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Abstract

Inter-subject registration of cortical areas is necessary
in functional imaging (fMRI) studies for making inferences
about equivalent brain function across a population. How-
ever, many high-level visual brain areas are defined as
peaks of functional contrasts and it is usually difficult to
identify clear anatomical landmarks and boundaries for
these areas, due to large variability in their cortical posi-
tion. As a consequence, previous methods usually fail to
accurately map such functional regions of interest (ROIs)
across participants. To address this problem, we propose
a locally optimized registration method that directly pre-
dicts the location of a seed ROI on a separate target corti-
cal sheet by maximizing the functional correlation between
regions and simultaneously constraining the global struc-
ture of the mapping, while allowing for non-local deforma-
tions in its topology. Our registration method outperformed
two canonical baselines (anatomical landmark-based AFNI
alignment and cortical curvature-based FreeSurfer align-
ment) in the percentage of overlap between predicted re-
gion and ground truth LOC. Furthermore, the maps ob-
tained using our method are more consistent across subjects
than both baseline measures. Consequently, our method has
the ability to directly and immediately improve the qual-
ity of group maps for high-level visual areas in countless
fMRI studies. This would dramatically increase the statis-
tical power of such studies, as a more accurate mapping to
a common space implies less smoothing and larger effect
sizes.

1. Introduction
Inter-subject registration of cortical areas is necessary in

functional imaging (fMRI) studies for making inferences
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Figure 1. Descriptions of our two methods: (Top) Shallow tree
co-localization. (Bottom) Deep tree hierarchical representation.

about equivalent brain function across a population. Most
state-of-the-art alignment methods define transformations
between entire cortical volumes that attempt to preserve
anatomical landmarks, cortical curvature, or functional con-
nectivity, and subsequently check whether specific regions
of interest (ROIs) are accurately matched between sub-
jects [11, 8, 1]. However, many high-level visual brain ar-
eas are defined as peaks of functional contrasts (i.e. higher
activation for scenes versus objects) and it is usually diffi-
cult to identify clear anatomical landmarks and boundaries
for these areas, due to large variability in their cortical po-
sition. As a consequence, although they provide a reason-
able global matching, previous methods usually fail to ac-
curately map such functional ROIs across participants.

The goal of our project is to increase the reliability of
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inter-subject mapping for these cortical functional peaks
and for the visual areas they define using fMRI data.

An improved solution to this problem would directly and
immediately improve the quality of group maps for high-
level visual areas in countless fMRI studies. Consequently,
this would dramatically increase the statistical power of
such studies, as a more accurate mapping to a common
space implies less smoothing and larger effect sizes.

Moreover, obtaining a reliable functional region map-
ping across subjects would represent a significant step to-
wards obviating the need for running time- and resource-
consuming localizer scans for every study participant (the
method currently used to identify these cortical areas). Such
a mapping is also useful in settings where one needs to com-
pare analyses and hypotheses between datasets where func-
tional localizers are missing and gathering extra sessions of
data is either expensive (large number of participants) or
impossible (unavailability of former subjects).

Finally, the relationship between peaks of functional
contrasts and the computation performed by cortex sur-
rounding them is not well understood. Therefore, a method
that improves the quality of functional ROI mapping be-
tween subjects would also become especially useful for in-
vestigating the key complex relationship between anatomy,
functional contrast peaks (ground-truth ROIs), and cortical
computation (measured fMRI BOLD response).

To address the problem of computing correspondences
between equivalent functional regions, we use the key ob-
servation that peak functional contrast points (where ROIs
are centered) must share similar function between subjects,
even though functional gradients of selectivity surrounding
the peaks may not be spatially organized identically across
subjects [6]. Thus, a key requirement for our methods must
be to allow for at least a small degree of non-smoothness in
the local deformations afforded by the mapping between the
two cortical surfaces. Furthermore, we will focus our efforts
on directly capturing the correspondence between regions
of interest by finding a locally strong functional match be-
tween regions, rather than seeking a perfect one-to-one cor-
respondence between entire cortical volumes (a hallmark of
many previous approaches).

The first method we propose is a weak tree representa-
tion, where the region of interest to be matched is split into
several sub-regions. These smaller regions are allowed to
match independently to regions in the target map, with the
overall constraint that they must remain within close prox-
imity of each other (a constraint given by the root of the
two-level tree). This method is illustrated in Fig. 1 (Top).
The second method we propose leverages a similar struc-
ture, but allows for a deeper hierarchical representation to
be built on top of each area. Here, we define a 3+ level
tree where each level corresponds to decreasing significance
thresholds for the contrast map originally used to define the

functional area. This extension of the previous method is
shown in Fig. 1 (Bottom).

