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Abstract

Chavin de Huantar is an archaeological site of critical interest for intepreting the Andean archaeological
record. In this paper, we present our work on developing an object recognition system to classify Chavin pot
sherds by decorative impressions. We trained and evaluated MSER and SURF based classification systems
on a small labeled set of replica sherds and achieved classification accuracy of 75%. The performance of
our system is comparable with a similar system built for ancient coin classification [8] [9] and represents a
promising first step in developing an automatic sherd classification system for archaeologists interested in
Chavin pottery or, more generally, in pattern recognition for the analysis of archaeological ceramics.

1 Introduction

1.1 Chavin Pottery

The archaeological site of Chavin de Hudntar in the Peruvian Andes has been occupied since at least 3000
BCE and serves a critical role in interpreting the Peruvian archaeological record. In particular, the site
appears to have been a primary center of Andean culture for several centuries, commanding loyalty far
beyond its borders, and set forth a decorative style that is regularly echoed in subsequent Andean works.

At Chavin, over 18,000 pottery sherds from an esti-
mated 700 distinct pots were unearthed in just one
year of excavations. These artifacts were produced
by the Chavin culture in the the first millenium
B.C.E. and characteristically are decorated by re-
peated impressions of a stamp into moist clay. The
large number of sherds found at the site, as well
as other sites throughout the Andes, poses an un-
tapped resource for furthering our understanding of
the Chavin. That is, the regularity of the process
used to produce each pot should allow association of
a pot with a set of particular stamps impressed upon
it. The aim of the work here presented is to develop
a system to automatcially associate a Chavin sherd
with an original set of stamps, thus allowing archae-
ologists to reconstruct a network of original stamps
and excavated pot locations. Such a network may
provide insight into the movements of people and

Figure 1: Examples of Chavin Pot Sherds



goods throughout the world of the Chavin, thus al-
lowing for important new insights into the world of the Chavin culture and its mechanisms of cultural
dissemination.

1.2 Computer Vision and Archaeological Pottery Analysis

Beyond our interest in Chavin archaeology, there is a broader need for research into computer-aided analysis
tools for archaeological artifacts. As the most frequent class of artifacts found throughout the world, pottery
(and potsherds in particular) should be of primary focus. It is our belief that recent developments in
automated recognition, and in computer vision in particular, have resulted in techniques sufficiently effective
in practice to be of great utility to archaeologists. This is in addition to research thus-far in computer
vision applications in archaeology, which have focused largely on methods for 3D digital archiving of sites
and artifacts and fragment reconstruction. Thus, one research aim of this work is to demonstrate the
application of object recognition results to pottery analysis. We are particularly interested in demonstrating
that the questions that can potentially be facilitated by such a system extend beyond those of recognition,
organization, and archiving, to the recovery of latent information residing in patterns in large bodies of
artifacts.

2 Contributions

2.1 Prior Work

Computer Vision applications in archaeology have been applied primariliy to problems of digital archiving.
In particular, we see the existing work as falling into three categories:

1. The aquisition of 3D models of sites and artifacts
2. The automatic re-assembly of artifacts from fragments

3. Assisted artifact recall in existing databases of images or models

The first of these includes the work of Geert Verhoeven and colleagues applying GIS to the problem of
obtaining 3D site models, applying computer vision techniques in multiple-view geometry, such as Structure
from Motion [18] [17] [2]. Work has also been done on the artifact scale on techniques for 3D model
building (using techniques such as space carving, range scanning, and photogrammetry) and the related
problem of archiving artifacts in a database for recall and analysis [13] [16]. Another angle on 3D modeling
of archaeological material is aimed at developing excavation aids — tools to visualize excavation state and
systemtize the organization of digital records in a useful manner; this includes work on the Reveal system
at Brown as well as work at ETH Zurich [3] [15].

Significant progress has been made in the assembly of artifacts from fragments. This research has taken
two approachs, human-assisted and automatic. HINDSIGHT is a recent project from Brown focusing on a
complete interactive system for fragment re-assembly [4]. A project out of Stanford attempted reconstruction
of the Forma Urbis Romae, a fragmented map of ancient rome, using crowdsourced solving [5]. Research
into automatic artifact assembly has been entertained consistently for the past decade [12] [19] [20]. Suc-
cessful automatic artifact re-assemblies thus-far include a selection of pot fragments from Petra and parts
of the Forma Urbis Romae [3]. While this may seem discouraging, Andrew Willis points out that fragment
digitization is a major bottleneck in automatic re-assembly [3].

