would be 
preserved. The Canny edge detection algorithm uses 
minmax thresholding. Edge pixels stronger than the max 
threshold are marked as strong; edge pixels weaker than 
the min threshold are suppressed and edge pixels be-
tween the two thresholds are marked as weak. 
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5. Hysteresis Edge Tracking 

Strong edges are interpreted as “certain edges”, and 
can immediately be included in the final edge image. 
Weak edges are included if and only if they are connected 
to strong edges. The logic is of course that noise and other 
small variations are unlikely to result in a strong edge 
(with proper adjustment of the threshold levels). Thus 
strong edges will (almost) only be due to true edges in the 
original image. The weak edges can either be due to true 
edges or noise/color variations. The latter type will prob-
ably be distributed independently of edges on the entire 
image, and thus only a small amount will be located adja-
cent to strong edges. Weak edges due to true edges are 
much more likely to be connected directly to strong edg-
es. Edge tracking is implemented by grouping the edge 
pixels into a group of 8-connected neighbourhood. The 
group that contains atleast one strong edge pixel is pre-
served, while other groups are suppressed. 
 

Figure 1 shows the output of various stages of the 
Canny edge detection algorithm applied on the mono-
chrome (luminance) component of a color image taken 
from the BSDS300 dataset. 
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Fig. 1. (a) Original image 12003.jpg (481x321) from BSDS300. (b) 
Gray-scale Gaussian filtered image (c) Gradient of the Gaussian 
filter output. (d)Norm of the Gradient. (e) After non-maxima suppres-
sion and hysteresis tracking (f) Ground truth image. 

3 OVERVIEW OF COLOR EDGE DETECTION 

TECHNIQUES 

3.1 Techniques extended from monochrome edge 
detection 

In a monochrome image, an edge is defined as an intensi-

ty discontinuity. In the case of color images, the addition-
al variation in color must also be considered. Early ap-
proaches to color edge detection are extensions of mono-
chrome edge detection. These techniques are applied to 
the three color channels independently and then the re-
sults are combined using certain logical operation. Several 
standard techniques can be applied in this way [8]. One of 
the representative classes of edge detection is the Sobel 
operator. It can be realized by convolving the image with 
the following two convolution masks: 
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These two masks are applied to each color channel inde-
pendently and the sum of the squared convolution gives 
an estimated gradient in each channel. A pixel is regarded 
as an edge point if the maximum of the gradient magni-
tude values in the three channels exceeds a predeter-
mined threshold. 

Another operator that can also be used in a simi-
lar fashion is the eight-neighbor Laplacian operator [8]. 
The Laplacian convolution mask is defined as follows: 
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Again, the Laplacian mask is applied to the three color 
channels independently and edge points are located by 
thresholding the maximum gradient magnitude. 

Another group of edge detectors commonly used 
in monochrome edge detection is based on second deriva-
tive operators, and they can also be extended to color 
edge detection in the same way. A second derivative 
method can be implemented based on the preceding op-
erator. The Mexican hat operator uses convolution masks 

generated based on the negative Laplacian derivative of the 

Gaussian distribution: 
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Edge points are located if zero-crossing occur in any one 
color channel. 

One common problem with the preceding ap-
proaches is that they failed to take into account the corre-
lation among the color channels, and as a result, they are 
not able to extract certain crucial information conveyed 
by color. For example, they tend to miss edges that have 
the same strength but in opposite direction in two of their 
color components. Consequently, the approach to treat 
the color image as vector space has been proposed. 

3.2 Vector Space Approach 

Various approaches proposed consider the problem of 
color edge detection in vector space. Color images can be 
viewed as a 2-D three-channel vector field [9], which can 
be characterize by a discrete integer function f(x,y). The 
value of this function at each point is defined by a 3-D 
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vector in a given color space. In the RGB color space, the 
function can be written as f(x,y) = (R(x,y), G(x,y), B(x,y)), 
where (x,y) refers to the spatial dimensions in the 2-D 
plane. Most existing edge detection algorithms use either 
first or second difference between neighboring pixels for 
edge detection. A significant change gives rise to a peak 
in the first derivative and zero-crossing in the second dif-
ference, both of which can be identified fairly easily. 
Some of these operators are considered in the following. 

