CVChess: Computer Vision Chess Analytics

Jay Hack and Prithvi Ramakrishnan

Abstract

We present a computer vision application and
a set of associated algorithms capable of recording
chess game moves fully autonomously from the
vantage point of a consumer laptop webcam. This
consists of two main algorithms, (1) a hough
transform-based algorithm for finding a
homography relating board coordinates to image
coordinates, and (2) a model of chessboard colors
and occlusions that allows us to account for and
infer piece movement in real time. We provide a
video demonstration of the application applied to a
real chess game and describe experiments in which
our developed algorithms significantly outperform
a naive baseline. All code is open sourced and
available on GitHub. (See Below)

Code: github.com/jayhack/CVChess

Video Demo: youtube.com/watch?v=iZ0Alew-zYc

1. Introduction

While the game of chess has greatly benefitted
from the information age, including analytical
algorithms, online playing environments and
game databases, there have been relatively few
advances that improve the experience of over-the-
board chess. One such problem is the tediousness
of recording the sequence of moves performed in
a game.

We aim to improve this aspect of the game by
creating a robust, automated system that
leverages computer vision in order to provide
insights into chess games played on physical
boards. In particular, we would like to implement
a set of CV algorithms that allow us to determine
the full state of the board at all times using widely
available hardware (namely a Macbook Pro next
to the board.) We will then provide users with
recordings of their games that are easily portable
to common chess databases and engines, so that a

higher-level analysis might immediately take
place.

This project is motivated by several
established use-cases for similar systems, as well
as problems with current systems that we can
empathize with. Perhaps most significantly, the
process of hand-recording games and inputting
them into computers for algorithmic analysis is
extremely tedious. Furthermore, real-time aids
such as score-keeping, time-keeping, live analysis,
and even automated coaching can be easily
achieved given a utility for identify moves in real
time. Given the prevalence of open research and
tools for chess analysis, we suggest that our
project will allow chess players the convenience
and pleasure of playing chess on a physical board
while maintaining the ability to leverage analytic
advancements in computer chess.

2. Previous work

Previous work with determining chess
positions from images is very limited. The
majority of existing work has been conducted by
independent hobbyists, independent of
established research institutions, and without
published experimentation or results. Most
research on the problem of identifying
chessboard pieces has made one or more of the
following simplifications:

* The camera is mounted directly above the
board, leading to minimal perspective
distortion

* Plain background, making it easy to detect the
chessboard

* Multiple cameras, leading to minimal total
occlusion.

We present examples of such research below:

Research involving finding chessboard
gridlines from a top-down view is a popular
computer vision problem [1], and research has
been made into exclusively detecting chessboard

corners. One report [2] leverages the
checkerboard black-and-white colors surrounding
chessbaord corners as features to detect
chessboard corners, achieving comparable results
to other combined edge-corner detectors.

Another report [3] uses a setup of two
cameras with perpendicular views of the
chessboard at relatively low perspective angles to
reduce the probability of simultaneous occlusion
of a piece or square. To aid in determining the
orientation of the chessboard the setup also places
a marker on the board at the corner of a particular
setup. However, by maintaining the initial setup,
the researchers achieve live gameplay with a
computer tracking the positions of pieces on the
board.

It is also notable that the OpenCV function
findChessboardCorners does not perform well at
acute angles such as that found by a Macbook
Pro’s camera.

3. Approach

Our approach attempts to do the following, in
an effort to be pragmatic and useful as a general-
use program:

* Require minimal setup overhead
* Leverage established, open source tools
* Maximize robustness

In an effort to do this, we solved the problem
with a very simple setup: A Macbook Pro (or any
computer with a camera) on the side of the board
on white’s left, with the screen roughly
perpendicular to the table’s surface. This allows
for easy setup and quick initialization. A full cycle
of our program works as follows:

1. The computer is set up next to an empty
chessboard and the program takes a snapshot
of the board, allowing it to determine a
mapping between board squares and the
image regions they correspond to.

2. The players set up pieces on the board and
gameplay commences.

3. After each player makes a move, they hit any
key on the laptop, as they would hit a chess
clock in tournament play. The program keeps
track of the position after each move,
capturing an image of the current state of the
board every time a key is pressed.

4. The program recognizes when the game is
finished (i.e. an end state is reached), and
terminates

4. Technical Details

Terminology

* Board coordinates: (2x1) vectors that
represent points on the chessboard; (0, 0)
describes the top left corner of a8 and (8, 8)
describes the bottom right corner of h1.

* Image coordinates: (2x1) vectors that
represent points in the image.

* Board-Image Homography: A (3x3) projective
matrix that maps homogenized board
coordinates onto homogenized image
coordinates.

The first task is to find the homography from
board coordinates to image coordinates from an
empty board taken in the first frame, at the
perspective angle from a Macbook Pro.

