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Abstract 
 
We built an automatic facial database in which a person’s gender, facial characteristics 
and time of visit can be extracted and stored into the online database in real time. Such 
an application has the potential to increase in-store conversion rate in the retail sector. 
Based on this prototype system, further improvements could be made to develop a 
query system to push notifications to shop assistant’s mobile devices, instructing them to 
make appropriate discounts on the right product, to the right customer, at the right time, 
based on the customers’ visit and purchase history. The system is demonstrated to be a 
fast and storage efficient implementation, making use of a wide array of the popular 
methods in recognition, eigenface, fisherface and local binary pattern histogram. We 
compared, experimented, selected the best methods for the functions, and developed 
easy and effective mechanisms to achieve desirable system performance.  
 
 
Section 1: Introduction 
 
Recenlty, the offline retail sector has started to feel increasing pressure from online 
eCommerce. As the recent Forrester reports show, eCommerce will overtake the brick-
and-mortar store by 2014 in revenue [1]. There is a need for more innovative ways for 
the traditional retailers to offer more and attractive products and promotions based on 
customers’ preferences. The bottleneck is the low in-store conversion rate, and more, 
the inability to collect individual store visit – conversion data offline. We therefore 
propose a computer vision application that would extract the customers’ biological 
information like gender, and store the facial features in the database in a compact way to 
identify, in real-time, the customer’s visit pattern. The long-term goal would be (in future 
research) to use the database and real-time reporting, of an individual’s purchasing 
behaviors to promote individualized purchases. 
 
In our system, we would like to handle potentially tens and thousands of people’s 
images to be stored as facial feature values and compared against in the image 
database. And therefore, the real-time operations would define the system to have fast 
retrieval. 
 
Pre-processing the images; 
The images were preprocessed to be 165*120 sizes and later reduced even further by 
Principal Component Analysis (PCA). Grayscale images were used to reduce 1 
dimension from the original RGB images and also to make the images more invariant 
towards light; 
 
Tracking customers through reasonable estimate of speeds 
In our implementation, instead of using tracker algorithm to identify whether the person 
appeared in the video frame is the same one as before, we used reasonable estimation 
of shift in position, taking into account of the additional new faces into the view. With 
such a simple algorithm, the processing speed is fast, with tolerable level of error. 
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Pre-trained classifier like HaarCascade[2] 
We decided to use the pre-trained classifier in Opencv for facial detection, to avoid 
wasting efforts / time on acquiring massive amount of positive and negative images for 
training. The exact implementation details utilize the following three things: convolutional 
kernel in which one subtracts the difference of the feature and non-feature windows, 
AdaBoost in which a combination of weak classifiers give strong results and finally a 
cascade of those classifiers to fast locate the face position.  
 
Implementing the local binary pattern histogram in real-time facial recognition tasks[3] 
The local binary histogram is produced by an algorithm, which takes the local features of 
an image and binarizes it by comparing one with its surrounding neighbors. The 
implementation is about 5 times faster than Eigenface or Fisherface implementations as 
it does not have to project into subspaces or build a model from there. Again, this does 
not require much storage and the extended version we implemented in our project 
allowed us to only take 8 points to represent the local features.  
 
 
2.1 Review of previous work 
 
Facial Detection 
To detect faces serves as the first thing for facial recognition. Various ways to conduct 
facial detection within an image have been proposed. Template-matching [4-6] is used 
for face localization and detection by computing the correlations of an input image to a 
standard face pattern, the feature invariant approaches are used for feature detection [7-
8]. The appearance-based methods are used for face detection with Eigenface [9-10] 
neural network [11-13] and probabilistic Graph Matching [14-17] that uses declarative 
representation of the information learned from the face and making decisions. 
Nevertheless, it is hard to find one overarching implementation good for all requirements.  
 
The problem of facial detection and recognition has not been a new one since the 
1980s. However, it is only until the 2000s that faster detection algorithms have emerged 
with Viola and Jones [18] invented the Haar-based cascade classifier for object detection 
and it was further improved in 2002 when Lienhard and Maydt invented extended Haar 
features and personally wrote the HaarCascade feature classifier we used in our project 
[19]. This largely sped up the facial detection processes. The recent systems with Haar-
like features use the AdaBoost-based face detector by Viola and Jones demonstrated 
that faces can be fairly reliably detected in real-time i.e. more than 15 frames per second 
on 320 by 240 images with desktop computers) under partial occlusions [20]. Boosting is 
the method of combining the weak classifiers to form a strong classifier. In the later 
round of learning, AdaBoost finds the new weak classifier after re-weighing the training 
examples such that it emphasizes on the examples incorrectly classified by the previous 
weak classifier.  
 
