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Abstract

The introduction of tracking technology in sports, such as the SportVU system in the NBA,
has provided profession analysts data with huge potential for advanced analysis. This data is
unavailable to the general public due to the high cost required for installation and maintanence
of the equipment. We propose a robust algorithm for camera calibration of NBA basketball
scenes using a single image derived from television broadcast. We were able to achieve a high
degree of accuracy of reprojected points for a large percentage of images seen from the video.
This robust foundation for further development into an open-source ‘SportVU’ system.

1 Introduction

The proliferation of cameras and development of Computer Vision techniques has changed sports
in significant ways. For example, the Hawk-Eye system (Hawk-Eye, 2014) determines the outcome
of for out-of-bounds decisions in professional tennis and performs ball-tracking in other sports, and
the 15 & Ten System (SportVision, 2014) places the first-down line on American Football TV
broadcasts that has greatly enhanced the viewing experience for fans.

Computer Vision can also help teams develop new types of data to discover patterns that have
evaded traditional means of analysis to discover exploitable advantages. The SportsVU system
(Stats, 2013) developed by Stats LLC. has been employed by the National Basketball Association
(NBA) for player, ball, and referee-tracking during all NBA games. Six cameras are placed high
above the basketball courts, and provides the positional information of all recognizable moving
objects on the court in 2D coordinates (with an extra dimension for the ball). This data has been
used for quantitative analysis of behavior previously thought unfeasible to codify (e.g. Cervone
et al. (2014); Maheswaran et al. (2014)), and appears to be revolutionizing analysis of the game.

Although SportVU provides an abundant amount of information, the data it collects is proprietary
and is unavailable to the general public. One of the authors of this paper has had experience
with this dataset, and believes there are fans who have the statistical knowledge to generate useful
information from the data. The goal of this project is to create the foundation of a system that
generates positional data from publicly available information of NBA games - TV broadcast of the
games. Specifically, we want to create a system that can determine the 3D location of a point on
the court in the image.

We propose a method that will automatically determine the homography from image coordinates
to world coordinates. This homography can be determined from a single view image of the court,
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Figure 1: Sample Image from TV feed of NBA game

such as Figure 1, following a set of procedures, which is outlined in Figure 2. A court mask - the
area of the image that represents the court - is generated from the image. The top pixels of the
mask is used to generate lines that represent the baseline and sidelines of the court. A second, more
aggressive, court mask is generated, and is used in conjunction with the baseline and sidelines to
determine the free throw and close paint lines. Finally we determine four intersecting points from
perpendicular lines, which are then used to compute a homography.

2 Related Work

2.1 Existing Literature

Player tracking in sports is a topic explored in the literature since the mid 1990’s (e.g. Intille and
Bobick, 1995), and most of these approaches were based on multiple-camera models. Xu et al.
(2005) tracked soccer players using multiple static cameras with overlapping views. Bebie and
Bieri (1998) generated a 3D animation of a soccer game using two or more views of the court. The
technology has matured to the extent that the NBA has adopted a 6-camera tracking system for
its data collection.

Sports provides an avenue for single camera-view tracking because landmark points can be iden-
tified in the images. These landmarks have clearly defined locations in 3D space, which can be
corresponded to image coordinates to determine a homography. Farin et al. (2003, 2005) determine
landmarks in tennis views by utilizing white lines in the image view. They estimate line candidates
by filtering white pixels in the image, and determine landmark points using these line candidates.
Sports without regulated boundary line colors, like basketball, cannot benefit from this approach.
Hu et al. (2011) circumvent this problem with a court masking approach. They utilize the fact
that the color of the court surface is the dominant color of the image to filter out all pixels of the
image that are not part of the court. Line candidates were estimated from this mask to find the
landmark points. The algorithm outlined in this paper is largely based on Hu et al.’s work due to
the many overlapping similarities.



2.2 Contributions of this Project

Previous literature covered applications of the method in relatively ‘clean’ images. For example,
the approach Farin et al. (2005), Ohno et al. (2000) , etc. take to extract line candidates is by
considering line candidates formed by white pixels in the camera feed. This approach would fail
in any type of basketball broadcast video because line colors are not regulated in any basketball
league, and will vary in color from court to court. Furthermore, as (picture of american football vs
picture of nba court) demonstrates, there are more line candidates to consider, which increases the
complexity of discovering points-of-interested that we would like to specify.

The current method is a further improvement from Hu et al. (2011) that perform 3D basketball
scene reconstructions from single-views. The main difference is NBA basketball video feeds are
much noisier than basketball videos from other leagues. First, an average NBA player occupies
a much larger area on the image than players in any other league. Larger players mean more
court features are occluded, which decreases the reliability of algorithms to locate particular points
on the image. As a comparison, the average NBA player is around 6 foot 7 inches (Basketball-
Reference.com, 2014), and the average height of Taiwanese women’s basketball players, subjects of
videos in Hu et al. (2011), is 10 inches shorter (USA, 2011). Second, there are many distracting
visual elements in a TV broadcast of NBA games compared to the games or leagues studied in
other papers.

