
A Genetic Algorithm-Based Solver for Very Large Jigsaw Puzzles:
Final Report

Jordan Davidson

Abstract
 For this project, I implemented
the genetic algorithm-based jigsaw
puzzle solver described in “A Genetic
Algorithm-Based Solver for Very Large
Jigsaw Puzzles” by Sholomon et al [1].
This method involves producing a
“child” solution from two “parent”
solutions by detecting, extracting, and
combining correctly assembled puzzle
pieces. The solver developed by the
paper’s team is able to accurately
solve puzzles of up to 22,834 pieces in
a reasonable time. My solver is not
able to quickly solve puzzles of such
size, but is able to solve smaller
puzzles with high accuracy.

1. Introduction
 For this project, I aimed to
reimplement the jigsaw puzzle solver
described in the paper “A Genetic
Algorithm-Based Solver for Very Large
Jigsaw Puzzles” by Dror Sholomon,
Omid David, and Nathan S. Netanyahu
[1]. The paper details a method
mimicking natural selection on how to
take a “jigsaw”, or image cut into small
pieces, and, through many iterations
of the proposed algorithm, reconstruct
the original image. First, a
“population” of scrambled images is
generated. Then, for some number of
generations, individuals in the
population are evaluated according to
a fitness function, and a new
population is populated with children

produced from a crossover function
applied to two parents in the current
population, where more fit parents
are more likely to be selected. The
solution is then the fittest child in the
most recent generation. Many jigsaw
puzzle solvers have been
implemented previously, but none of
them have solved the problem using a
genetic algorithm, and none of them
have been able to handle puzzles of up
to 22,834 pieces, as this one has.
 As the authors explain, jigsaw

puzzles are widely known to many

people from childhood, in which the

player has to reconstruct an original

image from an assortment of its

pieces. Solutions to this problem

might benefit biology, chemistry,

literature, speech descrambling,

archeology, image editing, and the

recovery of shredded documents or

photographs, and, besides that,

deserves research simply for stirring

pure interest [1].

2.1 Review of Previous Work
 The first attempt at solving this
problem was made by Freeman and
Garder [2] in 1964. Their solution
matched together pieces of different
shapes and could handle up to nine
pieces. Since then, research focus
regarding the problem has shifted

Figure 1: Overview of the genetic algorithm. First, a population of scrambled images is generated. Then, for 100
generations, a new population is formed from “child” images produced by two “parent” images in the current
population. A solution is chosen from the most recent generation.

from shape-based to color-based
solvers of square-tile puzzles. In 2010,
Cho et al. [3] developed a probabilistic
solver capable of handling up to 432
pieces. A year later, Yang et al. [4]
improved upon these results with a
particle filter-based puzzle solver, and
in the same year, Pomeranz et al. [5]
produced a solver capable of handling
up to 3,000 piece puzzles.

2.2 Contributions of Method
 The genetic algorithm-based
jigsaw puzzle solver described in the
paper by Sholomon et al[1] is the first
time an effective genetic algorithm-
based solver has been implemented. It
should benefit research in the area of

evolutionary computation by
providing techniques that could be
useful in solving additional problems
with similar properties. Furthermore,
the authors’ implementation is able to
handle up to 22,834-piece puzzles,
more than any previous puzzle solver,
with high accuracy, and can also solve
smaller puzzles with higher accuracy
than previous puzzle solvers. While
my implementation is not able to
handle puzzles with so many pieces in
a reasonable time frame, it can handle
up to 1440-piece puzzles with similar
accuracy to the author’s
implementation. The performance
provided by this solver could prove
useful for solving more advanced

Algorithm 1
1. population ← generate 1000 random chromosomes
2. for generation_number = 1 → 100 do
3. evaluate all chromosomes using the fitness function
4. new_population ← NULL
5. copy 4 best chromosomes to new_population
6. while size(new_population) ≤ 1000 do
7. parent1 ← select chromosome
8. parent2 ← select chromosome
9. child ← crossover(parent1,parent2)
10. add child to new_population
11. end while
12. population ← new_population
13. end for

Figure 2: Pseudocode of the framework for the genetic algorithm.

forms of the jigsaw puzzle problem,
such as puzzles with missing pieces.

