
Exam Digitization for Online Grading

Catherine Lu
cglu@stanford.edu

Karthik Viswanathan
kvis@stanford.edu

March 20, 2014

Abstract

Grading exams online has many benefits: grading can be done remotely and more efficiently, all
feedback is legible, and regrade requests have ensured integrity. The bottleneck is turning paper
exams into a digital format. We propose an exam digitization pipeline that streamlines this process.
Given a video of a student flipping through an exam, we extract all pages, apply perspective cor-
rection, find which question is answered on which page, and determine the student’s name. We find
that our pipeline can digitize exams with few errors in reasonable time, showing its promise.

1 Overview

Grading exams is time-consuming, tedious, and error prone. Scheduling grading sessions is difficult; it’s
hard to ensure exam integrity during regrades; and students go on break after finals, preventing them
from picking up exams. Allowing instructors to grade online addresses many of these concerns. Indeed,
instructors can grade remotely, regrade requests have ensured integrity, feedback is legible, and students
get their exam results digitally.

But online grading has one major bottleneck: exam digitzation. Currently, instructors must scan
all exams in, ensure they’re readable, and determine which exam belongs to which student. This added
overhead can outweigh the benefits of online grading. With this in mind, we propose a four-step pipeline
to streamline exam digitization:

1. Given a video of a student flipping through an exam, identify frames that contain exam pages.

2. Extract out the page from each frame and post-process it to improve readability.

3. Determine which questions are answered on which pages. An online grading system can then allow
an instructor to quickly navigate to a particular question.

4. Finally, assess which student owns the exam by applying character recognition techniques.

2 Previous work

2.1 Online Grading

Some companies use computer vision techniques to better streamline online grading. Crowdmark [6] and
Gradeable [7] use QR codes as a way of determining which questions are answered on which pages. A
unique QR code is added to each page of the blank exam to help identify which question it corresponds
to. This imposes additional constraints on the exam outline: there must be enough white space at the
top to fit the QR code, it must fit within the margins of the page, and exams must be created on the
platform.

2.2 Computer Vision Techniques

A few research papers discuss text extraction from videos, as this is an important step in video indexing
and retrieval systems [14]. Others consider object extraction (e.g. [5], [10]), as it has applications in
video surveillance. We were unable to find previous work that identifies unique pages from a video.

1

Handwritten character recognition (HCR), by contrast, has received much attention from research
papers. Recently, proposed methods have turned towards utilizing Hidden Markov Models or Neural
Networks. Handwritten words on clean paper can be recognized with above 85% accuracy, and single
character accuracy has exceeded 95% [2]. HCR can be used to identify monetary amounts on checks,
handwritten addresses on mail, and responses to forms [11]. For handwritten texts under noisy conditions,
much work is still required in almost all stages of HCR research [2][11].

2.3 Key Main Contributions

Our main contribution is streamlining exam digitization for online grading. We replace slow traditional
scanning by extracting the digitized exam from a video. Further, our pipeline determines which questions
are answered on which pages using a blank copy of the exam, eliminating QR codes. Finally, our system
detects which student the exam belongs to, allowing scores to be synced to a gradebook without human
intervention.

3 Proposed Method

Our proposed exam digitization pipeline tackles two major challenges: generating exams in a digital
format and extracting information from them to speed up navigation/grading. We allow students to
upload their exam using a video recording. We identify key video frames which contain high-quality,
unique pages (3.2) and then segment out the pages and apply perspective correction (3.3). Next, we find
which question is answered on which page (3.4), and which student the exam belongs to (3.5).

3.1 Data

For 3.2 and 3.3, we collected 5 videos of students flipping through exams for a total of 54 pages.
For 3.4 and 3.5, we have 168 scanned student exams with an average of 12 pages per exam. Exams

are anonymized, and no experiments reveal any performance statistics. Further, no exams are or will be
released.

We use two character datasets totaling 11128 images (214 images for each lowercase/uppercase char-
acter) to train our classifier for 3.4. The first was from Rob Kassel at MIT Spoken Language Systems
Group [9], and the second was from Chars74k [13]. Images from both datasets were collected by writing
characters on a tablet PC.

3.2 Key Frame Identification

Given an input video of an exam being flipped through, we would like to extract frames that contain
unique exam pages; that is, we don’t want two extracted frames to contain the same page. The main
idea behind our approach is to identify flipping transitions in the video. If we can identify when the page
is flipped, we can simply take the frame after flipping completes as our next extracted page.

