
A Genetic Algorithm-Based Solver for Very Large Jigsaw Puzzles: 
Final Report 

Jordan Davidson 
 
 
Abstract 
 For this project, I implemented 
the genetic algorithm-based jigsaw 
puzzle solver described in “A Genetic 
Algorithm-Based Solver for Very Large 
Jigsaw Puzzles” by Sholomon et al [1]. 
This method involves producing a 
“child” solution from two “parent” 
solutions by detecting, extracting, and 
combining correctly assembled puzzle 
pieces. The solver developed by the 
paper’s team is able to accurately 
solve puzzles of up to 22,834 pieces in 
a reasonable time. My solver is not 
able to quickly solve puzzles of such 
size, but is able to solve smaller 
puzzles with high accuracy. 
 
1. Introduction 
 For this project, I aimed to 
reimplement the jigsaw puzzle solver 
described in the paper “A Genetic 
Algorithm-Based Solver for Very Large 
Jigsaw Puzzles” by Dror Sholomon, 
Omid David, and Nathan S. Netanyahu 
[1]. The paper details a method 
mimicking natural selection on how to 
take a “jigsaw”, or image cut into small 
pieces, and, through many iterations 
of the proposed algorithm, reconstruct 
the original image. First, a 
“population” of scrambled images is 
generated. Then, for some number of 
generations, individuals in the 
population are evaluated according to 
a fitness function, and a new 
population is populated with children 

produced from a crossover function 
applied to two parents in the current 
population, where more fit parents 
are more likely to be selected. The 
solution is then the fittest child in the 
most recent generation. Many jigsaw 
puzzle solvers have been 
implemented previously, but none of 
them have solved the problem using a 
genetic algorithm, and none of them 
have been able to handle puzzles of up 
to 22,834 pieces, as this one has. 
 As the authors explain, jigsaw 

puzzles are widely known to many 

people from childhood, in which the 

player has to reconstruct an original 

image from an assortment of its 

pieces. Solutions to this problem 

might benefit biology, chemistry, 

literature, speech descrambling, 

archeology, image editing, and the 

recovery of shredded documents or 

photographs, and, besides that, 

deserves research simply for stirring 

pure interest [1]. 

 
2.1 Review of Previous Work 
 The first attempt at solving this 
problem was made by Freeman and 
Garder [2] in 1964. Their solution 
matched together pieces of different 
shapes and could handle up to nine 
pieces. Since then, research focus 
regarding the problem has shifted  

 



 
Figure 1: Overview of the genetic algorithm. First, a population of scrambled images is generated. Then, for 100 
generations, a new population is formed from “child” images produced by two “parent” images in the current 
population. A solution is chosen from the most recent generation.

from shape-based to color-based 
solvers of square-tile puzzles. In 2010, 
Cho et al. [3] developed a probabilistic 
solver capable of handling up to 432 
pieces. A year later, Yang et al. [4] 
improved upon these results with a 
particle filter-based puzzle solver, and 
in the same year, Pomeranz et al. [5] 
produced a solver capable of handling 
up to 3,000 piece puzzles. 
 
2.2 Contributions of Method 
 The genetic algorithm-based 
jigsaw puzzle solver described in the 
paper by Sholomon et al[1] is the first 
time an effective genetic algorithm-
based solver has been implemented. It 
should benefit research in the area of 

evolutionary computation by 
providing techniques that could be 
useful in solving additional problems 
with similar properties. Furthermore, 
the authors’ implementation is able to 
handle up to 22,834-piece puzzles, 
more than any previous puzzle solver, 
with high accuracy, and can also solve 
smaller puzzles with higher accuracy 
than previous puzzle solvers. While 
my implementation is not able to 
handle puzzles with so many pieces in 
a reasonable time frame, it can handle 
up to 1440-piece puzzles with similar 
accuracy to the author’s 
implementation. The performance 
provided by this solver could prove 
useful for solving more advanced 

 



Algorithm 1 
1. population ← generate 1000 random chromosomes 
2. for generation_number = 1 → 100 do 
3. evaluate all chromosomes using the fitness function 
4. new_population ← NULL 
5. copy 4 best chromosomes to new_population 
6. while size(new_population) ≤ 1000 do 
7.  parent1 ← select chromosome 
8.  parent2 ← select chromosome 
9.  child ← crossover(parent1,parent2) 
10.  add child to new_population 
11. end while 
12. population ← new_population 
13. end for 
 
Figure 2: Pseudocode of the framework for the genetic algorithm.

forms of the jigsaw puzzle problem, 
such as puzzles with missing pieces. 
 
3.1 Technical Details: Summary 
 In order to solve the jigsaw 
problem, the algorithm considers a 
given selection of jigsaw puzzle pieces. 
First, an initial population of possible 
solutions, referred to as 
chromosomes, is randomly generated. 
Each chromosome represents a 
possible arrangement of the puzzle 
pieces into a complete image. Next, 
various operators inspired by natural 
selection, such as selection, 
reproduction, and mutation, are 
applied to the chromosomes. 
 A chromosome’s reproduction 
rate is set proportional to its fitness, a 
score obtained by evaluating it 
according to a fitness function. The 
result of this function represents the 
quality of the chromosome as a 
solution. So, better solutions will 
produce more “offspring” through the 
reproduction operator, crossover. 
This operator attempts to take the 
best traits from both “parents” and 

use them to create a new chromosome 
that is a better solution than either of 
them. 
 Figure 2 represents the general 
framework for the algorithm [1]. 1000 
random chromosomes are generated. 
Then, for 100 generations, every 
chromosome in the population is 
evaluated according to a fitness 
function, the four best chromosomes 
from the previous generations are 
retained, and the rest of the 1000 slots 
for the new generation are produced 
from the crossover of two parents. 
The probability that a chromosome is 
selected as a parent for a particular 
child is directly proportional to its 
fitness score. 
 