3.2.1 Vector Gradient Operators 

The vector gradient operator employs the concept of a 
gradient operator [10], except that instead of scalar space 
the operator operates in a 2-D three-channel color vector 
space. There are several ways of implementing the vector 
gradient operator. One simple approach is to employ a 3 
x 3 window centered on each pixel and then obtain eight 
distance values (D1, D2,..., D8) by computing the Euclide-
an distance between the center vector and its eight neigh-
boring vectors. The vector gradient Γ is then chosen as 
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Another approach called vector directional gradient em-
ploys directional operators [11]. Let the image be a vector 
function f(x,y) = (R(x,y),G(x,y),B(x,y)), and let r, g, and b 
be the unit vectors along the R, G, and B axes, respective-
ly. The horizontal and vertical directional operators can 
be defined as: 
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Then the maximum rate of change of f and the direction 
of the maximum contrast can be calculated as: 
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Edges can then be obtained by thresholding [F(θ)]1/2 . This 
approach of vector gradient operator was further extend-
ed by Ruzon and Tomasi [12] in their compass operator, 
where it was assumed that edges occur when there are 
local statistical differences in the distribution of color im-
age samples. To locate edges, a circular operation mask, 

called a compass, which measures the difference between 
the distributions of the pixels between two halves of a 
circular window, is utilized. The orientation producing 
the maximum difference is the direction of the edge, and 
the difference between the distributions yields a measure 
of the edge strength.  

Unlike the gradient operator extended from the 
mentioned monochrome edge detection, the vector gradi-
ent operator can extract more color information from the 
image because it considers the vector nature of the color 
image. On the other hand, the vector gradient operator is 
very sensitive to small texture variations. This may be 
undesirable in some cases since it can cause confusion in 
identifying the real objects. The operator is also sensitive 
to Gaussian and impulse noise. 

3.3 Difference Vector Operators 

The class of difference vector operators [6] can be viewed as 
first derivative like operators. This group of operators is 
extremely effective from the point of view of the compu-
tational aspects. In this approach, each pixel represents a 
vector in the RGB color space, and a gradient is obtained 
in each of the four possible directions (0, 45, 90, and 135 
degree) by applying convolution kernels to the pixel 
window. Then a threshold can be applied to the maxi-
mum gradient vector to locate edges. The gradients are 

defined as: 
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where ||.|| denotes the L2 norm, and X and Y are three di-
mensional vectors used as convolution kernels. The varia-
tions in the definitions of these convolution kernels give 
rise to a number of operators. 
The basic operator of this group employs a 3 x 3 window 
involving a center pixel and eight neighboring pixels. Let 
each pixel denote v(x,y), and the convolution kernels for 
the center pixel v(x0 ,y0) in all four directions are defined 
as: 
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This operator requires the least amount of computation 
among the edge detectors considered so far. However, 
like with the vector gradient operator, the difference vec-
tor operator is also sensitive to impulsive and Gaussian 
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noise [6]. As a result, more complex operators with subfil-
tering are designed. A larger window size is required in 
this case to allow more data for processing. Although 
there is no upper limit on the size of the window, usually 
a 5 x 5 window is preferred since the computational com-
plexity is directly linked to the size of the window. In ad-
dition, when the window becomes too large it can no 
longer represent the characteristics of the local region. 