 
Facial Recognition 
Facial Recognition is probably one of the most commonly used techniques in biometric 
applications. Though similar to the task requirements in facial detection, the recognition 
step uses more sophisticated algorithm and is largely dependent on light conditions. 
Several approaches have been proposed. For example,  
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- Eigenfaces takes the average of a mean face and then matches each and every 
face to the mean face before projecting all faces into a suitable subspaces [9-10];  

- neural network technologies[21] extract features from the entire face as visual 
contrast units, and quantify and normalize them before they could be fed into a 
large network to be learned;  

- dynamic link architecture[22] uses the methods to extend to the networks 
mentioned above, but it could memorize objects as sparse graphs and the edges 
gave information to the special location of the different features to be used;  

- automatic face processing[3] makes use of the fact that faces could be marked 
for similarity score with the simple distance calculatedl  

- and Fisherface, the last one and the most prevalent one[23], performs facial 
recognition task through maximizing the interclass distances through linear 
discriminant analysis (LDA) to achieve a good categorization result. 

 
Fisherface projects well-separated classes in a low-dimensional subspace, even under 
severe variations in lighting and facial expressions. The Eigenface technique, however, 
is not fit for making predications based on large variances of inter-class differences. 
Eigenfaces have intrinsic limitation including high sensitivity to lighting conditions, 
expressions, camera angles and head poses. Moreover, extensive experimental results 
demonstrate that the proposed “Fisherfaces” method has error rates that are lower than 
those of the Eigenface technique for tests on the Harvard and Yale Face Database.[24] 
 
The facial recognition tasks, in our project, are achieved using a combination of fisher, 
Eigen with a twist of local binary pattern histogram: recognize gender from a trained 
facial database through Eigen and Fisher implementations and then generate facial 
recognition by using compact histogram voting to represent the features within an image 
individually. In the first case, an efficient implementation with PCA+LDA [25] is used in 
this report and in the latter case, local binary pattern histogram with a tuned 8 bit (radius 
= 1,neighbor = 1 and grid space = 4) 
 
 
2.2 Our Contribution 
 
Our project focuses on innovation in practical application. The goal is to provide a fast, 
cheap and scalable system that can be used in real life. As a result, in the process, we 
researched, selected and developed various component solutions, while balancing the 
real world constraints on computing power, network traffic, cost and the need for 
accurate real time results. We tackled the following issues along the way: 
 
Facial tracking:  
The application project is intended for use in retail stores, where high foot traffic and 
constant unstructured human movements may be observed. We need to correctly 
identify a person’s initial visit time of one store visit, and differentiate that from the 
multiple appearance of the same person in consecutive frames.  For example, 
hypothetically, person A walks into the store and is captured by the camera at 00:00:00, 
and walks out of the camera coverage range at 00:00:20, and walks back into the 
camera range at 00:00:22, and finally leaves the store at 00:00:24. The system should 
ideally record only 1 visit by person A at 00:00:00. To achieve this result, there could be 
two options:  
- for each frame, we process the facial picture and report one visit event to the server. 

Server would check to see whether the same person’s multiple visit events are 
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within close timestamps. If two timestamps for the same person’s two reported visits 
are apart by a small amount, below threshold, we delete the later record 

- we track the face and only report a visit event when the face first appears in the 
series of consecutive frames. This solution would require comparing faces in two 
frames.  

 
The first option would mean high frequency of data upload and backend server 
calculation. This could be costly, especially if we have hundreds of front end cameras 
uploading 20 visit records / second into the same database, and requesting comparison 
across all recent records to identify same person. The second option would mean less 
data traffic, however require more front end algorithm to track the same faces. A 
complicated facial comparison algorithm run every frame would significantly slow down 
the real time processing and would require computing power, implying higher cost. Thus, 
we need a simple, light, front-end algorithm to track faces.  
 