In our first approach, we try to detect motion blurring using edge detection. If we see fewer edges in
a frame relative to other frames, we consider it blurred. Blurred frames suggest flipping, so these become
our transition points. Unfortunately, this strategy failed. When a flip occurs, edges from the page being
flipped disappear, but edges from the page being flipped to appear. These balance each other out in
some cases, and we are unable to detect blurring.

Our current approach transforms the previous frame to the current frame with an affine transfor-
mation, and subtracts the two pixel-by-pixel. When a single page is displayed for multiple frames, this
difference will be low, as we’ll be able to find a near perfect affine transform between the frames. But
when flips occur, the difference will be high, as two consecutive frames will not correspond at all.

This is evident in figure 1. The blue curve shows the difference between consecutive frames (normal-
ized to a scale of 0 to 1), and the red lines show the ground truth of when transitions occur. Maximums
in the blue curve correspond very well to the red lines. Indeed, after applying thresholding to the
differences, we get figure 2, which almost perfectly corresponds to the ground truth. The blue peaks
correspond to when a flip occurs, and the troughs are periods of stability. We take the set of frames that
occur at the beginning of troughs (right after the peaks) as our key frames.

2

Figure 1: Frame identification Figure 2: Frame identification with thresholding

3.3 Page Extraction

Figure 3: Page extraction process

Once we have identified key frames in the video, we must extract exam pages out of them. Specifically,
given a frame, as shown in figure 3(a), we would like to extract a pristine image of the student’s exam
page, as shown in figure 3(d). We accomplish extraction in three steps.

3.3.1 Find Lines

First, we find lines in the image using the Hough transform, and we filter the image to just its edges
using the Canny edge detector [3]. Each pixel that’s on an edge votes for a line in the Hough space with
parameters (r, θ). Note that we represent lines in their polar form here: r = x · cos(θ) + y · sin(θ). This
allows us to handle vertical lines with finite parameter values (θ = 0).

We take the top 20 lines in the image, and these constitute our consideration set. Results of the
Hough transform are found in figure 3(b).

3.3.2 Determine Bounding Box

Next, we take all combinations of four lines, and check if they form a rectangle. Since we have 20 lines
or fewer, there are at most

(
20
4

)
= 4845 combinations to try, which is computationally inexpensive.

Given two lines in polar space, (r1, θ1) and (r2, θ2), we first normalize their angles so that θ1 and
θ2 are both in range [0, 180) (a line (r, θ), where θ ≥ 180, is the same as (−r, θ − 180). These two
lines are deemed parallel if |θ1 − θ2| < δ1 for some threshold δ1. They are deemed perpendicular if
90− δ2 < |θ1 − θ2| < 90 + δ2 for some threshold δ2 (we found δ1 = δ2 = 20 to have good performance).

We look for four lines that can be split into two sets of two lines each, such that lines within sets are
parallel and lines between sets are perpendicular. These constitute rectangles in our image. Since the
exam page is the largest rectangular object in the video, we look for the rectangle with the largest area,
and choose it as our bounding box around the exam. This can be seen in figure 3(c).

3

3.3.3 Correct Perspective

Now we would like to extract the exam and correct it’s perspective so it fills the image, as per figure
3(d). To accomplish this, we first find the four corners of the bounding box. The intersection of two
lines (r1, θ1) and (r2, θ2) is given by point (x, y), where x and y are given by:

x = r2 · cos(θ2) + sin(θ2) · d
y = r2 · sin(θ2)− cos(θ2) · d

where d =
sin(θ1) · (r1 · sin(θ1)− r2 · sin(θ2))− cos(θ1) · (r2 · cos(θ2)− r1 · cos(θ1))

−sin(θ1) · cos(θ2) + cos(θ1) · sin(θ2)

Using this, we can determine the four intersection points representing the four corners of the bounding
rectangle. We can then compute a perspective transform, H, that maps the top left corner to (0, 0),
the top right corner to (width, 0), the bottom left corner to (0, height), and the bottom right corner to
(width, height), where width and height are the desired width and height of the corrected image. H
can be found using SVDs. We apply this perspective transform and get an extracted page, as shown in
figure 3(d).