3.1 Technical Details: Summary
 In order to solve the jigsaw
problem, the algorithm considers a
given selection of jigsaw puzzle pieces.
First, an initial population of possible
solutions, referred to as
chromosomes, is randomly generated.
Each chromosome represents a
possible arrangement of the puzzle
pieces into a complete image. Next,
various operators inspired by natural
selection, such as selection,
reproduction, and mutation, are
applied to the chromosomes.
 A chromosome’s reproduction
rate is set proportional to its fitness, a
score obtained by evaluating it
according to a fitness function. The
result of this function represents the
quality of the chromosome as a
solution. So, better solutions will
produce more “offspring” through the
reproduction operator, crossover.
This operator attempts to take the
best traits from both “parents” and

use them to create a new chromosome
that is a better solution than either of
them.
 Figure 2 represents the general
framework for the algorithm [1]. 1000
random chromosomes are generated.
Then, for 100 generations, every
chromosome in the population is
evaluated according to a fitness
function, the four best chromosomes
from the previous generations are
retained, and the rest of the 1000 slots
for the new generation are produced
from the crossover of two parents.
The probability that a chromosome is
selected as a parent for a particular
child is directly proportional to its
fitness score.

3.2.1 Technical Details: Fitness
Function
 The fitness function works by
measuring the sum of a dissimilarity
measure between every neighboring
piece in the chromosome. Piece edges
are represented in L*a*b* color space
by a K × K × 3 matrix, where K is the
height and width of a piece in pixels.

Algorithm 2
1. If any available boundary meets the criterion of Phase 1 (both parents agree on a
 piece), place the piece there and goto (1); otherwise continue.
2. If any available boundary meets the criterion of Phase 2 (one parent contains a
 best-buddy piece), place the piece there and goto (1); otherwise continue.
3. Randomly choose a boundary, place the most compatible available piece there
 and goto (1).

Figure 2: Overview of the crossover function.

Considering two pieces, the
dissimilarity between them in a
specific spatial relation is equal to the
square root of the sum of the squared
L*a*b* value differences between
adjacent pixels along their
neighboring edges. The result for
every pair of neighboring pieces is
then summed and inversed into a
cumulative fitness score. Higher
scores indicate an individual with
pieces that fit better together and,
therefore, are more likely to resemble
the original image.
 Because the fitness of
individuals, and therefore the
dissimilarity between pieces in the
individuals, is calculated many times,
it is necessary to use a lookup table to
minimize the run-time cost of the
fitness function. The lookup table is of
size 2 * (N * M)2, where N is the
number of pieces along the width of
the puzzle, and M is the number of
pieces along the height of the puzzle,
containing all of the pairwise
compatibilities for all pieces in both
the right and up directions.

3.2.2 Technical Details: Crossover
Function
 The other consideration is the
crossover function. Figure 3 outlines
the function [1]. It starts with a single,
randomly selected piece from the
puzzle and continually adds new

pieces onto itself until the child is
formed. To accomplish this, the
function repeats three phases until
completion. First, it checks whether,
for any available boundary, both
parents have the same neighbor. If so,
both pieces are probably in the correct
position relative to each other, the
piece is added to the collection of
chosen pieces, called the kernel, and
the first phase starts again. If not, then
the function moves onto the next
phase. In the second phase, the
function checks whether, for any
available boundary, a parent contains
a “best-buddy” piece in the given
spatial relation to the boundary. Two
pieces are considered best-buddies if,
for the given spatial relation, both
pieces consider each other the best
match (have lower dissimilarities
together than with any other pieces).
If a best-buddy is found, then the piece
is added to the kernel, and the first
phase begins again. If both the first
and second phases fail to find a piece,
then the third phase begins. In this
phase, a boundary of the kernel is
simply picked at random, the best
available piece is attached to it, and
phase 1 repeats. This process
continues until the kernel has grown
into a full-sized image.