4 VECTOR ORDER STATISTICS OPERATORS 

4.1 Introduction 

One important family of operators for image processing is 
based on order statistics [4]. It has played an important 
role in monochrome image processing and it is also ex-
tended to color image filtering and edge detection. This 
approach is inspired by the morphological edge detectors 

that have been proposed for the monochrome images. 
This class of color edge detectors is characterized by line-
ar combinations of the sorted vector samples. Different 
sets of coefficients of the linear combination give rise to 
different edge detectors that vary in performance and 
efficiency. The primary step in order statistics is to ar-
range a set of random variables in ascending order ac-
cording to certain criteria. In color space, since we are 
dealing with 2-D, multichannel variables, there is no uni-
versal way of defining an ordering. A number of ways 
have been proposed to perform multivariate data order-
ing [13] and they can be classified into marginal ordering 
(M-ordering), reduced aggregate ordering (R-ordering), 
partial ordering (P-ordering), and conditional ordering 
(C-ordering). In M-ordering, the ordered vectors do not 
co respond to the original vectors, and P-ordering is diffi-
cult to implement for digital image processing. C-
ordering considers only one color component. R-ordering 
is hence more appropriate for color image processing. R-
ordering reduces each multichannel variable to a scalar 
value according to a distance criterion. 

Let the image vectors in a window W denote Xi, 
i=1,2,...,n and D(Xi ,Xj) be a measure of distance between 
vectors Xi and Xj . The reduced scalar quantity associated 
with Xi is defined as 
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In the ordered sequence, X(1) is the vector median and 
vectors appearing at high ranks are referred to as outliers 
because they diverge the most from the data population. 
 

4.2 Edge Detectors 

The vector range (VR) edge detector is the simplest color 
edge detector based on order statistics. It expresses the 
deviation of the vector outlier in the highest rank from the 
vector median in W as follows: 
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where VR is small in a uniform area since all vectors are 
close together, and it gives large output when discontinu-
ities exist. Edges can be obtained by thresholding the VR 
outputs. 

The VR detector, though simple and efficient, is sen-
sitive to noise, especially to impulsive noise. It will re-
spond to a noise pixel at the center of W with n pixels. To 
improve noise performance, a more general class of oper-
ators, vector dispersion edge detector (VDED), is defined 
as a linear combination of the ordered vectors: 
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where ||.|| denotes the appropriate norm. Note that VR is a 
special case of VDED with α1 = -1, αn = 1 and αi = 0, i =2,..., 

n-1. The preceding equation can be further generalized by 
employing several sets of coefficients and combining the 
resulting vector magnitude in a suitable way. 
The coefficients can be chosen in a way to attenuate noise. 
One proposed class of operator is the minimum vector 
dispersion (MVD) detector, and it is defined as: 
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The choice of k and l depend on n, the size of W. These 
two parameters control the trade-off between complexity 
and noise attenuation. This more computationally in-
volved operator can improve edge detection performance 
in the presence of both impulsive and Gaussian noise. By 
their nature, impulsive noise differs from the rest of the 
pixels by a large amount. Therefore, after ordering, the 
impulsive noise pixels have the highest ranks, X(n-k+2), X(n-

k+3)...,X(n). Since the distance between these noise pixels 
and the rest of the pixels are large, Equation (30) can be 
reduced to the form stated above. Notice that none of the 
noise pixels appears at this equation, and thus would not 
affect the edge detection process. The MVD is also robust 
in Gaussian noise due to the l-points average term. 
 An alternative design of the generalized VDED 
operators utilizes the adaptive nearest-neighbor (NN) 

filter. The coefficients are chosen to adapt to local image 
characteristics. Instead of constants, the coefficients are 
determined by an adaptive weight function for each win-
dow W. The operator is defined as the distance between 
the outlier and the weighted sum of all the ranked vec-
tors: 
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The weight function wi is determined adaptively using 
transformations of a distance criterion at each image loca-
tion and it is not uniquely defined. There are two con-
straints on the weight function: 
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1. Each weight coefficient is positive, wi > 0. 
2. The weight function is normalized,  
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Since the operator should also attenuate noise, it is im-
portant to assign a small weight to the pixels with high 
ranks i.e. outliers. A possible weight function can be de-
fined as follows: 
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One special case for this weight function occurs in highly 
uniform areas where all pixels have the same distance. 
The preceding weight function can not be used since the 
denominator is zero. Since no edge exists in this area, the 
difference measure of NNVR is set to zero. 