3.3.4 Super-resolution

In addition to extracting the page, we can post-process it to ensure clarity. To accomplish this, we have
implemented an iterative super-resolution algorithm based on previous work by Irani and Peleg [8]. The
premise of the algorithm is as follows: take multiple low resolution images of the same page, and assume
that some higher resolution image exists. Make a guess at what this higher resolution image is. Then,
sample the high resolution image to get what should be the low resolution images. Find the error from
the actual low resolution images, and back-project this error to correct the high resolution image. The
results we achieved with this algorithm can be found in figure 4.

Figure 4: Super resolution

Unfortunately, this iterative solution takes around 20 seconds to run on multiple small images of size
200x300. Pages we extract from the video are much larger than this size, making the algorithm take
even longer. This run-time is too slow for practical purposes.

3.4 Question to Page Mapping

We require two pieces of user input: a digital blank (unanswered) version of the exam and knowledge of
which questions lie on each page. Using this, we match blank pages of the exam with answered pages
of the student’s exam to determine which questions are answered on which pages. This approach works
even if a student’s exam is reordered, or has additional or missing pages.

For each pair of pages between the blank exam and student exam, we compute SIFT keypoints and
feature descriptors. We match these keypoints and pick the pairs that have low Euclidean distance to
be in our set of best matches.

We then apply RANSAC. We take random subsets of three matching keypoint pairs in our set
of best matches, and compute an affine transformation between them. Then, we find how good this

4

transformation is by determining how many keypoints outside of our subset are correctly mapped by it
(i.e., we compute the number of inliers). We take the transformation with the most inliers to be the
best.

If the rotation and scale of the best affine transformation are roughly close to 0 and 1, respectively,
we deem that the student exam page is a potential match for the blank exam page. We look at potential
matches across all pages of one student’s exam, and take the student exam page that has the most
keypoint inliers as the best match. Indeed, we match each page of one student’s exam to a unique blank
exam page or no page at all (since some student exams may contain additional pages).

3.5 Student Name Detection

3.5.1 Crop/Clean Student Name

We require user input to identify the bounding box around the name field of the blank exam. We also
need a roster of all students in the class. Given these, we transform the front page of each student exam
to match the front page of the blank exam. Then, we crop out the name given our knowledge of the
bounding box.

Often, there is noise in the resulting cropped field, such as a printed line below the student’s name.
To remove it, we apply a Canny edge detector to the cropped image and find lines using the Hough
transform. We clear pixels corresponding to lines, except for those that help make up characters. We
also remove pixels that are not part of a large enough group to constitute a character.

3.5.2 Segmentation and Classification

Next, we segment the image into distinct characters using two approaches: drawing vertical lines, and
applying flood-fill. These approaches are fairly naive, especially when it comes to cursive or cramped
handwriting (see figures 7 and 8). We then train a classifier to identify each character.

3.5.3 Choosing Best Roster Name

Finally, we correct the name outputted by the classifier by choosing the closest name from the roster.
Many of the roster names include middle names or suffixes, but these are often omitted on the student
exams. Consequently, we compare the outputted name with different variations of the full name from
the roster.

We pick the closest name from the roster using two approaches: edit distance and the Needle-
man–Wunsch algorithm [12], often used for sequence alignment in computational molecular biology. The
Needleman-Wunsch algorithm differs from typical edit distance in that its goal is to maximize a string
alignment score, and it gives unique (positive and negative) costs for insertions, deletions, and each type
of substitution (including a letter with itself). For both approaches, we use a learned substitution cost or
score. Because the classifier often mistakens certain letters for others (e.g. N and M), a smaller penalty
can be applied for a substitution between N and M. For the actual score of substitutions between letters,
we used the raw proportion that a letter is classified as another, calculated using 10-fold cross-validation
on our training set. So if N is classified as M 6% of the time, a match for N and M would give a score
of 0.06 under Needleman-Wunsch. With edit distance, we take the cost = 1 - score, so N substituted as
M would have cost 1 - 0.06 = 0.94.

4 Results

4.1 Key Frame Identification

We ran our key frame identification on 5 videos totaling 54 pages. These videos are relatively clean; the
exam is placed on a wood/uniform background and steadily flipped. Of the 54 frames containing pages,
53/54 were correctly identified for an accuracy of 98.1%. There were 6 pages that were identified twice,
so we had an 11.1% false positive accuracy.

Decreasing our threshold to circumvent false positives resulted in 3 fewer frames being identified
correctly. We would much rather have false positives than fail to identify pages, so we deem the former
result (53/54 correct) better.