2. Related Work
Many cortical alignment methods have been previously

proposed, virtually all of which define transformations
between entire cortical volumes and subsequently check
whether specific regions of interest (ROIs) are accurately
matched between subjects.

Anatomical alignment relies on large scale correspon-
dences between all human brains, such as the reliable pres-
ence and relatively consistent positions of primary features
such as major sulci and gyri on the cortical surface. Of this
type, the most widely used registration method is Talairach
alignment, which warps the seed cortical volume to a pre-
set fixed atlas based on manually or automatically selected
anatomical landmarks [10]. Similarly, the AFNI tool [2]
also attempts to preserve anatomical landmarks, except it
allows direct warping between two subjects’ brains, without
the need for common alignment to a known atlas. A more
complex method, which achieves a more precise anatomi-
cal alignment of secondary features was proposed in [11],
however, it suffers the same shortcomings in matching func-
tional areas previous anatomical alignment methods.

Given that the main obstacle in aligning the cortical sur-
face between subjects is its folding variability, methods
have been proposed that warp gray matter meshes by tak-
ing into account local curvature properties of the cortex.
A widely used tool is Freesurfer [4], which is capable of
very high quality matching of major, as well as secondary
cortical features. FreeSurfer relies on extracting the bound-
ary between gray and white matter, and then aligns these
boundaries between brains by minimizing the differences
between corresponding normal vectors to the boundary sur-
face. In our work, we test our method against both AFNI
and FreeSurfer standard alignment techniques and show
that they perform poorly for high-level visual functionally-
defined areas of interest.

Another recent method that goes beyond anatomical fea-
tures to perform alignment incorporates functional connec-
tivity constraints in the mapping [1]. This method lever-
ages the fact that connectivity between brain regions during
resting states (i.e. no active task being performed: subject
keeps eyes closed and allows his or her mind to wander)
are thought to be fairly consistent across the population.
These methods show improved ability to align functional
areas that are part of known large intertwined networks in
the brain (i.e. the default mode network). However, many
functional areas, especially high level occipito-temporal ar-
eas involved in vision which we are interested in aligning,
are not usually a strong part of these networks and thus re-
ceive little benefit from such methods.

Finally, alignment has also been performed by incorpo-
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rating functional correlation constraints. Of note is a recent
method that starts with FreeSurfer alignment as an initial-
ization step and then maximizes local functional correlation
across the cortical surface to nudge the vertices of the map
into a new alignment that takes into account functional re-
sponses [8]. This method performs well for early visual
areas (which are also more easily aligned using anatomical
landmarks), but shows limited ability to match functional
regions as distance from the occipital pole increases. This
approach is similar to our own, however, we take a localized
approach and we also allow non-smooth local deformations
of the maps, whereas previous work always uses continuous
maps.

Another type of method that leverages functional corre-
lation to perform cortical matching is hyperalignment [5].
In this case, cortical responses from two brains are mod-
eled as vectors in a high dimensional space (of dimension
equal to the number of voxels considered in each map)
and then a rigid rotation and reflection transformation is
derived such that it optimally aligns the two vectors to-
gether. While showing excellent cross-decoding perfor-
mance across maps, this method essentially represents a
point in the target map as a linear combination of (possi-
bly) all voxels in the other map, and thus is not directly
amenable to transferring the location of one contained area
across maps. Usually, this method is tested by transferring
the contrast map used to defined a localizer in the seed map
to the target map and then extracting the region of interest
in the target map. In our work, we implement a version of
hyperalignment for the purpose of comparing our method
against it.

3. Cortical Region Alignment
Our goal is to align functionally-defined high-level vi-

sual areas between participants. To compute such a cor-
respondence between regions, we reasoned that although
two cortical surfaces (corresponding to two separate sub-
jects) must express the same necessary computational units
that give rise to observed function, these units might not
be perfectly equivalent or identically distributed spatially
across the two ROIs. Therefore, we designed an alignment
method which optimizes functional correlation between re-
gions while allowing for non-smooth local deformations in
the mapping.

Recently, we proposed a locally optimized registration
method that directly predicts the location of a seed region of
interest (ROI) on a separate target cortical sheet by leverag-
ing the principle detailed above [7]. We refer to this method
as Shallow Tree Alignment and describe it in depth later in
this section. This method represents a reasonable first at-
tempt to solve the functional region registration problem de-
scribed in the previous sections. For this project, we sought
to improve this method in three ways: (1) improve its per-

formance by experimenting with a different way of repre-
senting the fMRI data on the cortical surface; (2) generate a
more in depth comparison between this method and current
state of the art methods; and (3) extend our method by lever-
aging insights from known neural properties of the areas we
are attempting to match.