The MVD operator can also be incorporated with the 
nearest neighbor filter to further improve its performance 
in the presence of impulse noise as follows: 
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A final annotation on the class of vector order statistic 
operators concerns the distance measure D(Xi ,Xj). By 
convention, the Euclidean distance measure L2 norm is 
adopted. The use of L1 norm can also be considered be-
cause it reduces the computational complexity by compu-
ting the absolute values instead of squares and square 
root, and it shows no notable deviation in performance. A 
few other distance measures can also be considered in the 
attempt to locate an optimal measure, namely, the Man-
hattan distance metric, the Canberra metric, the 
Czekanowski coefficient, and the angular distance meas-
ure. 

5 QUANTATIVE PERFORMANCE EVALUATION 

PROCEDURE 

There are two schools of thought with regards to the 
evaluation of computational vision algorithms in general. 
The first maintains that vision algorithms should be eval-
uated evaluated in the context of particular task as sug-
gested by [14]. In the context of edge detection and other 
low-level vision tasks this translates to measuring how 
much a particular algorithm contributes to the success of 
higher-level procedures that carry out the low level oper-
ation, for example, image segmentation and object recog-
nition. 

The second school of thought holds that vision 
algorithms can be evaluated in terms of their performance 
with regard to some suitably defined ground truth data 
as described by [15]. In this project we adopt this latter 
philosophy, and present the results of evaluating the per-
formance of the edge detection algorithms described 
above on a set of real and synthetic images for which the 
ground truth is known. This has been made possible by 
the introduction of the Berkeley Segmentation Database 

(BSDS300) [7]. 
The current public distribution of the BSDs300 

contains 300 colour images of size 481 × 321 pixels. For 
each of these images, the database provides between 4 
and 9 human segmentations in the form of label maps. 
The segmentations are provided separately for the gray-
scale and colour versions of each image, and the complete 
database is split in two sets. A training image set consist-
ing of 200 images and their corresponding segmentations, 
and a testing data set consisting of the remaining 100 im-
ages and their human segmentations. The BSDS300 was 
originally designed for evaluation of image segmentation 
algorithms. Since edge detection or boundary marking is 
an essential part of the heriarchical image segmentation 
algorithms, we can derive the ground truth data for edge 
detection from the human segmentation label maps avail-
able in this data set as described in the next sub-section.  

Apart from the BSDS300, we also included a few 
machine generated synthetic images that particularly 
used different gradient of colors in the image segments to 
effectively evaluate the performance of the color edge 
detectors. 

5.1 Extracting Ground Truth Edges from Human 

Segmentation 
The segmentations from the human ground truth data 

in the BSDS300 are stored as labeled images where pixels 
within the same region have identical labels. To extract 
the edges from the labeled images we could, as a first ap-
proach, simply mark as an edge any pixels that have a 
neighbor with a different label. This, however, yields 
edges that are two pixels thick. Thick edges create two 
problems. First, very thin or very small regions will dis-
appear altogether, having been replaced by solid clusters 
of edge pixels within which the region-structure of the 
image is lost. Secondly, thick edges complicate the match-
ing procedure between the edge detection algorithm and 
ground truth data and are likely to introduce unwanted 
artifacts in the resulting performance parameters (e.g pre-
cision/ recall scores). We could also attempt to mark pix-
els uniformly on one side (e.g. to the left and above) of 
edge boundaries but this also introduces artifacts. 

To eliminate these problems, we first generate edge 
maps that have twice the resolution of the segmentations. 
In these higher-resolution images, edges can be accurately 
localized to lie between the pixels corresponding to the 
original regions in the low resolution segmentation. The 
procedure for generating the super-sampled edges is 
simple: We super-sample each individual region in the 
original segmentation and find its edge in the higher reso-
lution image. The final edge map is then formed by 
down-scaling the super-sampled image. Figure 2 shows 
segmentation, the boundaries extracted by marking as 
boundary any pixels that have neighbors with a different 
label, the super-sampled edge map and the downsampled 
edge map that is used as the final ground truth image. 
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(a) (b) 

(c) (d) 

Fig. 2. (a) Original image BSDS300 385028.jpg (481x321). (b) Seg-
mentation labels as given by human annotation (c) Edges generated 
by marking every pixel that has at least one neighbour with a differ-
ent label (superscaled edges are 2 pixels thick). (d) Down-sampled 
(481x321) image. Edges are now more accurately localized. 

