
1

Learning Binary Descriptors from Images
Philip Lee, Aditya Srinivas Timmaraju
{philee,adityast}@stanford.edu
Department of Electrical Engineering

Stanford University

Abstract—Binary descriptors have become popular for
computer vision tasks because of their potential for smart
phone applications. However, most binary descriptors have
been heuristically hand-crafted. In this paper, we present a
methodology to learn sparse binary descriptors from images.
A new sampling and comparison pattern is also introduced
and its advantages over the existing descriptors are discussed.
We show experimental results for the task of matching pairs of
images on the Patch dataset, using our descriptor MALCOM
(Machine Learned Compact Descriptor). Results indicate that
MALCOM’s performance surpasses that of FREAK, a state-
of-the-art binary descriptor.

I. INTRODUCTION

Local keypoint descriptors are an integral part of many
computer vision algorithms such as object matching and
recognition. These descriptors are methods to encode infor-
mation about an image patch around a detected keypoint.
Several popular descriptors, such as Scale-Invariant Feature
Transform (SIFT) [1], Speeded-up Robust Features (SURF)
[2], Binary Robust Invariant Scalable Keypoints (BRISK)
[3], and Fast Retina Keypoint (FREAK) [5] have been
devised for different purposes. In recent times, binary
pattern based descriptors have become popular because of
their advantages in computational complexity. These are
especially suited for applications that need to run in real-
time and/or on a smartphone.

Currently, most binary descriptors rely on hand-crafted,
heuristic structures. There is no way to tell whether these
are the optimal descriptors for a given task. The major moti-
vation for our project stems from these observations. In this
report, we present a framework for using machine learning
to devise optimal binary descriptors, given a database of
training images. We introduce a new sampling and com-
parison pattern to arrive at our binary descriptor. By opti-
mizing over an appropriately formulated loss function, we
also learn the relative importances corresponding to each
dimension in our vector. In this context, Figure 1 briefly
outlines the logical flow of our method. We demonstrate
results using the learned descriptor MALCOM, compared
to the state-of-the-art descriptor FREAK, in relation to an
image matching task.

II. BACKGROUND

In this section, we briefly present previous work on
descriptors, with an emphasis on binary descriptors. These
differ from general keypoint descriptors in that they de-
scribe images patches using only a string of bits. In

Fig. 1. A logic flow diagram of our approach

general, binary keypoint descriptors choose a pattern in
the image patch and make pairwise comparisons between
mean intensities over predetermined pairs of elements in the
pattern. These pairwise comparisons (for instance, whether
the first is greater or less than the second) are stored as
bits for the given image patch. Given a query image in a
recognition/retrieval task, the same pairwise comparisons
are used to extract a bit string for each keypoint in the
image. As a dissimilarity measure between two bit strings,
these methods use the Hamming distance (Bit-wise XOR
followed by counting 1s in the resulting string), which
is a natural extension of Euclidean distance for the case
of binary vectors. One major advantage of using binary
descriptors is that Hamming distance computation can be
performed very fast, since it can be implemented using
XOR and only involves fixed-point arithmetic.

A. Previous Work

Descriptors we reference can be broken into three
categories. These include SIFT-like descriptors, binary
descriptors, and weighted binary descriptors.

1) SIFT-like Descriptors: Scale Invariant Feature
Transform (SIFT) was developed by David Lowe and was
first published in 1999 [1]. It was one of the first methods
for keypoint detection and description. Using Difference
of Gaussians as a keypoint detector, it combines sets of
orientation histograms into a 128 dimension keypoint
descriptor. SIFT has been widely adopted for use in many
computer vision tasks, and several offshoots to SIFT
have been proposed, such as GLOH, PCA-SIFT, and
CARD [9] [10] [11]. However, SIFT remains the most

2

Fig. 2. Illustration of FREAK sampling pattern. Image courtesy [5]

well known keypoint descriptor today. In 2006, H. Bay
et al. presented the Speeded-up Robust Features (SURF)
descriptor [2]. Designed to be faster than SIFT, it uses
Haar-wavelet responses efficiently computed on integral
images to approximate similar orientation histograms.
These descriptors can be 64 or 128 dimensional vectors.