The third area is less explored, but includes work on shillouete similarity metrics for the search of similar
artifcats in digital archives using shape context and shock patches [10] [14]. Our work shares the most with a



project seeking to classify ancient coints automatcially to aid ameteur coin classification. This work presents
a complicated custom pipeline involving Sobel edge detectors, Gabor wavelets, Shape context detectors, and
Principal Compnent Analysis [8]. As a first step to the analysis of ancient coins, the authors classified a
dataset of modern coins, reaching 71.5-78% accuracy [8] [9].

2.2 Our Contributions

Our approach differs in that we are interested in applying object recognition tools not primarily for archiv-
ing, recall, or database exploration generally, but to answer a specific archaeological question. We not only
anticipate that an effective automatic classification system will aid in catalouging and analytics for Chavin
sherds, but also believe our work may serve as a model for applying object vision more directly to archae-
ological problems. Additionally, to our knowledge, the detection techniques we make use of here, such as
MSER and SURF, are not used in the archaeological object recognition literature.

Figure 2: Set of Replica Stamps used as our custom dataset

This work is highly experimental. The task of automatically classifying any image of any sherd is too large
and involves too many confounding factors to tackle in this report alone. For example, there is the difficulty
of automatically identifying individual sherds within an image of multiple sherds and individual stamps on
each sherd; the difficulty of variable lighting conditions, clay colors, and light responses (some pots are shiny
glazed blackware; some are diffuse bare clay); the difficulty that ground truth is not known; and the issues
of large, complex stamps and near-total occlusions where only small fragments of an original impression
remain.

In light of this, we chose to focus on a reduced problem for the work presented here. We create an annotated
dataset of sherds of one whole impression each and photograph each individually under consistent lighting.
Thus, we avoid problems of occlusion, sherd color and light response, multiple registration, and lack of
ground truth. We carry out the rest of the impression recognition pipeline on this custom dataset.

3 Technical Approach

3.1 Summary

Our approach can be briefly sumarized as follows:



Development of custom dataset
e Feature Detection and Extraction

Classification

Testing

3.2 Details of Project Components
3.2.1 Development of Custom Dataset

As described in section 2.2, in order to focus on
the problem of impression identification without
many additional complications, we chose to create
our own annotated dataset. We obtined a smooth
stoneware clay from the Stanford Ceramic Studio
waste clay bin and molded twelve unique stamps.
After several days of drying, the stamps were im-
pressed into 2-3 inch diameter round pieces of wet
clay to create “sherds.” Nine impressions were made
from each stamp, and the tweleve stamps were di-
vided into four general “shapes.” Each stamp was
numbered and labeled, and each impression was la-
beled with its corresponding stamp by carving the
stamp number into the reverse side of each sherd.
Thus, the annotated dataset contained in total 108
sherds divided evenly into 12 original stamps or
“classes” and divided evenly into 4 general shapes:
bad donut, good donut, cross, and crescent. To
specify, the dataset contains 9 impressions from each
of 12 stamps and thus 27 impressions of each of 4
shapes.

Figure 3: Poloroid Land Camera Photographic Setup
with replica stamps

Figure 4: Examples of each Shape: from left to right “bad donut”, “good donut”, “cross”, and “crescent”

Each sherd was placed in a consistent location on the platform of a poloroid Land Camera and photographed
at 12 Megapixels using a Panasonic Lumix DMC-GF3K Camera with a 14mm lens(see Figure 3). One of the
bulbs on the Land Camera was not functional, so sherds with polar impressions were oriented consistently
to obtain consistet shadows. We believe that the missing bulb may have been an advantage, because feature
detection algorithms depend on contrast, which was increased by an uneven — though consistent — lighting
setup. Each of the sets of 9 impressions associated with the same stamp was photographed together, such



that we can simpy look at the timestamp (or, identicially, the filename) of a image to determine its associated
stamp.

3.2.2 Feature Detection and Extraction

Each image was reduced from 12 Megapixels to 3 Megapixels and converted to grayscale to enable processing
using color-invariant descriptors. We also created low resolution images of .12 Megapixels. We then separated
the data into train and test sets; the first 7 images of each class (in the order photographed) were designated
train, and the remaining 2 were designated test. In the following, all tuning and visualization were performed
on train images only. We used three established descriptors to detect and extract features: SIFT, SURF,
and MSER.

We first applied a SIFT implementation in C by David Lowe and colleagues [6] [7]. We obtained keypoints
and used Matlab R2013a to plot the keypoints on the original images. We observed that keypoints clustered
around shadow lines and thus occured both within the impression and at the edges of each sherd, as well as
on a few scratches on the land camera base.