The solution we ended up with includes two parts:  

a) we reduced the # frames / second, to reduce # facial frames / visitor, so that we 
do not have too many near identical frames without any new information (20/sec 
to 1/sec, see next section) 

b) we tested the following algorithm: if oldframe has no face and newframe has 
faces, we view these faces in the newframe as true new visits. If newframe has 
different number of faces than the oldframe, we try to find match among the 
faces based on relative positions of the centroids. Between two frames, if the 
centroids of the potential similar facial rectangles are close, we deem them as 
the same face. We observed satisfactory results from the algorithm, and thus 
adopted the solution. This would potentially yield errors and miss certain faces. 
However, the error would be reasonably tolerated, as long as the 
#frames/second is high enough.  

 
Gender detection:  
We have a few options to choose from for implementing gender detection. One decision 
is also on where to implement this – front-end at the camera, or back-end after the facial 
information has been extracted and uploaded. We reviewed the current gender detection 
methods / training sets available, and adopted the simple one that could be pre-trained.  
Given that we would like our system to be scalable (backend server handling hundreds / 
thousands of camera inputs at the same time), we tested the gender detection algorithm 
at the front end, and adopted it.  
 
information representation of the facial images 
 
We want to extract and store facial structures with the following criteria on the system: 
- Fast and simple process of extracting data from images – the real time nature and 

front-end computing power limitation mean that we cannot use a complicated on-line 
training method locally at the front end 

- Considering data storage cost, query cost and network traffic cost, we would like to 
minimize the amount of dimensions / size of data, representing each facial image. 
While the extreme case would be to store the entire image as a pixel-wise matrix / 
vector, we wanted to compress this as much as possible to use as few key values 
as possible.  
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We compared a few options, and eventually settled on the solution as described in the 
next section.  
 
 
 
3.1: Technical part: Summary of the technical solution 
 
Here is the layout of the system:  

 
Figure 1: layout of the system 
 
The Acquisition module 
This part consists of a webcam (C270 Logitech) that is able to capture the videos in 
frames. We have tested that the camera is able to capture and detect faces within a 
parameter of 5m accurately. 
 
The pre-processing module 
Here many algorithms could be in place to improve the accuracy and the real-time 
performance of the system. In our current prototype, we have chosen to use image size 
normalization function by giving the images similar shades of gray level and similar sizes 
to the training set. Also video frames are coming in from the video stream with a speed 
of about 20 frames per second from the camera and down-sample it to be 1 frame per 
second to be displayed on the screen. 
 
Human Tracking 
to identify whether or not an incoming customer’s information has been stored in the 
database within the 1 frame per second capture time, we implemented a simple human 
tracking algorithm to decide: if the person’s general location has shifted about ¼ of the 
overall bounding boxes, the object is a new person. Otherwise, he is not. We also take 
into consideration a completely new face and a disappeared face in the frame. This is to 
avoid comparing faces each time at the backend through the whole database system. 
  
The feature extraction module 
All the facial extraction includes the AdaBoost algorithm. The algorithm is used to select 
a specified number of weak classifier with lower error rate for each cascade and the 
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process is repeated until a set of optimization criteria (i.e. the number of stages, the 
number of features of each stage and the detection/false positive rates) is satisfied. 
 
The feature extracted is through the implementation of Voila Jones and the improved 
version in Lienhard’s paper. The information for the feature extraction is demonstrated 
below: 

 
Figure 2: HaarCascade Feature Masks 
 
Four edge features: 51664 
Eight line features: 55292 
Two Center-surrounded features: 9985 
 
The classification module:  
There are 2 classification tasks to be completed: gender recognition and identity 
recognition. For gender recognition, we used PCA+LDA, with the first 121 eigenvectors 
extracted and later on we conducted identity recognition with Local Binary Pattern 
Histogram(LBPH) with the distance function computed as the Chi-Squared distance and 
achieved high accuracy.  
 
Feature computation could be achieved with the following method: 
i. Compute a “distance” between the new one and each of the example faces; 
ii. Select the example image that is closest to the new one as the most likely known 

person; 
iii. If the distance to that face image is above a threshold, “recognize” the image as 

that person, otherwise, classify the face as an “unknown person”. 
 
Training set:  
In our project, we specially requested the AR Face Database, which contains about 
4000 faces categorized by female and male. Also the dataset has different conditions for 
each person to be tested, including frontal face, left light, right light, occlusion, 
moustache, etc. Also as the incoming picture is captured real-time, we are able to add 
the new faces into the database to be part of the training images. 
 