4. Results
 To test the accuracy of the
solver, it was run on a set of 10 images
divided into 360, 640, 1000, and 1444
pieces. The correctness of the
generated solutions are evaluated by
calculating the percentage of correct
neighbors as well as by calculating a
similarity score. This is the sum of the
dissimilarities (as calculated earlier)
between every pair of adjacent pieces
in the original, unscrambled image
divided by the same sum of
dissimilarities in the generated
solution. For both methods, we should
expect higher scores to correspond to
solutions that more closely resemble
the original image.
 The results of running the
solver on each of the 10 images are
shown in Tables 1 through 4, and the
averages are shown in Table 5. As we
can see, the solver assigned neighbors
correctly 96.7081%, 95.6452%,

91.9620%, and 91.3605% of the time
for 360-piece, 640-piece, 1000-piece,
and 1440-piece puzzles, respectively.
This is similar to the results of the
authors’ implementation, 95.70%,
95.38%, 95.85%, and 88.00% for 432-
piece, 540-piece, 805-piece, and
2,360-piece puzzles, respectively.
Unfortunately, the test images used by
the authors are not available, but
these results suggest that my and their
implementations have similar
performance.
 The results show a similar
trend for the similarity score. The
generated solutions had an average
similarity of 98.4724%, 95.0873%,
91.8486%, and 92.5804% for 360-
piece, 640-piece, 1000-piece, and
1440-piece puzzles, respectively.
Clearly, by both measures, the puzzle
solver generates solutions strongly
resembling the original image.

Figure 3: 2 test images after being scrambled, after 1 generation, and after 100 generations (the solution).

Table 1: Results on 10 images divided into 360 pieces.

Table 2: Results on 10 images divided into 640 pieces.

Table 3: Results on 10 images divided into 1000 pieces.

Table 4: Results on 10 images divided into 1440 pieces.

Table 5: Results averaged over all 10 images for each size puzzle.

5. Conclusions
 For this project, I successfully
implemented a jigsaw puzzle solver
based on the genetic-algorithm
described in the paper and
implemented by Sholomon et al [1],
the first effective genetic algorithm-
based solver. My solver is not able to
solve puzzles with as many pieces as
the authors’ solver in a reasonable
amount of time, but it is able to solve
smaller puzzles with similar accuracy.
This solver could be useful in solving
more difficult variations of the jigsaw
puzzle problem and is, itself, a solid
contribution to the set of jigsaw
puzzle solvers.

6. References
[1] D. Sholomon, O. David, N.

Netanyahu. A Genetic Algorithm-
Based Solver for Very Large Jigsaw
Puzzles. In 2013 IEEE Conference on
Computer Vision and Pattern
Recognition (CVPR), pages 1767-
1774.

[2] H. Freeman and L. Garder.
Apictorial Jigsaw Puzzles: The
Computer Solution of a Problem in
Pattern Recognition. IEEE
Transactions on Electronic
Computers, EC-13(2):118–127,
1964.

[3] T. Cho, S. Avidan, and W. Freeman.
A Probabilistic Image Jigsaw Puzzle
Solver. In IEEE Conference on
Computer Vision and Pattern
Recognition, pages 183-190, 2010.

[4] X. Yang, N. Adluru, and L. J. Latecki.
Particle Filter with State
Permutations for Solving Image
Jigsaw Puzzles. In IEEE Conference
on Computer Vision and Pattern
Recognition, pages 2873–2880.
IEEE, 2011.

[5] D. Pomeranz, M. Shemesh, and O.
Ben-Shahar. A Fully Automated
Greedy Square Jigsaw Puzzle
Solver. In IEEE Conference on
Computer Vision and Pattern
Recognition, pages 9-16, 2011.