Using an external system, however, imposed unnecessary infrastructural overhead, so we put aside this
SIFT implementation in favor of descriptors built into the Computer Vision Toolbox for Matlab R2013a, in
particular SURF and MSER [1] [11].

To start, we tried using SURF features due to their efficiency, robustness, and conceptual similarity to SIFT
features. We found that SURF features were fast to compute and generally similar to the features extracted
by SIFT. While these features seemed to give robust matches between images, qualitative evaluation of why
SURF worked well in some instances but not others was difficult, so we were curious to explore other features
as well.

We found MSER intriguing because the implementation we used permitted visualization of the detected
regions, which allowed simple qualitative analysis of the utility of a particular feature for describing an
impression (See Figure 10). We used this feedback mechanism to tune our detector. We went through
several iterations of parameters, but settled on the following for our high resoluton detection:

MaxAreaVariation 40, ThresholdDelta 4, RegionAreaRange [400, 8000]

3.2.3 Classification

We took two different approaches to classification, Characteristic Feature Response and K-Nearest Neighbors.

Characteristic Feature Response One of the main challenges we faced using any of the featurization
methods is how to deal with spurious feature matches. Both feature descriptors tended to discover features
in the images that were not part of impressions yet were contributing significantly to matched feature sets.
Moving forward we could re-take the images using a chroma key backdrop to reduce suprious feature matches.
In order to mimimize the effect of suprious matches with our existing dataset, we performed the following
training procedure:

On a training set, we computed the feature matches between all images within each class and compiled
them into a list of “characteristic features.” In some sense, these features are a good baseline set of features
shared amongst images belonging to the class, so might be indicative that a new image belongs in the
class. Next, having computed the characteristic features of each class, we computed the matches between
different classes’ characteristic features. For each pair of classes, we computed matches across the sets of their
characteristic features. When features from across classes were matched, we removed these features from



the list of characteristic features, as this cross-class matching indicates that the feature did not distinguish
between classes.

We then predict the class of a test image by extracting features and then performing matches against each
class’s characteristic features. We tested using both MSER and SURF feature descriptors at two levels of
resolution. We report the results in the next section.

K-Nearest Neighbors For each image i in the test set, we detected and extracted features in the image
and counted the number of matches, M;; found betweeen 7 and each train image, j. We thus determined a
score SX for the similarity of i to each class K as follows:

jeK

We first selected the class C; to which i as follows:

C; = argmax(S5)
K

However, this approach was subject to corruption from discrepancies between the average number of matches
seen by images in a given class. For example, train images from class 1 see, on average over matches with
all images, about 10 times as many matches as do train images in class 12.

Thus, we decided to normalize based on the distribution of number of matches with images in each class.
We compare all train images to each other as described above. Once we have recorded each M;;, we find the
sample mean, [ix, and sample standard deviation, 6 of all M;; for a particular K = {j|je class K}. The
score of a test image ¢ for class K, denoted SZK now becomes the Z-score of its M;; statistic:

K _ M;; — fire
7 OA_K
and the class C; thus simply becomes:
C; = argmax(S¥)
K

We found this approach to significantly improve results, from near baseline random at 9% classification
accuracy for classes to 33%. Results for this method are presented in section 4.

3.2.4 Testing

We tested our results on three full pipelines: MSER with Characteristic Features, SURF with Characteristic
Features, and MSER with K-Nearest Neighbors. Our test set consisted of 24 images, two from each class.
Recall that ground truth was known because the dataset was built for this work. While our initial pipeline
took about 90 minutes to run, by caching extracted features we are able to bring test image running time
down to the order of minutes. We ran our tests on Matlab R2013a with the Computer Vision Toolbox on a
2011 iMac with 2.5Ghz I5 and 4GB RAM.



4 Experimental Results and Analysis

4.1 Classification by K-Nearest Neighbors

We tested on 24 images, 2 from each class (labeled i and ii in figure 5) as described above. The optimal
results obtained are presented in figure 5. Note that the baselne classification accuracies are about 8% and
25% by class and shape respectively.

True Class ‘ 1 2 3 4 5 6 7 8 9 10 11 12
Predicted Classon (i) [1 12 3 11 4 10 7 4 11 12 11 12
Predicted Classon (i) |1 10 5 12 5 10 10 5 1 6 12 12

Figure 5: 33.0 % accuracy by class / 75.0% accuracy by shape

Note that, distinct from the Characteristic Features approach, this classification method returns both class
and shape classifications. We are clearly much more effective at classifying by shape than class, although we
beat random meaningfully on within-shape class classification assuming correct shape classification.

