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Section 1: Introduction 

 One of the difficulties of trying to determine information about a 3D scene or the 

intrinsic properties of a camera based on a 2D image is not knowing the sizes of arbitrary 

objects in the image relative to the world coordinate frame. Many different techniques are 

used to try to estimate this information, both automatically and with human assistance. Most 

calibrations of cameras are done in a laboratory setting and require a fair amount of 

supplementary supplies and human interaction. [6, 7] This can be cumbersome and 

inconvenient for people who do not have access to the necessary resources or do not possess 

the technical skills required. Other more automatic approaches involve using heuristics about 

the scene and attempting to find distances between points or correlations between multiple 

images to determine the camera calibration. [5] This approach, however, can be difficult and 

prone to error. A system that is highly automated without needing difficult to obtain materials 

would help make camera calibration more accessible. 

 Another place where lack of knowledge about relative distances in a scene can cause 

issues is in scene reconstruction. There are many techniques that can be implemented to try to 

reconstruct a scene from one or multiple 2D images, however, as before, automatic ones are 

not robust and are prone to error. [6, 7] These can be improved through human assistance, 

such as picking points to provide a correlation or providing distances between objects, but that 

can be a difficult task that requires undesired time and effort. A method of gathering 

information about a scene automatically with very little human interaction can be leveraged to 

help easily build a more accurate 3D reconstruction.  

 In this project, I propose that some fixed size objects, when placed in a scene, can be 

utilized to gain information that would not normally be available. There are many objects that 

take on very well defined dimensions, shape, and design that are readily available to most 

people. An example, which we will be focusing on this project, is a US dollar bill. The fact that 

dollar bills take on a known shape, design, and size can be utilized in some automatic 

techniques for calibration and scene reconstruction to create more accurate and robust results. 

Further, because dollar bills are so ubiquitous in society, it is not unreasonable for anyone who 

is attempting to reconstruct a scene or calibrate an image to come by a dollar for assistance. 

The goal of this project is to detect dollar bills and use their size and design to assist in 

recreating aspects of the 3D scene and camera calibration. Though this technique could be 



applied in a variety of areas, this projects application domain is on mobile devices which are 

used by individuals who are not skilled in computer vision and where little is known about the 

camera. 

 

Figure 1: Overview of the technique 

Section 2.1: Previous Work 

Detecting objects in an image is a common computer vision problem. Many techniques 

have been developed to assist in object detection. Some techniques involve sliding a 

“template” of the object across an image. This is quite computationally intensive as well as not 

robust to changes in illumination, scale, or rotation. More robust techniques such as SIFT and 

SURF involve finding “keypoints” in an image of your object and matching those to similar 

keypoints in the image you are searching. [8, 9] Techniques have been developed to find 

keypoints that are robust to changes in illumination, scale, and rotation. One shortcoming of 

this technique is that it often does not include information about how the keypoints relate to 

one another. Spatial matching techniques have also been developed that look for distinct 

features as in SIFT and SURF, but also keep track of the shape of the object by searching for the 

spatial relationship between keypoints. [3] 

Calibrating a camera is another common task in computer vision that also has been 

heavily focused on in previous work. A technique involving a “checkerboard” image is the 

generally accepted method of performing camera calibrations. [5] A checkerboard of known 

size is placed in a scene and multiple images are taken. The corners of the squares within the 

checkerboard are known distances from each other. These corners are recovered either 

automatically or with human assistance and their locations are utilized to estimate the intrinsic 

parameters of a camera. This technique often requires the printing and careful measuring of a 

checkerboard image. Other work has been done to automatically detect the corners and 

estimate the real world coordinates of the checkerboard squares. However, this still usually 

requires the size of the image be supplied to the calibration algorithm.  



The actual reconstruction of a scene is the third problem this project aims to address. 

This is a difficult process that has had a wide variety of techniques applied to it. Epipolar 

geometry can be utilized in a scene to attempt to relate points between images. Once accurate 

and dense point correlations have been found between images, a fundamental matrix can be 

estimated between them. [7] This gives rise to “epipolar lines” which help further refine 

corresponding points between two images and can help rectify them. [10] These techniques 

can be prone to error and often can only solve a scene “up to scale” without a good camera 

calibration and information about distances within the scene. 

Section 2.2: Contributions 

My project aims to contribute to all three of the issues mentioned above. Namely, I 

have a robust method of detecting a dollar bill in a scene, which provides an automated 

method of calibrating a camera which can assist in 3d scene reconstruction. The system of 

object detection is able to find dollar bills accurately and robustly in a variety of lighting, at 

virtually any rotation, and at a variety of scales. I am confident that our algorithm can detect 

dollar bills with a high level of accuracy taken with typical cameras under most normal 

operating conditions.  