5.2 Performance Parameters 

Comparison of an edge map, obtained by the edge detec-
tion algorithm, to its ground truth map is achieved by the 
measurement of the statistical parameters of the matching 
algorithm. These statistical parameters include metrics 
such as the number of correctly detected edge pixels, 
called Total Positives (TP), the number of pixels errone-
ously classified as edge pixels, called False Positives (FP), 
the amount of edge pixels that were not classified as edge 
pixel, called False Negatives (FN) and the Precision and 
Recall scores. From these measures, we compute the fol-
lowing statistical metrics: 

The percentage of pixels that were correctly detected 
(Pco): 

),max( BI

co
NN

TP
P   (34) 

 
where NI represents the number of edge pixels of the 
ground truth image and NB represents the number of 
edge pixels actually detected by the algorithm. 

The percentage of pixels that were not detected, 
i.e. the percentage of false negatives (Pnd): 

),max( BI

nd
NN

FN
P   (35) 

 
The percentage of pixels that were erroneously detected 
as edge pixels, i.e. the percentage of false positives (Pfa): 

),max( BI

fa
NN

FP
P   (36) 

 
Precision is defined as the proportion of edge 

pixels in ground truth image for which we can find a 
matching edge pixel in the edge detected output im age, 

BN

TP
PR   (37) 

 

In a similar way, Recall is defined as the proportion of 
pixels in edge detected output image for which we can 
find a suitable match in the ground truth image, 

IN

TP
RC   (38) 

The figure of merit of Pratt [16] is another useful measure 
for assessing the performance of edge detectors. This 
measure uses the distance between all pairs of points cor-
responding to quantify, with precision, the difference 
between the edges. The figure of merit is defined as: 
 


 


BN

i iBI dNN
FOM

1
2

1

1

),max(

1


 (39) 

 
where NI and NB are the points of edges in the edge de-
tected image and ground truth image, respectively, di is 
the distance between a edge pixel and the nearest edge 
pixel of the ground truth and α is an empirical calibration 
constant and was used α=1/9, optimal value established 
by Pratt [16]. The figure of merit of Pratt’s FOM is an in-
dicator of the quality of edge, and reflects the overall be-
havior of the distances between the edges, being a relative 
measure, which varies in the range [0, 1], where 1 repre-
sents the optimal value, i.e., the edges detected exactly 
coincide with the ground truth. 

5.3 Matching Strategy 

To compute the statistical parameters described 
above, we need a method for determining correspond-
ence between edge pixels in the ground truth image and 
the corresponding output image of edge detection algo-
rithm. We used the following steps in the matching strat-
egy: 

a) Count the edge pixels in the edge detected out-
put image that exactly match with the ground 
truth image. These are correct identifications and 
are termed as True Positives. 

b) Eliminate the correctly identified edge pixels 
from the edge detected output image and the 
ground truth image. For the remaining edge pix-
els, count the edge pixels in the detected image 
that are at an Euclidean distance of sqrt(2) (i.e. 
close vicinity) from the ground truth edge pixel. 
These are the edge pixels that are just one pixel 
away from the ground truth edge pixel. These 
are locational errors and are termed as local posi-
tives. 

We take Total Positives as the sum of true positives and 
the local positives in our metric calculations. 

6 EXPERIMENTAL RESULTS AND OBSERVATIONS 

A total of 4 edge detection algorithms from the class of 
the vector order statistic operators are implemented and 
their performances are evaluated along with the Canny 
edge detector implementation. Table 1 provides a list of 
the 4 edge detectors. As stated above, we have used real 
images from the BSDS300 dataset that provide human 
ground truth edge data for experimentation. Apart from 
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these real images, we have used machine generated syn-
thetic images and some random images in the subjective 
and quantitative evaluation. 
 