Throughout this section, we will highlight the innova-
tions implemented as part of this project versus the initial
method which was recently accepted for presentation at a
human vision conference [7].

3.1. Interpolation

Cortical computation occurs in a thin sheet at the sur-
face of the brain (gray matter) and this sheet is folded in 3D
space, which gives it a large surface area compared to the
volume it occupies inside the skull. This entails that points
that might be close together in 3D could, in fact, be sepa-
rated by a relatively large distance on the 2D surface, the
latter of which is a more accurate measure of neural popu-
lation distance.

Using functional neuroimaging (fMRI), we can detect
changes in blood oxygenation associated with neural activ-
ity from cubic voxels (3D pixels) that tile the entire cortical
volume at a spatial resolution of 1.75 x 1.75 x 4 mm. How-
ever, this means that in order to recover the true distribu-
tion of activity on the 2D gray matter surface, we must find
a way to accurately estimate the location of the 2D plane,
project the 3D volume onto it, and then interpolate our mea-
surements between the cubic data points and the points on
the surface.

The Shallow Tree Alignment algorithm used an existing
software package to do the projection and interpolation step
(AFNI-SUMA [2]), before attempting to find correspond-
ing regions between two cortical surfaces. While SUMA
provides an exceptional solution to the problem of estimat-
ing the 2D surface, it is unclear how accurate the default
linear interpolation step is at creating a reasonable projec-
tion of the 2D flat cortical map onto a regular grid suitable
for algorithmic manipulation. Consequently, we sought to
characterize the sensitivity of our algorithm to the type of
interpolation used by computing a Gaussian projection be-
tween the 3D volume and the 2D surface. We implemented
this new projection by computing the 5 nearest neighbors of
each grid corner on the flat map and then using a Gaussian
kernel to interpolate between these neighbors to obtain our
grid point features.

3.2. Baselines

To compare our method to existing alignment tech-
niques, we initially implemented two canonical widely
used baselines: anatomical landmark-based AFNI [2] align-
ment and cortical curvature-based FreeSurfer [4] alignment.
AFNI uses information about brain shape and automatically
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defined anatomical points of interest to warp cortical vol-
umes from one subject to another. FreeSurfer also uses
brain shape, but instead uses information about cortical cur-
vature (sulci and gyri locations, as well as the distribution
of normals to the cortical gray matter surface) to iteratively
distort one cortical surface into another.

Although these two methods are the most commonly
used cortical registration methods, several other state-of-
the-art methods exist that claim to obtain better functional
region alignment. As part of this project, we further imple-
mented one such method called hyperalignment [5]. Hyper-
alignment embeds two cortical surfaces into a high dimen-
sional space whose features are determined by functional
responses to the same set of stimuli. Then, a series of ro-
tations and translations are estimated which best align the
shapes of the two spaces to one another. This alignment
can subsequently be used to project a region from one map
to the other. Given a seed map X and a target map Y, hy-
peralignment can be written as the following optimization
problem:

min
t,s,R

||Y − t− sXR||F

s.t. RTR = I,

where || · ||F represents the Frobenius norm of a matrix and
the estimated parameters t, s, R refer to translation, scale,
and rotation components, respectively. This optimization
problem can be solved exactly using the single value de-
composition of the matrix product XTY .

As part of our project, we implemented this state-of-the-
art alignment method and we will subsequently use it as an
additional baseline for our experiments, one that potentially
outperforms canonical ones, and whose performance would
be a better benchmark for both our methods (the Shallow
Tree and Deep Hierarchical Tree Alignment algorhitms).

3.3. Shallow Tree Alignment

We proposed and implemented a locally optimized reg-
istration method that directly predicts the location of a seed
region of interest (ROI) on a separate target cortical sheet
by leveraging the principle detailed above [7].

The algorithm optimized functional correlation between
pairs of regions on two-dimensional manifolds of inflated
cortical surfaces. The method is inspired by an object co-
localization technique [3] and represents regions in each
cortical map as grid graphs of n x n nodes, where each
node is associated with a small brain area (i.e. 5 x 5 pix-
els cortical surface patch). Correspondences are then estab-
lished between separate cortical maps by maximizing the
sum of feature correlations across all the nodes, while en-
forcing that the distances between connected nodes in the

graph change by less than a specified amount in each di-
rection (i.e. 5 pixels) after projecting onto the other cortical
surface. The initial region parcellation, as well as a potential
matching are shown in Fig. 1 (Top). The objective function
can be written as follows:

min
M

∑
j dF (Fi, Fmi

)

s.t. ds(pmi , pmj ) ≤ ρ,

where:

• M = {(k,mk)} is the collection of correspondences
between nodes in the first cortical surface (k) and
nodes in the second cortical surface (mk);

• dF is the feature distance between the nodes in each
correspondence;

• ds is the distance difference between the original and
mapped configuration of each pair of points (point i
mapped to point j) in the two maps; and

• ρ is the maximum allowable distance change between
neighboring patches across maps.