2) Binary Descriptors: The recent surge in the
popularity of smartphones and embedded systems has led
to increased demand for even faster and more efficient
descriptors. In 2010 M. Calonder, et. al presented the
Binary Robust Independent Elementary Features (BRIEF)
[4]. These binary feature descriptors are computed by
applying Gaussian smoothing kernels over the image
patch, followed by performing pairwise comparisons
between randomly selected pairs. These descriptors have
fast computation time and can be compared efficiently
using Hamming distance, as opposed to Euclidean distance
for real vectors. This work effectively showed that patches
can be described by binary strings and measured the
computational advantages for doing so. Other binary
descriptors in the same vein have been proposed such
as Binary Robust Invariant Scalable Keypoints (BRISK)
[3], Oriented Fast and Rotated BRIEF (ORB) [7], and
Fast Retina Keypoint (FREAK) [5]. The main difference
between these approaches are the small modifications in
filters applied and pairwise comparisons performed. ORB
is designed to be invariant to rotation and robust to noise
by taking into account the orientation of the keypoint.
BRISK is made to be invariant to scale and rotation
by using circular sampling patterns instead of randomly
chosen ones. FREAK emulates the sampling pattern of the
human retinal system in a pattern shown in Figure 2.

3) Learned Binary Descriptors: Although binary de-
scriptors suffice in many practical applications, they are still
not as robust or effective as SIFT-like descriptors. There
have been a few recent studies in applying machine learning
techniques to optimize the efficacy of binary descriptors.
Bin boost is an approach that uses boosting to combine
advantages of different binary descriptors into a single

feature vector [12]. Another approach is using a Fisher
Discriminant method to project the image into a dimension
with highest discrimination [13]. Of particular note to our
project is work done by B. Fan et. al, learning weights
for binary descriptors [6]. In this paper, they begin with
established descriptors and learn a margin classifier to
discriminate between pairs of patches that are matches
against pairs that are not. However, this classifier supplies
weights to each bit position, losing some of the main
computational advantages of binary descriptors.

B. Our Contributions

We take inspiration from the idea of finding weighted
binary descriptors, but deviate in two major fashions. First,
instead of keeping the weights (and adding computational
complexity to the binary descriptors) we only use weights
as a measure of importance in a bit position and threshold
positions by learned weights. So, we do not need to resort to
using weighted Hamming distance. Second, instead of using
an already established descriptor and assigning weights to
its bit positions, we propose a new sampling pattern and
comparison structure. As will be seen in the following
section, this structure captures a novel way to encode
more comparisons than those needed to be stored in our
descriptor. Once we learn the weight vector, we retain only
the bit positions that are most correlated with our model
(those with the weights that are found to be the highest).
Our approach is discussed in more detail in the following
section.

III. TECHNICAL APPROACH

This section first describes a high level overview of
our approach. It then gives more details about the specific
methodologies we adopted.

A. Summary of Technical Solution

A major difference between various binary descriptors
lies in the sampling pattern used and comparisons per-
formed. In our approach, instead of using a relatively few,
heuristically chosen comparisons from the sampling pattern
as in current binary descriptors, we choose a pattern with a
large number of comparisons with the intention of removing
ones found to be less important. Thus, our approach is to
enumerate many comparisons and use a machine learning
approach to prune them down. To accomplish this, we
used a multi-level square comparison pattern as shown in
Figure 3. We label our descriptor, MALCOM (Machine
Learned Compact descriptor). We then compute MALCOM
descriptors for image patches from the Patch dataset [8].
We used these descriptors to learn a margin classifier to
distinguish between matching pairs of patches and non-
matching pairs. Finally, we thresholded the weights learnt
from our classifier to enforce sparsity (as it is, most weights
are found to be significantly low) and eliminate the extra
computational cost of a floating point multiplication. Each
of these steps is described in further detail in the following
subsections.