5

Figure 5: Hough Transform doesn’t find left line Figure 6: Bounding box due to background lines

4.2 Page Extraction

We manually extracted 54 frames of pages out of 5 videos to test page extraction. These frames have
varying backgrounds (wood, uniform color) and page orientations (horizontal, vertical, slanted). After
applying the algorithm mentioned in 3.3, we manually looked at the results to determine if each page was
successfully extracted. We specifically looked for a proper bounding box around the page and accurate
perspective correction. Of the 54 pages, 51 were correctly extracted, resulting in an accuracy of 94.4%.

Of the three incorrect cases, there were two primary problems:

1. If the 20 most significant lines in the image don’t include one or more lines necessary for the
bounding box, the algorithm fails. This is evident in figure 5, in which we’re unable to identify the
left bounding box line using the Hough transform. You’ll notice that this image has a graph on it
with many grid lines. These grid lines are deemed more significant than the left bounding box line
by the Hough transform. Because of this, we inevitably don’t find the correct bounding box, and
fail to extract the full page.

Generalizing this, our algorithm will not work well when there are many dominant lines in an image
that are not the edges of a page. These lines will make up the majority of our 20 line consideration
set and prevent us from finding the correct bounding box.

2. As seen in figure 6, we can sometimes identify superfluous lines outside the page that affect our
result. On a wood background, our algorithm may identify lines that are in the wood texture
itself. These lines can make the bounding box larger than it needs to be. Indeed, since we try to
maximize the area of our bounding box, our algorithm is very susceptible to lines that extend past
the exam page, as they allow for a greater area. Hence, we require that the background has few
significant lines so as to prevent imprecise bounding boxes.

4.3 Question to Page Mapping

To find the best choice of feature detector and descriptor, we tried permutations of SIFT, SURF, and
ORB on 10 randomly chosen student exams, each with 11 pages. Note that we compared each page of a
student’s exam with each page of the blank exam for a total of 10 ·11 ·11 = 1210 comparisons. Accuracies
and run times are reported in the table below. The best combination was SIFT/SIFT, with an overall
accuracy of 99.3% and a respectable run time of 93 seconds. We also experimented with BRIEF, FAST,
GFTT, BRISK, and FREAK, but they had much worse performance.

To match keypoints, we tried both Euclidean distance and FLANN based matchers. There was little
difference in the accuracies, so we only report results with the FLANN matcher in Table 1. The last row
contains the results of running SIFT/SIFT on all 162 exams in our dataset; we have a total accuracy of
99.5%.

6

Detector Descriptor True positive True negative Run-time

ORB SIFT 90.9% (100/110) 99.5% (1094/1100) 87.8s
SIFT SIFT 91.8% (101/110) 100% (1100/1100) 93.5s
SURF SIFT 97.3% (107/110) 99.8% (1098/1100) 313.8s
ORB SURF 32.7% (36/110) 99.9% (1099/1100) 76.1s
SIFT SURF 0% (0/110) 100% (1100/1100) 72.4s
SURF SURF 70% (77/110) 100% (1100/1100) 145.7s
ORB ORB 0.90% (1/110) 100% (1100/1100) 48.4s
SURF ORB 0% (0/110) 100% (1100/1100) 101.3s
SIFT SIFT 95.7% (1694/1771) 99.99% (17707/17710) 28m23s

Table 1: Preliminary results from mapping 10 randomly chosen student exams with 11 pages each.
Final result is from mapping all exams, achieving very high accuracy.

4.4 Student Name Detection

4.4.1 Crop/Clean Student Name

Finding a transformation between the front page of a student’s exam and the front page of a blank exam
had perfect accuracy. The bounding box was chosen to be sufficiently large to contain all student names
after the transformation.

4.4.2 Basic Segmentation

In one approach, we segmented characters based on whether we could draw a vertical line in between
them. Handwritten characters, however, are often slanted; thus, even characters that aren’t touching are
sometimes segmented as one (see figure 7).

Figure 7: Segmenting using vertical lines. 5 of the 13 characters are correctly segmented.

In another approach, we identified characters using a flood-fill algorithm. Our algorithm assumes
that a character is comprised of connecting pixels, and applies flood fill to extract them. We use some
heuristics to denoise the image to prevent spurious characters from being detected. This can fail in two
general cases: it can segment a character with many strokes into many characters, and it can fail to
segment characters with overlapping pixels.

Figure 8: Segmenting using flood-fill. 11 of the 13 characters are correctly segmented.