Due to the accuracy of the detection algorithm, a camera calibration is able to be 

determined from a series of images of the same scene. The dollar matching technique is able to 

compute a homography which can convert any 2d point in our dollar template to the equivalent 

point in the search images. This allows a series of points at known distances to be recovered in 

each image. The prior knowledge of the size of a US dollar allows a correspondence between 2d 

points in our search images and the true locations in 3d space to be created. This can be 

utilized, similarly to the checkerboard square locations, to estimate the intrinsic parameters of 

the camera. Furthermore, a rotation and translation vector relating to the location of the 

camera in each search image can be estimated which also assists in 3d reconstruction. 

Most techniques for reconstructing 3d scenes from a series of 2d images rely heavily on 

point correspondences between images. These correspondences can be used to rectify two 

images that were taken from a camera at two different perspectives. However, it can be 

difficult to know if these correspondences are accurate. The detection of a dollar in a scene 

immediately provides a large set of correspondences between images. Further, the camera 

calibration allows 3d points to be triangulated between sets of two images. This calibration 

helps solve the 3d calibration “to scale” as it has some absolute distance information built in. 

Further, anything that is on the same plane as the dollar bill can easily be measured which gives 

a simple, albeit naïve, way of measure distances of objects in an image.   

Section 3.1: Technical Summary 

This project utilizes some well-known techniques to achieve the contributions it aims to 

provide. The first problem, the dollar bill detection, utilizes the well-known SIFT (Scale-Invariant 



Feature Transform) technique. This provides an abundance of keypoints that can be matched 

into our search images. However, directly matching sift keypoints leads to many false matches 

which corrupts our detection. Several filtering/refining techniques are used to create a better 

set of matches and determine the best homography between our template and the search 

image. 

Once the dollar bill detection technique had been refined enough to be robust, this 

detection algorithm is applied to a series of images of the same scene. The homographies are 

stored and used to generate a series of “grids” that correlate to points that are known distances 

apart from each other. Care is taken to ignore images that don’t have enough valid keypoint 

matches to constitute a valid dollar detection. Once these are calculated a camera calibration is 

estimated. 

The last step is to move towards a 3d reconstruction. Many different techniques can be 

combined to help facilitate generating a good reconstruction. It is often helpful to use 

combinations of two images to generate point clouds for that pair of images. This can then be 

repeated for all of your images to create a 3d cloud of points that rebuilds the scene. Further, 

one can use two images to create a disparity map which shows the differences between the 

two images, and therefore the 3d depth they exhibit. Because the calibration matrices are 

known, points can also be triangulated between sets of images to further get points in 3d. 

Section 3.2: Technical Details 

Section 3.2.1: Object Detection 

The object detection technique begins by computing SIFT keypoints for the template 

image. A high resolution image of a dollar is used to compute these keypoints. The SIFT 

algorithm works by finding features in the image that correspond to corners or other points 

that are likely to be detectable despite changes in orientation, scale, or illumination. A 128x1 

vector is computed which contains information about each keypoint. Due to the high resolution 

of our image, originally around 15,000 keypoints were discovered in the template. 

Next SIFT keypoints are computed on the “search images” that contain an image of a 

dollar within them. These keypoints are matched to the keypoints calculated in the template 

image. Each template keypoint is matched to its closest vector in the search image. 

Additionally, its second nearest match is stored as well. As is mentioned in [9], as long as the 

ratio of the distance between the first match and the second match is below .8, the match can 

be considered distinct and therefore a legitimate match. All others are removed as invalid 

matches.  

At this point, the number of valid keypoint matches has significantly been reduced. 

Many keypoints from the template obviously are not good points as they were determined to 

be invalid. In order to eliminate bad keypoints, I ran the matching algorithm against a training 



set of images, and kept track of which keypoints were kept, and which were thrown out for 

each image. A histogram of the number of images that matched each keypoint was created. I 

then removed keypoints from my template set that only matched to one or two images. This 

cut the total number of keypoints being matched by about 4/5. This led to less false matches as 

well as more rapid matching. 

The next goal is to recover a homography from these matches. I found that many times 

several template keypoints matched to the same point in the search image. This led to the 

homography often matching all of those keypoints to that one point and thinking it had a good 

match. In order to combat this, anytime multiple keypoints match to the same point in the 

search image, the best match is kept and all others are filtered out.  

At this point a fairly good set of matching keypoints has usually been recovered. From 

there a RANSAC method of recovering a homography is utilized. 4 points are chosen at random 

and are used to generate a homography estimate. Each template keypoint is projected into the 

search image via the homography and the number of keypoints that are within a certain 

threshold (15 pixels) of their matching keypoint is recorded. This procedure is repeated until 

the homography estimate can be confidently considered accurate. This homography is stored 

for that image and gives the relation for that images dollar detection. If no homography returns 

enough keypoint matches within the threshold, it is determined the dollar was not found and 

that image is not used. 