3

Fig. 3. Illustration of the Multi-Level Sampling Pattern. The image
is divided into large and small blocks. Pairwise comparisons are made
between mean intensities over these blocks.

B. Sampling Pattern
We developed a multi-level sampling pattern to effi-

ciently create as many meaningful comparisons as possible.
First, an image patch is divided into 4 x 4 blocks. We denote
these as large blocks. The average intensity over each of
these blocks is computed. At the second level, each of these
large blocks is itself further divided into 4 x 4 sub-blocks,
labeled small blocks. The average intensity over each of
these small blocks is computed. Thus, there are 16 large
blocks, each divided into 16 small blocks. This constitutes
a total of 256 small blocks (16 in each large block) over
the full image patch. The sampling pattern is depicted
in Figure 3. We then make pairwise comparisons in the
following three ways. First, we perform a comparison for
each pair of large blocks. This constitutes 120 comparisons
and results in 120 bits. Second, for each large block, we
compare the large block mean intensity to that of each
of its constituent small block means. This results in a
total of 256 bits. Finally, within a large block, we make
pairwise comparisons between all small blocks. This is
results in 1920 bits. Thus, our final binary string is 2296
bits long. These calculations are summarized in Table I.
It is important to note that all possible pairs of small and
large blocks would constitute

(
(16+256)

2

)
= 36856 bits. This

is more than an order of magnitude larger. Because of our
chosen framework, our method implicitly encodes some of
this transitive information, i.e., comparisons between small
blocks in different large blocks as well. To see this, we
highlight that we have comparisons between a large block
and its constituent small blocks, and also between large
blocks, which can lead us to deduce information about the
relationship between small blocks belonging to different
large blocks. Thus, much of the 36856 brute force vector
information would anyway be redundant. Our approach
encompasses a novel way to shrink it by an order of
magnitude.

C. Margin Classifier
Using our sets of 2296 bit keypoint descriptors found

for our training set, we learned a weight vector w for a

TABLE I
DIMENSIONS OF EACH CATEGORY

Type of comparison Calculation # Comparisons
Large-Large

(16
2

)
120

Large-Small 16 ∗ 16 256

Small-Small 16 ∗
(16
2

)
1920

Total 120 + 256 + 1920 2296

margin classifier similar to that in [6]. The main motivation
for assigning different weights to different binary positions
is that non-matching image pairs can be made to have
higher distance scores than matching image pairs. Owing
to the fact that matching is usually done by searching for
the nearest neighbor, the absolute value of the distance
scores is less relevant than the relative ranking among them.
These weights can be used to form a marginal classifier.
Additionally, the weights in this learned weight vector w
reflect the relative contributions of each of the bit positions.
The weights are learned in the following manner:

We first denote as WHam(X1, X2), the weighted ham-
ming distance between bit vectors X1 and X2 as follows,

WHam(X1, X2) =

n∑
i=1

wi ∗ (X1,i ⊕X1,j) (1)

A margin-one learning objective can be formulated using
the following set of constraints:

WHam(X1, X2) < WHam(Y1, Y2)− 1,

∀(X1, X2) ∈M, (Y1, Y2) ∈ N
(2)

where M and N are the sets containing matching pairs
and non-matching pairs of images respectively. From this,
the empirical loss function can be formulated [6] as,

l(w) =
∑

(X1,X2)∈M

∑
(Y1,Y2)∈N

max{WHam(X1, X2)−WHam(Y1, Y2) + 1, 0}
(3)

The optimization problem is formulated as,

w = argmin
w

(l(w) + λ ∗R(w)) (4)

where, the regularization term is set to R(w) = ||w||1
and λ = 100 in our experiment. We chose an L-1 norm
for regularization to encourage sparsity in the vector. For
our project, we formulated this as a convex optimization
problem and used the convex program software package
CVX to solve it [14] [15].