Table 1 Edge Detectors for Evaluation 

Edge Detector Description 

Canny Monochrome edge detection 

VR VR operator (W:3x3) with L1 norm 

MVD MVD operator (W:3x3) with k=2, l=3 

NNMVD NNMVD operator (W:3x3) with k=3 

NNVR NNVR operator (W:3x3) 

 

6.1 Subjective Evaluation 

Figure 3 shows the application of the edge detection algo-
rithms from Table 1 on real image from the BSDS300 da-
taset along with its human ground truth edge data. Simi-
larly Figure 4 shows the response of edge detection algo-
rithms on a machine generated synthetic image. The sub-
jective evaluation of edge detectors can be based on sev-
eral criterions: ease in recognizing objects, continuity of 
edges, thinness of edges and performance in suppressing 
noise.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 3. (a) Original image 124084.jpg (481x321) from BSDS300. (b) 
Gray-scale image. (c) Human ground truth image. (d) Canny Edge 
Output. (e) VR Edge Output. (f) MVD Edge Output. (g) NNMVD 
Edge Output. (h) NNVR Edge Output.  

 
A few observations can be drawn from the visual inpsec-
tion of the edge maps produced from various edge detec-
tors applied to real and synthetic images: 

 The performance of Canny, NNVR and 
NNMVD edge detectors is same in the sense that 
they produce more or less similar edge maps. 
For large color variations NNVR and NNMVD 
perform better than Canny as seen in case of 
synthetic image (Figure 4) 

 VR and MVD perform superior as compared to 
the other edge detectors as they produce more 
prominent edges. The MVD edge detector pro-
duce thinner edges and is less sensitive to small 
texture variations because of the averaging op-
eration which smooths out small variations. 

 MVD edge detector is more sensitive to color 
variations and hence can produce edges with 
very small color gradients as well. This can be 
further controlled by properly choosing the 
threshold value. 

6.2 Statistical Evaluation 

As described in section 5.2, comparison of an edge map 
obtained by the edge detection algorithm, with its ground 
truth map is achieved by the measurement of the statisti-
cal parameters such as percentage of correctly detected 
edge pixels (Pco), percentage of erroneously classified 
edge pixels (Pfa), percentage of pixels not detected as 
edge pixels (Pfn), Precision and Recall scores and Pratt’s 
figure of merit (FOM). Table 2 and 3 gives the statistical 
parameters calculated for edge detection from real image 
and synthetic image. 
 

Table 2 Statistical Edge Parameters for 124084.jpg image 

Params Canny VR MVD NNMVD NNVR 

Pco 31.6% 24.5% 28.3% 22.6% 22.5% 

Pfn 68.4% 28.7% 42.0% 77.4% 77.5% 

Pfa 46.1% 75.5% 71.7% 36.4% 38.0% 

Precision 40.7% 24.5% 28.3% 38.3% 37.2% 

Recall 31.6% 46.1% 40.2% 22.6% 22.5% 

FOM 42.8% 50.2% 51.3% 32.6% 32.6% 

 
Table 3 Statistical Edge Parameters for synthetic image 

Params Canny VR MVD NNMVD NNVR 

Pco 40.1% 84.6% 82.3% 35.9% 40.2% 

Pfn 59.9% 2.5% 17.7% 64.1% 59.8% 

Pfa 3.0% 15.4% 0.3% 0.2% 0.3% 

Precision 93.0% 84.6% 99.7% 99.6% 99.3% 

Recall 40.1% 97.1% 82.3% 35.9% 40.2% 

FOM 39.7% 98.5% 82.5% 35.8% 40.0% 
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From the results in Table 2 and Table 3, few conclusions 
can be drawn: 

 For real color images, Canny and MVD edge de-
tectors have higher percentage of correctly de-
tected edge pixels as compared to VR, NNVR 
and NNMVD. 

 But at the same time VR and MVD has smaller 
Pfn scores which indicate that Canny edge detec-
tor has higher percentage of pixels that were not 
detected as true edges. 

 In terms of Pratt’s FOM, VR and MVD have bet-
ter scores among all the edge detectors since they 
both detect edge pixels that are closer to the real 
ground truth edge pixels. 