Finally, NBA is without a doubt one of the most popular sports internationally. Many fans are
excited about the potential for analysis of SportVU data, but are unable to obtain the proprietary
dataset. Part of the goal of this project is to create a platfrom on which other NBA fans who have
interest in Computer Vision can collaborate and develop an open-source version of SportVU using
only publicly available information. The next steps would be to identify and track player and ball
movements throughout the game with respect to the 3D coordinates we have identified. This can
foster more intereset in NBA, and lead to more discoveries about the dynamics of the game beyond
the constraints of team resources. Furthermore, the system is built for robustness, which permit
application to other non-NBA basketball games such as the NCAA. This technology would allow
college teams, which have a much smaller budget than professional basketball teams, to analyze
opponents’ strategies without paying scouts to travel to games, and to track multiple teams at the
same time.

3 Technical Details

3.1 Algorithm Summary

The objective of the algorithm described in this paper is to calculate a homography between the
a video image and the real world coordinates of a NBA-spec basketball court. As our algorithm
relies on extracting features of the basketball court which are only visible at the sides of the court,
we do not run it on shots which only show the center of the court, nor do we run it on frames of
“action shots,” which show closeups of plays at unconventional angles. Namely these features of
interest are: 1) the sideline, 2) the baseline, 3) the freethrow box (see figure 3 for definitions).
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Figure 2: Algorithm summary
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Figure 3: NBA spec court features

As shown in figure 2, we propose a pipeline which goes through several stages, taking us from a
video file to a homography for each frame.

We begin by extracting bitmap image files from the video file.

Next, for any given frame, we compute the color histogram and use it to determine which color
(and similar colors) are dominant (or most common) in the image. With some adjustment,
this gives us the colorset of the basketball court.

We use this colorset to create a binary image (aka “mask”) distinguishing the basketball court
from other parts of the image.

We then run a Hough transform on the top points of this mask, which after some refinement,
yields the sideline of the court, as well as the baseline of the court.

Using our knowledge of these lines and a refined mask, we can extract two more lines around
the freethrow box via Hough transform plus refinement.

Now with four lines defined, we can define four points which have known coordinates in the
image and in the model (see figure 4).

Using these four points which share a common plane, we can estimate a homography from
world coordinates to image coordinates.
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Figure 4: Four points used for homography estimation (shown for left side of court)

3.2 Algorithm Details
3.2.1 Video frame extraction

Our objective here is to extract specific frames from a source video file in BGR array form. (BGR
refers to the Blue-Green-Red colorspace.)

This part simply utilizes OpenCV’s cv2.VideoCapture utility. As the details of this are of little
algorithmic interest, we leave the reader to see src/extract_frames.py for implementation details.

3.2.2 Dominant color detection

Our objective here is to determine which color values are most common in the image. On the
assumption that, for the frames we run our algorithm on, the court fills most of the image, this set
will include all of the color values that are contained by the court in our image.

The rationale behind dominant color detection is explained in section 2.1. In summary, we are
unable to use Farin et al. (2003)’s method of line-pixel detection to extract features for homography
estimation, due to the fact color difference between the court and the court lines in basketball is
far less pronounced than in tennis or football.

We perform the dominant colorset calculation using the CbCr components of the YCbCr colorspace,
which provides better results than using a more conventional colorspace such as BGR (Liu et al.,
2006). The CbCr dimensions provide an accurate descriptor of color while remaining insensitive to
lighting, which makes intuitive sense as we are ignoring “Y”, which is the luminance component.
The colorspace transformation can be simply performed using OpenCV’s cv2.cvtColor utility.

Thus, in order to find the dominant colorset, we create a 2D color histogram of the image in CbCr
space (in other words, we count the number of pixels with any given CbCr value). We can now
define the “peak” P; of the histogram as the most common color appearing in ny pixels. We
then construct the dominant colorset as the color values of the 4-connected region around P,
only considering colors with counts greater than Tn;. For our dataset, we found that setting the
threshold T' = 0.02 was an effective value.



Figure 5: Court mask for detecting sideline and baseline (detected lines shown)
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Figure 6: Court mask for detecting freethrow box (detected lines shown)

Unfortunately, the above algorithm as described does not work for some of the images in our dataset,
due the audience taking up a large proportion of the image, and being of relatively homogenous
color. A simple improvement to the above is to rely on our knowledge of basketball footage and to
exclude the top and bottom pixels of the image, which roughly correspond to where the audience
is, from consideration in the color histogram. We found that exluding the top 37.5% of the image,
and the bottom 20.0% of the image allowed reliable results even under these conditions.

3.2.3 Court masking

Our objective in this section is to generate two court masks. In the first (see figure 5), we want to
have the sideline and baseline of the court clearly defined for feature extraction. In the second (see
figure 6), we want to have the freethrow box clearly defined for feature extraction.