There are trade-offs to both approaches. The vertical-line approach is better at keeping characters
together when some strokes are disconnected, such as with the characters i and j. It’s also better
for characters that can have space between multiple strokes, like T and H. The flood-fill approach, in
contrast, works well with slanted handwriting, and does not rely on perfectly vertical characters.

Poor segmentation can greatly affect the performance of the entire pipeline. For illustration, we
compared the pipeline performance on all 168 student exams against the pipeline performance on a
selected 37 student exams that we deemed ”easily segmentable”. We found that better segmentation
increases the accuracy of the entire pipeline 3-fold. Results are in table 4.

7

4.4.3 Basic Classification

Once segmentation is complete, we run a classifier on the characters to identify each one. There are two
elements to our character classification: deciding which features to use, and choosing the best classifier
type. The most basic features we can use are pixel values. A more complex metric is a histogram
of oriented gradients (HOG), which specifically characterizes shape using gradients. Combined with a
spatial pyramid, HOG becomes decently robust to rotation and translation.

For classifiers, we experimented with KNN (using different values of K) and SVMs (with different
values of γ). We ran 10-fold cross validation on our training dataset to find the accuracies of the
aforementioned features and classifiers. While we trained on 52 labels, we counted a labeling as correct if
it was classified as the uppercase or lowercase character. For our goal of classifying names, this distinction
is relatively unimportant, especially since we use case-insensitive edit distance. Results are summarized
in table 2.

Features Classifier Parameter Dataset(s) Accuracy

Normalized Pixels KNN K = 5 Kassel 77%
Normalized Pixels SVM γ = 0 Kassel 20%

HOG KNN K = 5 Kassel 77%
HOG KNN K = 5 Chars74K 86%
HOG KNN K = 5 Both 79%
HOG KNN K = 10 Both 79%
HOG KNN K = 20 Both 78%
HOG SVM γ = 0 Both 44%
HOG SVM γ = 0.1 Both 71%
HOG SVM γ = 1 Both 77%
HOG SVM γ = 10 Both 82%

Table 2: Results from character classification with 10-fold cross validation.

The best performances from KNN and SVMs were comparable. While the 10-fold cross validation
results show that the performances using pixel values and HOG as features are comparable, using HOG
features proved much better when we classifying real images. This was expected, since HOG features
are more robust to inter-class variability.

We chose to use KNN for future classification since the accuracies were comparable, and because the
KNN classifier is much faster in both training and prediction.

Next, we tested character classification on our exam data. To prevent our results from being skewed
by segmentation, we collected 37 names that are near-perfectly segmented by our two approaches. We
applied Gaussian blur and thresholding to these images to make them clearer and more similar to the
characters in our dataset.

Figure 9: a) Raw image. b) After Gaussian blurring. c) After thresholding.

The 37 names had 412 characters in total. Results are summarized in table 3. Character accuracy
was lower because the training set was written with clear strokes on a tablet, much different from the

8

pencil/paper writing in the exams. This is evidenced in the results. Indeed, accuracy was significantly
worse without both thresholding and Gaussian blur.

Blurring without thresholding achieved the worst accuracy, since blurring dampens all of the pixel
values and reduces the HOG magnitude. Thresholding is therefore needed to remedy this effect from
blurring. But blurring is also vital to thicken the characters and make them clearer. Both blurring and
thresholding work in tandem to create the best results.

Gaussian Blur* Thresholding? Character Accuracy

None None 22.6% (93/412)
(5, 5), 7 None 14.6% (60/412)

None Yes 23.1% (95/412)
(5, 5), 6 Yes 60.4% (249/412)
(5, 5), 7 Yes 60.4% (249/412)
(5, 5), 9 Yes 60.4% (249/412)
(3, 3), 9 Yes 57.3% (236/412)
(7, 7), 9 Yes 55.8% (230/412)

Table 3: Results from character classification on selected 37 exams test set.
* The Gaussian blur is characterized by: (kernel width, kernel height), standard deviation.

4.4.4 Choosing Best Roster Name

Following classification, we apply edit distance to find the closest roster name to our predicted name.
The results are summarized in table 4. We found having a slightly increased deletion cost yielded highest
performance. This makes sense; it is much more likely for our segmentation to group multiple characters
together than it is to over-segment. Hence, deletions should occur very rarely.