 For the synthetic color image with large color 
variation, VR and MVD has huge performance 
gain in terms of correctly detected edge pixels as 
compared to Canny, NNVR and NNMVD. 

 Moreover, MVD, NNVR and NNMVD have a 
very high precision score among all the edge de-
tectors while VR has the best FOM score. Clearly 
we observe that for color images with large color 
variation, color edge detectors give better quality 
performance as compared to monochrome edge 
detection techniques like Canny edge detector.  

For statistical evaluation we used L2 norm for all the dis-
tance calculations and a constant window size of 3 x 3. If 
computational complexity permits, then we can use a 
larger window size like 5 x 5 and some more accurate 
distance measures such as Canberra metric and angular 
distance measure.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 4. (a) Original synthetic image 20004.ppm (400 x 400). (b) Gray-
scale image. (c) Ground truth image. (d) Canny Edge Output. (e) VR 
Edge Output. (f) MVD Edge Output. (g) NNMVD Edge Output. (h) 
NNVR Edge Output.  

6.3 Noise Performance  

A number of edge detection experiments have been con-
ducted using various noise distributions at various noise 
levels to contaminate the test image. In each case, FOM 

has been measured and used as the performance criteri-
on. We considered Gaussian noise distribution, but other 
forms of noise corruption such as Gaussian Impulsive 
noise, exponential or correlated noise can also be used. 
For the corruption of the synthetic image, the noise pro-
cess in each channel has been considered as an independ-
ent process. While in case of real image, the noise process 
has been considered as a correlated process since there is 
some indication that this type of correlation may exist in 
real color images. The noise performance of the color 
edge detectors are shown graphically in Figure 5. The 
edge detection output on a BSDS300 real image corrupted 
with Gaussian noise is depicted in Figure 6. 
 

 
Fig. 5a. FOM plots of color edge detectors under noise corruption for 
synthetic image. 
 
A few observations can be made from the results : 

 The Canny, VR and NNVR edge detectors are 
very sensitive to Gaussian noise. As observed VR 
fires indiscriminately for Gaussian noise corrup-
tion since it just takes the difference between the 
first and the last vector sample in the ordered 
vector space. 

 Canny edge detector can produce better noise 
performance with added complexity by increas-
ing the variance σ in the Gaussian filtering stage. 

 MVD and NNMVD vector order statistics edge 
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detectors show more robustness in the presence 
of noise because of the inherent averaging opera-
tion in the design of these detectors. We can also 
confirm that noise performance improves with 
increase in the complexity of these edge detec-
tors, which are controlled by the two parameters 
k and l. 

 As observed from the FOM plots (Figure 5) of re-
al and synthetic color images, MVD edge detec-
tor has superior performance among all edge de-
tectors in various noise distributions.  
 

 
Fig. 5b. FOM plots of color edge detectors under noise corruption for 
real image. 
 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 6. (a) Original image 118035.jpg (481x321) from BSDS300 cor-
rupted with Gaussian noise. (b) Gray-scale image. (c) Ground truth 
image. (d) Canny Edge Output. (e) VR Edge Output. (f) MVD Edge 
Output. (g) NNMVD Edge Output. (h) NNVR Edge Output.  

7 CONCLUSION 

The problem of color edge detection has been studied 
using vector order statistics in this project. A family of 
color edge detectors based on vector order statistics has 
been proposed because these are effective with multi-
channel data and are computationally efficient. The de-
sign parameters of this class of edge detectors can be ap-
propriately choosen for better noise suppression at the 
cost of increasing complexity. The performance of all 
edge detectors was evaluated both subjectively and objec-
tively using various statistical parameters. The Minimum 
Vector Dispersion (MVD) color edge detector scores high 
points in objective tests and the edge maps produced by 
this edge detector are perceived favorably by human eyes 
under subjective evaluation. Different vision applications 
have different requirements on edge detection, and 
though some of the general characteristics of color edge 
detectors were addressed, it is still better to select edge 
detector that is optimum for a particular application.   
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