To create the first mask, we simply create a new binary single-channel image where a pixel has a
value of 1 iff its CbCR color value is contained in the dominant colorset (and a value of 0 otherwise).
As shown in figure 5, the top edges of the white zone (1-values) are well defined.

To create the second mask which can be used to identify the freethrow box’s bottom and center
boundaries, we need to clean our image by filling holes in both the court space and the non-court
space. We do this by first finding the external countours of the court space, and then filling this
space with 1 values. For a second step we then find the external contours of the non-court space
and then filling this space with 0 values. (Practically, this can be done by repeating the first step
on an inverted image, and then reinverting the result.) As shown in figure 6, the bottom and center
edges of the freethrow box (1-values) are mostly well defined.



3.2.4 Feature line detection

Our objective in this section is to identify four points in both the image and in the court model.
We do this by calculating the intersection of the following 4 lines:

1. “Sideline”: line that is collinear with the far-sideline

2. “Baseline”: line that is collinear with the baseline

3. “Closepaint line”: line that is collinear with the near closer-edge of the freethrow box
4. “Freethrow line”: line that is collinear with the freethrow line

To find lines 1 and 2, we use the first mask found above. We begin by identifying pixels correspond-
ing to the court border, which we define as the top nonzero-valued pixel in each column. We then
feed these pixels into a standard hough transform with a low threshold (in order to be sure to find
the baseline, which often has less votes than the sideline). Due to the low threshold, this results
in close to 100 candidate lines (p;, 0;), many of which are near-collinear with our target line. The
sideline is selected as the line with the most votes that has 8 < 1.6, and the baseline is selected as
the line with the most votes that has 8 > 1.6.

To find lines 3 and 4, we use the second mask found above. We begin by using canny edge detection
to find pixels to feed to hough. In order to reduce noise near the edges of the picture, we ignore
all edges found in the top, bottom, left and right portions of the image. (See hough.py for exact
proportions.) Then we use hough as before to detect lines parametrized by (p,#). The freethrow
line is selected as the line with the most votes that has similar § and dissimilar p to the baseline.
The closepaint line is then selected as the line with the most votes that has similar 8 and dissimilar
p to the sideline. (Again, see hough.py for exact definitions of “similar” and “dissimilar”.)

3.2.5 Homography estimation

Our objective in this section is to use our mapping between 4 points in the image and 4 points in
the model to estimate a homography between the image and model. We define the model based off
measurements in figure 3, with the x-axis pointing from left to right of the figure, and the y-axis
pointing from top to bottom of the figure. We define the plane of the basketball court as being at
z = 0. In the image, we define the x-axis as pointing from left to right, and the y-axis as pointing
from top to bottom.

We are looking for a homography H such that P = HP,,, where image point P = (z,y,1)”, and
world point Py, = (Zw, Yw, 2ws 1)T. As such H is a 3x4 matrix. However, since z,, = 0 for all points
under consideration, we can work with a simpler definition of P, = (2w, 4w, 1), resulting in H
being a 3x3 matrix.

By writing out P = HP,, in component terms for our 4 point correspondances, we can formulate



Figure 7: Color histogram used for dominant color detection

an equation constraining H (note that we make use of the normalization hssz = 1):
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4 Experimental Results

A representative color histogram used for dominant color detection is shown in figure 7. We note
a main peak corresponding to the court colors (which are somewhat varied), as well as other much
smaller peaks corresponding to the audience, freethrow box etc.

The most challenging component of this work was to estimate the image locations of four feature
points. We assess our performance here by comparing the locations of the algorithmically computed
points with the locations of points on the same image, chosen by hand. We manually selected feature
points on 6 images in our dataset, and find a mean euclidean distance of only 8 pixels. We thus
consider this a significant success.

In order to determine the robustness of the algorithm for the entire video feed, we calculated
the percentage of images that we were able to find reasonable line candidates from our sample
of images from a video feed. The algorithm performed reasonably well, i.e. line candidates were
roughly matching actual court line positions, for 81% of the images, indicating that the algorithm
is robust given the number of different ‘shots’ during a TV broadcast.

The homography estimation in section 3.2.5, produces results as shown in figure 8. We assess this
section’s performance by calculatin the average reprojection error, which is the average euclidean
distance of reprojected points from eachother, and get a value of 23 pixels. However, we noticed
that the reprojected points are consistently closer than the true coordinates together when the
y-coordinate is greater, and consistently farther part when the y-coordinate is smaller. We tried
several different methods of computing the homography, but the results remained the same.



Figure 8: Reprojection test: blue points are original points and red points are reprojected points
5 Conclusion

In this paper, we improved upon an existing algorithm by Hu et al. (2011) to calibrate cameras of
an NBA court based on a single image. We demonstrated that the algorithm was able to perform
with a high degree of accuracy despite a systematic error in the reprojected points. As a result
of this work, we have demonstrated that it is possible to create a SportVU-like system using only
publicly available information of NBA games, albiet limited to views where the sideline, baseline,
free throw line, and close paint lines are visible.
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