Section 3.2.1: Camera Calibration 

The benefit of using a fixed size object such as a dollar is evident when doing camera 

calibration. The size of a US dollar is well established (155.956mm x 66.294mm). This allows one 

to create a grid as in the checkerboard example. In this project, the dollar is divided up into 40 

different points. The width is divided by 8 and the height by 5, creating a grid of 40 points at 

known distances from each other. This is then projected into each image where the dollar was 

found by the associated homography. This gives a large set of 2d image to 3d scene coordinate 

correlations. This is then used to estimate an intrinsic camera calibration matrix as well as 

rotation and translation matrices for each image in the same manner as [5].  

Section 3.2.1: 3d Scene Reconstruction 

Multiple techniques can be used to help reconstruct a scene. A simple naïve approach 

involves using the camera calibration matrix as well as the rotation and translation for each 

image, to triangulate points from 2d to 3d in sets of two images. Additionally, disparity maps 

can be created for each of the sets of 2 images that were captured. Each set of images is 

rectified using the camera calibration matrix, distortion parameters that are estimated from the 

calibration, and the rotation and translation between the two images. 

Once the images are rectified, a disparity map is created triangulating the difference 

between the two images at each point. This can then be projected to 3d in order to get a 



reproduction of the scene. When done with all the combinations of images, this leads to a 

reproduction of the scene in 3d.  

Section 4: Experiments 

 Two image sets were used to test the dollar recognition portion of the algorithm. The 

first set consists of 23 images of a lone dollar bill. These images were taken at a variety of 

distances and orientations. The images are taken with normal lighting in the room and did not 

utilize a flash. Several of the images are somewhat dark or blurry. The second image set 

consists of 22 images taken of a scene with several other objects also present such as a Rubik’s 

cube and deck of cards. The first 14 images utilize the flash and are very clear and crisp. The last 

8 have the same lighting as the first set and are occasionally blurry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Dataset 2(Left Side) and Dataset 1 (Right side) 

To test the dollar finding, I manually found the corners of the dollar in each image to 

provide a ground truth. Next I computed the corners using our dollar detection algorithm and 

calculated the average error between the estimated and given corners. I then established a 

threshold, via visual inspection, of what constitutes a dollar detection and what is a failure. 



After observing the results, a threshold of a pixel error over 120 was chosen to constitute a 

failure. For the first dataset 19/23 images were detected successfully.  Among the successful 

detections, there was an average pixel error of 21.64 pixels. With our image sizes of 4000 x 

3000 pixels this is a low error that indicates a very accurate match. 

For the second dataset we found that every image in the good lighting portion was 

found (14/14 images). This section yielded an average error of 12.929 pixels which is again very 

accurate. When you include the images from that dataset taken under normal room lighting, 

the dollar was detected in 18/22 images. It is also observed that the images that failed were 

particularly blurry or taken from unusually low angles.  

Once the dollar has been located it is used to generate a set of known 2d to 3d point 

mappings for each image. This is used in the camera calibration. To test this portion the 14 

images that were detected in our second dataset are utilized. The calibration manages to yield 

a camera calibration matrix and rotation and translation matrix for each image. In order to 

gauge the accuracy of the calibration, the reprojection error is calculated. A value that is close 

to zero for the reprojection error reflects a good calibration. After running the calibration 5 

times, an average reprojection error of 1.7923 was observed. This is approximately zero and 

shows that the algorithm achieved a good calibration. 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: 2 rectified Images (Top) Disparity maps generated from those images (Bottom) 

The last experiment conducted involved testing 3d reproduction. In order to test this 

reproduction a disparity map was created between two images. First the two images are 



rectified to make their epipolar lines parallel. Then a disparity map between them is generated. 

Because the images are taken from angles that are quite different from each other it was 

difficult to achieve a good disparity mapping. Triangulating individual points was also 

investigated but highly reliable 3d points were difficult to recover. The disparity maps that were 

recovered can be seen in Figure 3.  

Section 5: Conclusions 

Overall this project achieved most of its goals. The dollar bill detection algorithm is 

robust to changes in scale, rotation, or illumination. Further, it is able to detect dollars that are 

partially occluded with a high level of accuracy. The refinement of keypoints from our template 

led to faster and more accurate matches. Using RANSAC to recover homographies between the 

template and search images further refines the matching and allows us to calibrate the 

cameras. 

The camera calibration is generated with an adequate degree of accuracy. Though it is 

not as robust/accurate as using a checkerboard pattern in a laboratory setting, the benefits of 

this algorithm are that it is done automatically and doesn’t need difficult to acquire assistive 

tools like checkerboard patterns to do the calibration. The calibration yielded a low 

reprojection error and the translation and rotation vectors that are recovered assist in 3d 

reproduction. 

Though it is difficult to get a truly 3d representation of the scene, the disparity maps 

that were created show that 3d depth information can be recovered. If care is taken to adjust 

the settings and take images from very similar positions, I am confident that this algorithm 

would allow one to recover a fairly accurate 3d representation of the image. These techniques 

could easily be adapted to work on a mobile device to allow everyday people to recover 

information about scenes, such as measuring distances, just by taking an image of a dollar. 
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