D. Thresholding Weights

As discussed in the previous sections, using weights for
bit positions negates the computational benefit to binary de-
scriptors. So, instead of retaining the added computational
complexity of floating point multiplications of learned
weights, we instead use weights as only a measure of
relevance for each bit position and threshold the dimensions
based on weights. This is equivalent to setting a weight

4

Fig. 4. Example of a Liberty patch

to be 1 if it is above our threshold and 0 if below. This
has two main advantages. It recovers the ability of binary
descriptors to use binary arithmetic and allows us to enforce
sparsity on our feature vectors. In the following section, we
show results for different levels of sparsity enforced (with
different thresholds) and also those obtained retaining the
weights.

IV. EXPERIMENTAL RESULTS

We have tested our new binary descriptor, MALCOM on
the Patch Dataset [8]. The Patch Dataset was specifically
designed to help in the evaluation of local image descriptors
and hence is suited for this purpose. The dataset contains
over 400k patches each from categories named Liberty,
Notre Dame and Yosemite. A sample patch from the Liberty
set is depicted in Fig 4. These patches were obtained
using Harris Corner detectors and Difference of Gaussian
detectors that have been corrected for scale. Each patch
is a 64 x 64 resolution image. In our experiments, we
learned the weights using images belonging to one category
and tested it on images from the other two categories. We
repeated this for all combinations, which sums to a total
of six different settings. In each setting, we used 6k patch
pairs for training and 45k patch pairs for testing.

We tabulate the results from two different methods. In
the first one (MALCOM), we use the full weight vector and
a weighted Hamming distance as the dissimilarity measure.
In the second method (H-MALCOM 128), we retain only
the top 128 bits (as indicated from the learned weights)
and use only Hamming distance, instead of a weighted
Hamming distance. We choose to retain 128 bits because it
is an integral multiple of the word length in most modern
processors.

Table II summarizes the results from our methods and
compares it to the performance of FREAK, the state-of-
the-art binary descriptor, in each of the six settings. Figures
5-10 depict the ROC (Receiver Operating Characteristic)
curves for each setting. In these plots, the curve for H-
MALCOM (16 bit) corresponds to the results obtained
using only the 16 most important bits in the descriptor and
H-MALCOM (256-bit) uses the top 256 bits.

We see that our descriptor outperforms FREAK in all
configurations. We attribute this to a few key characteristics
of our chosen descriptor. The first is the nature of multi-
scale comparisons, which inherently encodes comparisons
between small blocks in different larger blocks. Second,
the learning function identifies the most discriminative
dimensions. Importantly, as is done in previous works, we
do not rely on heuristics or other simpler arguments for
maximizing this discriminative information.

TABLE II
AREA UNDER THE ROC CURVES FOR DIFFERENT SETTINGS

Train/Test Configuration FREAK MALCOM H-MALCOM 128
Liberty/Notre Dame 0.838 0.934 0.932

Liberty/Yosemite 0.829 0.924 0.922
Notre Dame/Liberty 0.815 0.913 0.907

Notre Dame/Yosemite 0.829 0.926 0.921
Yosemite/Liberty 0.809 0.896 0.892

Yosemite/Notre Dame 0.863 0.935 0.933

Fig. 5. ROC Curve for Liberty/Yosemite (Train/Test) Configuration

V. CONCLUSION

There are several positive outcomes from this project.
We have designed a new sampling pattern for performing
pairwise comparisons to arrive at the binary descriptor. The
multi-scale structure inherently captures transitive com-
parisons between small blocks in different big blocks.
The learned weight vector is sparse. Even with as few
as 128 bits, our descriptor H-MALCOM 128 outperforms
FREAK, the current state-of-the art binary descriptor. Also,
compared to the method in [6], this approach does not need
to use a weighted Hamming distance and hence does not
accrue additional computational complexity introduced by
including the weights. Significantly, we underscore here
that the weights by themselves are not as vital as the impor-
tant dimensions learned in our descriptor. This is evident
from the relatively insignificant drop in performance from
MALCOM to H-MALCOM 128 in Table I.