4.1 Initialization: Finding the Board-
Image Homography

In order to find the homography from the
board to the image, it is necessary to find a set (at
least four, but preferably many more) of point
correspondences from board points to image
points. The following algorithm was performed to
achieve this:

1. Find definite corners by narrowing the output
of a Harris Corner Detector with a SIFT
Descriptor Classifier and filtering on points
that closely snap to high-threshold vertical
and horizontal lines obtained by a Hough
Transform.

2. Use a RANSAC-like algorithm with linear and
geometric regressions to find indices of
vertical and horizontal lines from the Hough
transform and assign each remaining image
point to an integer pair representing a board
point.

Finding a subset of chessboard corners

First, we ran a Harris Corner Detector on the
image to get a large set of possible corners from
the raw image.

Figure 1: On the top is an image with corners detected with a Harris Corner Detector overlaid. On the bottom is
the same image, after the corners have been filtered with a SIFT Descriptor Classifier and clustered using mean-
shift clustering.

The results of a Harris corner detector to one
of our preliminary images is shown in (fig. 1).
Clearly, this has a high recall in finding chessboard
corners, as every corner on the board is saliently
marked. This provides a good population of
candidates for more complicated -classification
procedures.

To alleviate this issue, we ran a SIFT
Descriptor Classifier on the Harris Corners,
namely a logistic regression classifier trained on
roughly 2000 negative and 1000 positive
examples. This both significantly reduced the
number of false positives. In order to ensure that
corners were not double counted, we applied a
clustering procedure very similar to mean-shift
clustering. However, it is worth noting that some
corners are missing from the classifier, but indeed,
the algorithm only needs a small set of corners
with assigned board coordinates.

Assigning board indices to each corner

To determine which board corners each of the
corners returned by the SIFT Descriptor Classifier
is, we fitted the corners to horizontal lines using a
Hough Transform. In order to only capture lines
that are actually lines on the board, we use a high
threshold, at the expense of possibly missing lines.

We only consider points very close to both a
vertical line and a horizontal line.

In order to assign each of these points board
coordinates, we need to first determine which
index (an integer in {1,2,3,...,8}) each vertical
line and each horizontal line correspond to. We
perform the following algorithms to determine
these line correspondences, given four or five
lines, either all vertical or all horizontal:

For vertical lines:

1. For each line, get its x-intercept with the
bottom of the image of each line

2. Generate all possible line assignments that
satisfy that if line m is to the left of line n, m <
n

3. For each assignment, fit a linear regression on
the (assignment, x-intercept) pair for each
line and get the correlation coefficient

4. Return the assignment with the maximum
correlation coefficient.

For horizontal lines

1. For each line, get the logarithm of the average
height of the line above the bottom of the
image

2. Generate all possible line assignments that
satisfy that if line m is above linen, m <n

3. For each assignment, fit a linear regression on
the (assignment, x-intercept) pair for each
line and get the correlation coefficient

4. Return the assignment with the maximum
correlation coefficient.

Figure 2: On the top are the lines detected by a Hough Transform on the points given by the SIFT Descriptor
Classifier, filtered to only horizontal lines. On the bottom are the lines, filtered to the vertical lines.

We take advantage of the fact that the correct
assignments will lead to an approximately linear
sequence for vertical lines, and an approximately
geometric sequence for horizontal lines.

Finally, we notice that this will only give us
accurate results up to a shift, since results up to a
shift will all give equal correlation coefficients. To
determine which of the possible shifts is correct,
we simply determine which of the possible shifts
is correct by seeing which of the homography
correctly matches the most Harris Corners (after
filtering with the SIFT Descriptor Classifier) found
earlier.

Computing the Board Image Homography

Only a subset of board corners would be
detected by the above algorithm. We are
guaranteed, however, that the chessboard consists
of an evenly-spaced grid lying on a plane. Hence,
there is a projective transformation relating
points on the board (in board coordinates) with
points in the image, which can be computed from

a small set of known point correspondences
between the image and board. This homography
allows one to find the image coordinates of any
point on the board, therefore enabling one to
select image regions corresponding to certain
squares. Here we outline our approach to finding
this homography.

Let P; , P{ be corresponding points in
board/image coordinates, respectively, for
i €{1,..,n}. Then 3IH € R3*3 such that Vi,P} =
HP;.

H can be determined by the following
overdetermined system of equations Ph =0
where P is given by:

Pix Py 1 0 0 0 —wPpix —WPy Y
0 0 0 Pix Py 1 —ViPix —ViDyy —Vy

[y

Pnx Pny 0 0 0 —UpPnx —UpPny ~Un
0 0 0 Pnx Pny 1 ~VnPax ~VnPny ~—Vn
and h is a columnized representation of H.

In order to solve this system of equations, we
apply SVD to P and construct a matrix from the
last row of the the third return matrix from SVD.

Figure 3: Example heatmaps generated by the program. The left heatmap displays squares with a large
increase in piece color and the right heatmap displays squares with a large decrease in piece color. The correct

move, which the program finds correctly, is Nf3, or g1-f3.

4.2 Live Gameplay: Determining Moves

Once the homography has been determined,
the players set up the pieces and the game begins.