We also ran the same experiments using the Needleman-Wunsch scoring, and we got comparable
results. While the Needleman-Wunsch algorithm had more parameters to tune, the more basic edit
distance proved already to be optimal given our training set. We have only included results from the
more basic edit distance because their parameters are easier to interpret.

Edit Distance* Test Set Segmentation Roster Name Accuracy

(1, 1, 1) All Vertical-line 29.0% (45/155)
(1, 1.5, Variable) All Vertical-line 32.9% (51/155)

(1, 1.5, 1) Segmentable 37 Vertical-line 91.9% (34/37)
(1, 1.5, 1) Segmentable 37 Flood-fill 78.4% (29/37)
(1, 1.5, 1) All Vertical-line 32.9% (51/155)
(1, 1.5, 1) All Flood-fill 30.3% (47/155)

Table 4: Results from the entire pipeline.
* The parameters are characterized by: (insertion cost, deletion cost, substitution cost).

5 Conclusion

Our pipeline shows much promise to streamline exam digitization. We eliminate much of the scanning
process with key frame identification and page extraction. We then proceed to find which questions are
answered on which pages and determine the owner of the exam. The first three steps are done with high
accuracy, curbing the need for manual intervention and saving instructors time.

The last step, name detection, could use improvement in character segmentation. As seen in our
results, good segmentation can increase name detection accuracies three-fold from 30% to 90%+. Indeed,
we achieved 92% accuracy when we could properly segment names. An HMM model that uses the roster
of student names along with our classifier to assign probabilities could prove much more effective than
our current strategy [1]. Various other character segmentation methods also exist [4].

9

References

[1] A. El-Yacoubi et al. “An HMM-Based Approach for Off-Line Unconstrained Handwritten Word
Modeling and Recognition”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence
21.8 (1999), pp. 752 –760.

[2] N. Arica and F. T. Yarman-Vural. “An Overview of Character Recognition Focused on Off-Line
Handwriting”. In: IEEE Transactions on Systems, Man, and Cybernetics 31.2 (2001), pp. 216–233.

[3] J. Canny. “A Computational Approach to Edge Detection”. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 8.6 (1986), pp. 679–698.

[4] R. Casey and E. Lecolinet. “A Survey of Methods and Strategies in Character Segmentation”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence 18.7 (1996), pp. 690–706.

[5] A. Cavallaro and T. Ebrahimi. “Video object extraction based on adaptive background and statis-
tical change detection”. In: Visual Communications and Image Processing 4310 (2001), p. 465.

[6] Crowdmark. url: https://crowdmark.com/.

[7] Gradeable. url: https://www.gradeable.com/.

[8] M. Irani and S. Peleg. “Improving Resolution by Image Registration”. In: Graphical Models and
Image Processing 53.3 (1991), pp. 231–239.

[9] R. Kassel. “A Comparison of Approaches to On-Line Handwritten Character Recognition”. In:
MIT Doctoral Dissertation (1996).

[10] C. Kim and J. Hwang. “Fast and automatic video object segmentation and tracking for content-
based applications”. In: IEEE Transactions on Circuits and Systems for Video Technology 12.2
(2002), pp. 122–129.

[11] S. Madhvanath. “The Role of Holistic Paradigms in Handwritten Word Recognition”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 23.2 (2001), pp. 149–164.

[12] S. Needleman and C. Wunsch. “A General Method Applicable to the Search for Similarities in the
Amino Acid Sequence of Two Proteins”. In: Journal of Molecular Biology 48.3 (1970), pp. 443–453.

[13] The Chars74K Dataset. url: http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/.

[14] J. Zhang and R. Kasturi. “Extraction of Text Objects in Video Documents: Recent Progress”. In:
The Eighth IAPR International Workshop on Document Analysis Systems 53.3 (2008), pp. 5–7.

10

https://crowdmark.com/
https://www.gradeable.com/
http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/

	Overview
	Previous work
	Online Grading
	Computer Vision Techniques
	Key Main Contributions

	Proposed Method
	Data
	Key Frame Identification
	Page Extraction
	Find Lines
	Determine Bounding Box
	Correct Perspective
	Super-resolution

	Question to Page Mapping
	Student Name Detection
	Crop/Clean Student Name
	Segmentation and Classification
	Choosing Best Roster Name

	Results
	Key Frame Identification
	Page Extraction
	Question to Page Mapping
	Student Name Detection
	Crop/Clean Student Name
	Basic Segmentation
	Basic Classification
	Choosing Best Roster Name

	Conclusion