ACKNOWLEDGMENT

The authors would like to thank project mentor Dr.
Alexandre Alahi for guidance in introducing us to this topic
and support throughout the project. In addition, we thank
Prof. Silvio Savarese and the CS 231A Teaching staff for
giving us the chance to learn about computer vision and
work on this project.

REFERENCES

[1] David G. Lowe ,“Distinctive image features from scale-invariant
keypoints” International Journal of Computer Vision 60.2 (2004): 91-
110.

[2] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool, “SURF: Speeded-
up robust features” in Computer Vision - ECCV 2006. Springer Berlin
Heidelberg, 2006. 404-417.

5

Fig. 6. ROC Curve for Liberty/Notre Dame (Train/Test) Configuration

Fig. 7. ROC Curve for Notre Dame/Liberty (Train/Test) Configuration

[3] Stefan Leutenegger, Margarita Chli, and Roland Y. Siegwart, “BRISK:
Binary robust invariant scalable keypoints” IEEE International Con-
ference on Computer Vision (ICCV), 2011.

[4] Michael Calonder, et al. “BRIEF: Binary robust independent elemen-
tary features” in Computer Vision - ECCV 2010. Springer Berlin
Heidelberg, 2010. 778-792.

[5] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst, “FREAK:
Fast retina keypoint” IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2012.

[6] Bin Fan, et al. “Learning weighted Hamming distance for binary
descriptors” IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2013.

[7] Ethan Rublee, et al, “ORB: An efficient alternative to SIFT or SURF”
IEEE International Conference on Computer Vision (ICCV) 2011.

[8] Matthew Brown, Gang Hua, and Simon Winder, “Discriminative
learning of local image descriptors” Pattern Analysis and Machine
Intelligence, IEEE Transactions on 33.1 (2011): 43-57.

[9] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors” Pattern Analysis and Machine Intelligence, IEEE Trans-
actions on, (2005): 1615-1630.

[10] Yan Ke, and Rahul Sukthankar, “PCA-SIFT: A more distinctive
representation for local image descriptors” Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR), 2004.

[11] M. Ambai and Y.Yoshida, “CARD: Compact and real-time descrip-
tors” In Computer Vision, 2011 IEEE Computer Society Conference
on. IEEE, 2011.
M. Ambai, and Y. Yoshida, “CARD: Compact and real-time descrip-
tors” IEEE International Conference on Computer Vision (ICCV),
2011.

[12] Tomasz Trzcinski, Mario Christoudias, Pascal Fua, and Vincent
Lepetit, “Boosting binary keypoint descriptors” IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2013, pp. 2874-
2881.

Fig. 8. ROC Curve for Notre Dame/Yosemite (Train/Test) Configuration

Fig. 9. ROC Curve for Yosemite/Liberty (Train/Test) Configuration

[13] Tomasz Trzcinski, and Vincent Lepetit, “Efficient discriminative
projections for compact binary descriptors” in Computer Vision -
ECCV 2012. Springer Berlin Heidelberg, 2012. 228-242.

[14] Michael Grant and Stephen Boyd. CVX: Matlab software for dis-
ciplined convex programming, version 2.0 beta. http://cvxr.com/cvx,
September 2013.

[15] Michael Grant and Stephen Boyd. Graph implementations for non-
smooth convex programs, Recent Advances in Learning and Control
(a tribute to M. Vidyasagar), V. Blondel, S. Boyd, and H. Kimura,
editors, pages 95-110, Lecture Notes in Control and Information
Sciences, Springer, 2008. http://stanford.edu/∼boyd/graph dcp.html.

Fig. 10. ROC Curve for Yosemite/Notre Dame (Train/Test) Configuration