Face database: 
We implemented a very single backend with PHP and SQL. The database is hosted on 
HawkHost. The front-end algorithm would send each new facial / visit record to the 
server in json format. The PHP handler would store the visit info and update the facial 
profile database. For the next phase, we would like to have the backend conduct 
comparison among all profiles to determine whether the new visit record belongs to an 
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existing or new customer. We would also conduct test to eliminate duplicate visit records 
where timestamps are too close. Currently, the database conducts the basic functions by 
only storing the new visit / customer records (gender, timestamp, and facial 
representation). Also, theoretically, the database should store millions of facial features 
to be compared against in the future as mentioned above.  
 
 
Section 4: Experiments:  
 
Face Detection 
 

 
Figure 3: Facial Detection Unit at work 
 
The Facial Detection Unit is able to detect many faces at the same time and store the 
faces in the temporary folder before batch-processing and sending to the backend. 
 
 
Gender Recognition 
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Figure 4: Gender Recognition and Result (“1” represents female, whereas “0” will be 
male) 
 
We used the AR Face Dataset[26] with 240 base images, half female and half male. And 
by running detection with PCA+LDA described above, we first passed the images 
through PCA and obtained the following Eigenfaces. 
 

 
 

 
Figure 5: eigenface reconstruction and meanface. 
 
 
We kept the first 121 EgienValues out from the 49500 eigenvalues to achieve a 
reduction of dimension of 97% and to show that PCA+LDA indeed performs better with 
out implementation, we compared the ROC curve for PCA, LDA methods with the full AR 
face dataset available with occlusion, different lighting conditions. In order to simulate 
extreme conditions in-store, we chose the training set to be a small 240 frontal faces 
with only mile facial feature changes. The test images are the full 2400 images 
comprising of 100 individuals under all conditions (50 male and 50 female) shown below. 
 

 
Figure 6: Test Images for One Individual Under Different Conditions 
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Figure 7: Test Accuracy Rate as a result of the varying dataset sizes 
 
 
Identity Recognition 
 
Here we used the LBPH method that is very much invariant to lighting conditions as it 
only computes the local features encoded with one max pixel unit in the binary format. 
The extended version of the Local Binary Pattern Histogram we have implemented has 
the following parameters in order to achieve the fastest computation possible. 
 
Radius  = 1, 
Neighbors = 1,  
Grid_X = 2, 
Grid_Y = 2 
 

  
Figure 8: An Example from the test images.  
 
So far, the overall accuracy rate from such a test when using the test set of the same 
2400 faces in 100 category is rather high with the following accuracy level 
 
100 500 1000 1500 2000 2400 
100% 99.7% 99.7% 99.5% 99.3% 99.0% 
Table 1: Accuracy rate of LBPH with respect to test database sizes 
However, due to the different special requirement of having to test largely unseen faces, 
we separated the dataset into 2 parts, the training set will be a random 1200 samples 
from the dataset and another 1200 will be the test set to comprise 600 from the training 
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set(seen faces) and 600 from the other half(unseen faces). For the result to make sense, 
we defined a THRESHOLD value for the similarity marking for faces, and tuned from the 
same dataset above, here is the response graph for the THRESHOLD result.  
 

 
Figure 9: the threshold values used to tune. 
 
Double	
  getSimilarity(const	
  Mat	
  A,	
  const	
  Mat	
  B){	
  
Double	
  errorL2	
  =	
  norm(A,	
  B,	
  CV_L2);	
  
Double	
  similarity	
  =	
  errorL2/(double)(A.rows	
  *A.cols);	
  
Return	
  similarity	
  
}	
  
	
  
similarity	
  =getSimilarity(preprocessedFace,	
  reconstructedFace);	
  
if	
  (similarity	
  >	
  THRESHOLD){	
  
identity	
  =	
  -­‐1;	
  
} 
 
Section 5: Conclusions:  
 
Over the project, we have achieved system design, facial recognition algorithm 
comparison and selection, facial tracking algorithm development, gender detection 
algorithm selection and implementation, facial info representation structure selection / 
processing implementation, as well as basic data upload / storage implementation. We 
have successfully built up a prototype that meets the performance and deployment 
requirements set at the beginning, including real-time processing, computing power 
constraints, and desirable low network traffic / data storage. During the process, we 
surveyed the current algorithms available (refer to section 4), experimented with 
parameters (e.g. frame/second, and max distance for facial tracking classification), and 
developed an easy and effective facial tracking method. We believe that the current 
system is a robust prototype, and could be the basis for further development into a 
potentially commercializable facial-based Customer Relationship Management system.  
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