4.2 Classification by Characteristic Features

Initially, we learned characteristic features by impression class, but predictions were noisy as few features
were selected for each class after cross-class filtering. Thus, we instead learned characteristic feature by
shape. The models trained according to the shape appeared more robust. Below, we include the confusion
matrices from 4 different runs of the characteristic features classifier on the test set using SURF and MSER
features on low resolution (.12 Megapixels) and higher resolution (3 Megapixels) images. In each matrix A,
A;; is the number of images of the ith shape that were classified as shape j.
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Figure 6: Low Resolution Prediction by shape using SURF (62.5% accuracy)
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Figure 7: Low Resolution Prediction by shape using MSER, (58.3% accuracy)
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Figure 8: High Resolution Prediction by shape using SURF (70.8% accuracy)

From the perspective of accuracy, we can see that these classifiers do significantly better than random,
and that performance seems to improve with increased resolution. In particular, when we consider the
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Figure 9: High Resolution Prediction by shape using MSER (75.0% accuracy)

performance of the classifiers which use MSER features, we see that the classifier using low resolution images
consistently labels images of the “good donut” shape as the “bad donut” shape. We see though when we
increase the resolution of the images used for training and evaluation, the precision increases and the classifier
differentiates between the two types of donut impressions.

It is important to note that these results indicate the performance of the classifiers after tuning the feature
extraction and matching parameters. The runs using MSER features were particularly sensitive to approriate
specification of the parameters affecting the size of the features detected; we suspect that on the low resolution
images, features were lost because they shrunk below our feature detector’s minimum region size threshold.
In future work, it may be worthwhile to tune detection parameters individually for different datasets, even
simply differently scaled versions of the same dataset.

)

Figure 10: Comparison of MSER and SURF Characteristic Feature Responses

Figure 10 shows the characteristic feature response of two images, one which was classified with MSER
features, the other with SURF. Note that the MSER responses seem to include fewer features in general,
and particularly, along the border of the impression. We were abot to tune the MSER detector to largely
exclude features along the sherd edge. While this intuitively seems like a better way to match impressions
of the same shape, the accuracy and confusion matrices of both systems seem similar enough that it’s hard
to make any general objective conconclusions about their relative effectiveness.

5 Conclusions

Working on this project gave us a more complete understanding of some of the standard techniques and
challenges involved in object recognition. In particular, this project emphasized the versatility of feature
descriptors, but also emphasized the power of efficient and modular implementations of these tools when



first working on a project. We also gained an appreciation for some of the issues that arise working with real
world data. First, hand-crafting a small labeled training set can be an effective first step to a full system
analyzing a large, complex dataset. Second, spurious matches provided a reminder that effective ways to
manage noise are key to the success of object recognition systems (and learning systems in general). The
principles we learned on this project will guide the decisions we make moving forward with this project.

5.1 Archaeological Context and Future Work

This work represents a meaningful step towards automatic impression classification. More broadly, we have
demonstrated reasonably effective application of current computer vision techniques for object recognition
using widely-available tools to the classification of surface details on ceramic fragments. While analysis of
artifacts in the field presents a significantly more challenging scenario, the suitability of SURF and MSER
feature descriptors given controlled photographic conditions has been demonstrated.

It is important to mention that we created a custom dataset to reduce project scope to a single academic
quarter, not because the problems we avoided are insurmountable. We have considered approaches for each of
the difficulties we described we avoideded. For example consistent lighting is readily attaiable from existing
Chavin sherd data. In particular, we have access to thousands of 3D point clouds, and we thus are able to
obtain consistency by digitally synthesizing the same lighting setup for each model.

Issues of segmentation by sherd and impression are a test for image segmentation algorithms; our sense is
that existing technologies are quite sophisticated and we’re excited to see how techniques such as watershed
segmentation handle sherd images. If we are able to segment, we see the problem of multiple impressions
per sherd as a boon, as the cooccurance of two impressions on the same sherd (or collection of sherds from
the same pot) is useful input to our classification system.

While we will never know absolute ground truth for many of our data points, we feel this is a tractable issue.
Techniques on unsupervised learning are sophisticated and numerous. Further, we have still other ways to
create a close approximation of ground truth; the trained eye could surely do an effective job at annotating
a training set from images of artifacts.

Thus, we feel the pipeline we have established here is a useful backbone from which to develop a full system
for Chavin sherd classification.
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