At the beginning of the game, when the pieces
have just been set, the program takes a snapshot.
Using the centroids from a k-means clustering
algorithm with k = 4, we determine the four most
common colors on the board. Those four colors
will be:

1. The color of the white squares
2. The color of the black squares
3. The color of the white pieces
4. The color of the black pieces

In live gameplay, after each move is played, a
new image is taken. The image of the board before
the move was played (taken after the previous
move was taken) and an image of the board after
the move was played are compared as follows:

1. Match each pixel of each square area to one of
the four categories colors generated via k-
means clustering.

2. Find two heatmaps for increase and decrease
of the color of the piece being moved in the
actual moves in each square, and divide each
of the heatmaps by the the sum of its values.

3. For each move
a. Generate two expected heatmaps for

increase and decrease of the color of the
piece being moved in each square, and
divide each of the heatmaps by the sum of
its values.

b. Find the cosine similarity between the
expected and actual heatmaps
4. Return the move with the lowest cosine
similarity
Several approaches were examined to
generate expected heatmaps.

A naive solutionthat was initially
implemented was to fill the expected heatmap for
increase in piece color with zeros, except for the
square into of which a piece was moved, in which
the value is 1. Conversely, the expected heatmap
for decrease in piece color would be filled with
zeros, except for the square out of which a piece
was moved, in which the value is 1.

This algorithm initially yielded promising
results for the first few moves of a game, but
generated incorrect predictions when the square
that were most occluded by the introduction of a
piece was not the square into which the piece was
moved, but instead the square immediately
behind or two squares behind it. This was a
common occurrence, so we modified our
algorithm to reflect that.

The solution that we selected was to fill the
expected heatmap for increase in piece color with
zeros, except for the square into of which a piece
was moved and the three squares behind it, in
which the values are 1. Conversely, the expected
heatmap for decrease in piece color would be
filled with zeros, except for the square out of
which a piece was moved and the three squares
behind it, in which the value is 1.

5. Experiments

5.1 Homography testing

We tested the program’s ability to generate
the correct homography, and found that while
certain conditions affect the accuracy of the
generated homography, under conditions that
would be optimal for human chess, the
homography is generated with good accuracy.

Most significantly, varying lighting conditions
significantly, especially when there is severe glare
on top of several of the points in a row or column
will frequently lead to an incorrect homography.

However, in conditions when the image is
taken by a Macbook Pro and visually has
appropriate lighting, the program generates the
correct homography in 21 out of 25 test cases that
we ran. In conditions with poor lighting,
significant obtrusive glare, or other similar issues,
this accuracy was reduced to 7 out of 15 test
cases.

5.2 Live game testing

We also tested the program in a number of
complete games played to determine how many
moves (single player moves) the program
correctly predicts until it makes a mistake. (We
used this metric instead of the total count of the
number of incorrect moves in a game because
after the first incorrect move, following moves are
less likely to be correct, since the correct move
may no longer be legal.)

Game Total moves Firstincorrect move
1 48 No incorrect moves
2 39 18
3 75 59
4 28 No incorrect moves
5 68 40

6. Applications

Our intention with this application was to
provide an API on top of which other developers
could create useful and insightful applications.
Here we discuss potential future directions for
development.

While our application provides one with the
ability to receive a standard notation for any given
chess game played on a standard board, we have
not yet made efforts to integrate this with existing
chess engines. We believe that the real-time
application of existing analytical algorithms would
offer a great deal of utility to players. In particular
existing algorithms for determining a player's
strengths and strategic characteristics, predicting
future moves and assessing their performance
improvements (e.g. assigning chess ratings, etc.)
should be relatively easy to add to our system.
Such algorithms have never been applied to chess
on real boards using commercially available and
common hardware, to our knowledge.

In addition, we anticipate that users would
benefit from the availability of coaching resources
in games on real boards. While several chess
coaching utilities currently exist (including those
available through Stockfish, an open source and
very popular chess engine), current
implementations require that one play online or in
a much more controlled and resource-intensive
apparatus.

Finally, we believe that one of the most
exciting directions that CVChess will progress in
the future is its integration into augmented reality
systems. Due to the fact that it can offer precise
coordinates for real-world phenomena, it could be
used, with relatively little adaptation, as a
supplement to a projector pointing at a board,
annotating games in real time. While animations
projected onto the board may become distracting,
we maintain that simple, minimalist aids projected
onto the board would enhance the game playing
experience. This includes, but is not limited to,
visual indicators for when pieces are in
check/causing check, areas one can move into
during check, lines of attack from specific pieces
and more.

In conclusion, we have made the first step in
developing a low-cost, robust platform on which

we hope many useful chess-related applications
are developed in the future. We are open to
collaboration; please contact the authors if you are
interested in developing on top of CVChess.

7. References

[1] Martin Martin. Finding a Chessboard. 2009.

[2] Chua Huiyan, Le Vinh, Wong Lai Kuan. Chess
Vision. 2007.

[3] Stuart Bennett and Joan Lasenby. ChESS -
Quick and Robust Detection of Chess-board
Features. 2012.