3.2.1 Technical Details: Fitness 
Function 
 The fitness function works by 
measuring the sum of a dissimilarity 
measure between every neighboring 
piece in the chromosome. Piece edges 
are represented in L*a*b* color space 
by a K × K × 3 matrix, where K is the 
height and width of a piece in pixels.  



Algorithm 2 
1. If any available boundary meets the criterion of Phase 1 (both parents agree on a 
    piece), place the piece there and goto (1); otherwise continue. 
2. If any available boundary meets the criterion of Phase 2 (one parent contains a 
    best-buddy piece), place the piece there and goto (1); otherwise continue. 
3. Randomly choose a boundary, place the most compatible available piece there 
    and goto (1). 
 
Figure 2:  Overview of the crossover function.

Considering two pieces, the 
dissimilarity between them in a 
specific spatial relation is equal to the 
square root of the sum of the squared 
L*a*b* value differences between 
adjacent pixels along their 
neighboring edges. The result for 
every pair of neighboring pieces is 
then summed and inversed into a 
cumulative fitness score. Higher 
scores indicate an individual with 
pieces that fit better together and, 
therefore, are more likely to resemble 
the original image. 
 Because the fitness of 
individuals, and therefore the 
dissimilarity between pieces in the 
individuals, is calculated many times, 
it is necessary to use a lookup table to 
minimize the run-time cost of the 
fitness function. The lookup table is of 
size 2 * (N * M)2, where N is the 
number of pieces along the width of 
the puzzle, and M is the number of 
pieces along the height of the puzzle, 
containing all of the pairwise 
compatibilities for all pieces in both 
the right and up directions. 
 
3.2.2 Technical Details: Crossover 
Function 
 The other consideration is the 
crossover function. Figure 3 outlines 
the function [1]. It starts with a single, 
randomly selected piece from the 
puzzle and continually adds new 

pieces onto itself until the child is 
formed.  To accomplish this, the 
function repeats three phases until 
completion. First, it checks whether, 
for any available boundary, both 
parents have the same neighbor. If so, 
both pieces are probably in the correct 
position relative to each other, the 
piece is added to the collection of 
chosen pieces, called the kernel, and 
the first phase starts again. If not, then 
the function moves onto the next 
phase. In the second phase, the 
function checks whether, for any 
available boundary, a parent contains 
a “best-buddy” piece in the given 
spatial relation to the boundary. Two 
pieces are considered best-buddies if, 
for the given spatial relation, both 
pieces consider each other the best 
match (have lower dissimilarities 
together than with any other pieces). 
If a best-buddy is found, then the piece 
is added to the kernel, and the first 
phase begins again. If both the first 
and second phases fail to find a piece, 
then the third phase begins. In this 
phase, a boundary of the kernel is 
simply picked at random, the best 
available piece is attached to it, and 
phase 1 repeats. This process 
continues until the kernel has grown 
into a full-sized image. 
 
 
 



4. Results 
 To test the accuracy of the 
solver, it was run on a set of 10 images 
divided into 360, 640, 1000, and 1444 
pieces. The correctness of the 
generated solutions are evaluated by 
calculating the percentage of correct 
neighbors as well as by calculating a 
similarity score. This is the sum of the 
dissimilarities (as calculated earlier) 
between every pair of adjacent pieces 
in the original, unscrambled image 
divided by the same sum of 
dissimilarities in the generated 
solution. For both methods, we should 
expect higher scores to correspond to 
solutions that more closely resemble 
the original image. 
 The results of running the 
solver on each of the 10 images are 
shown in Tables 1 through 4, and the 
averages are shown in Table 5. As we 
can see, the solver assigned neighbors 
correctly 96.7081%, 95.6452%, 

91.9620%, and 91.3605% of the time 
for 360-piece, 640-piece, 1000-piece, 
and 1440-piece puzzles, respectively. 
This is similar to the results of the 
authors’ implementation, 95.70%, 
95.38%, 95.85%, and 88.00% for 432-
piece, 540-piece, 805-piece, and 
2,360-piece puzzles, respectively. 
Unfortunately, the test images used by 
the authors are not available, but 
these results suggest that my and their 
implementations have similar 
performance. 
 The results show a similar 
trend for the similarity score. The 
generated solutions had an average 
similarity of 98.4724%, 95.0873%, 
91.8486%, and 92.5804% for 360-
piece, 640-piece, 1000-piece, and 
1440-piece puzzles, respectively. 
Clearly, by both measures, the puzzle 
solver generates solutions strongly 
resembling the original image. 
 

 

Figure 3: 2 test images after being scrambled, after 1 generation, and after 100 generations (the solution). 



 
Table 1: Results on 10 images divided into 360 pieces. 

 
Table 2: Results on 10 images divided into 640 pieces. 

 
Table 3: Results on 10 images divided into 1000 pieces. 

 



 
Table 4: Results on 10 images divided into 1440 pieces. 

 
Table 5: Results averaged over all 10 images for each size puzzle. 

 
5. Conclusions 
 For this project, I successfully 
implemented a jigsaw puzzle solver 
based on the genetic-algorithm 
described in the paper and 
implemented by Sholomon et al [1], 
the first effective genetic algorithm-
based solver. My solver is not able to 
solve puzzles with as many pieces as 
the authors’ solver in a reasonable 
amount of time, but it is able to solve 
smaller puzzles with similar accuracy. 
This solver could be useful in solving 
more difficult variations of the jigsaw 
puzzle problem and is, itself, a solid 
contribution to the set of jigsaw 
puzzle solvers. 
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