This optimization is solved using a deterministic grid
search through the space of all possible node jitter permuta-
tions.

3.4. Deep Tree Hierarchical Alignment

To extend our original method, we propose leverages a
similar structure, but allows for a deeper hierarchical repre-
sentation to be built on top of each area.

In neuroscience, functionally-defined ROI are identified
as peaks of a general linear model contrast seeking con-
sistent increased activation for one type of stimulus over
another (i.e. which area of the brain responds more to
faces than to houses). To obtain the boundaries of such a
region, an usually arbitrary statistical threshold is chosen
(e.g. p < 0.001) for what constitutes significant activation
difference. Here, we propose that we build a hierarchical
representation of a region of interest by defining a 3+ level
tree where each level corresponds to decreasing significance
thresholds for the contrast map originally used to define the
functional area. Thus, a node closer to the root has a high
chance of being representative of the activation in that func-
tional area (high statistical significance), whereas leaves are
likely part of the area, but may hold noisier representations
and thus more difficult to match across participants. This
extension of the previous method is depicted in Fig. 1 (Bot-
tom).

Similarly to [3], we can treat this tree as a pseudo-MRF,
and solve for the best matching of each node between corti-
cal maps by using the Max-Product algorithm.
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Figure 2. Stimulus set for fMRI experiment used to perform and evaluate cortical alignment. During the experiment, participants were
shown images from 32 object categories: 8 breeds of dogs, 8 types of flowers, 8 types of planes, 8 types of shoes (32 images per category;
1,024 images total).

4. Experiments
4.1. Dataset

We tested our method by aligning a difficult to match,
functionally defined, object-selective ROI (lateral occipital
complex, LOC) between subjects using data from a passive-
viewing fMRI experiment where participants were shown
1,024 images of objects from 32 categories: 8 breeds of
dogs, 8 types of flowers, 8 types of planes, 8 types of shoes.
The dataset contains 512 TRs (17m 4s) of fMRI data per
subject. The stimulus set used in the experiment is shown
in Fig. 2. We used brain activations elicited by these stimuli
as features corresponding to each point on the cortical map
(i.e. each cortical point has a 512 feature representation).

4.2. Results

To test how well our method aligns functional ROIs be-
tween cortical surfaces, we used two metrics:

• Accuracy: percentage of overlap between ground
truth region and predicted region after mapping from
a different subject’s brain;

• Consistency: amount of overlap between predicted re-
gions from multiple subjects aligned to the same target
map.

Overlap is computed as intersection over union for pre-
dicted and ground truth maps. Ground truth was established
in a canonical fashion through a separate localizer scan in

each subject [9]. Below, we show results for two of our
baselines (AFNI and Freesurfer), as well as two versions of
the Shallow Tree Alignment, the first using linear interpola-
tion and the second using Gaussian interpolation. As of the
conclusion of the project, we had completed the implemen-
tation of the hyperalingment algorithm, but the result suite
had not yet finished running (due to the size of the corti-
cal maps, the analysis requires about 1 week to complete
on our server), and the Deep Tree Hierarchical Alignment
algorithm was still in the development and debugging stage.

A summary of our most recent results is given in Fig. 3.
Our registration method vastly outperformed the two canon-
ical baselines (anatomical landmark-based AFNI alignment
and cortical curvature-based FreeSurfer alignment) in the
percentage of overlap between predicted region and ground
truth LOC: baselines 10-11%, ours 24-25%. Furthermore,
the maps obtained using our method are more consistent
across subjects than both baseline measures (overlap of re-
gion commonly mapped from 3+ subjects: baselines 9-
11%, ours 26%). Moreover, our method is not sensitive
to the type of interpolation used to generate the 2D cortical
grid from the 3D volume representation: we see that when
using either linear and gaussian interpolation we obtain very
similar results, and in both cases outperform the two shown
baselines.

Qualitatively, the cortical maps further showcase the
strength of our results compared to the AFNI and FreeSurfer
baselines. In the first two images (Fig. 3, bottom left) we see
that functional regions in other subjects are mapped with
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Figure 3. Alignment Results: Accuracy and Consistency (n = 7 subjects). For every target subject, we align LOC from all other 6
subjects to the target cortical surface using functional data from the above experiment. (Graph Top Left) Overlap between predicted
LOC and ground truth LOC (i.e. defined using separate standard localizer procedure), measured as intersection over union of surfaces.
(Graph Top Right) We select the voxels predicted consistently in the target map for n+ subjects and compute the overlap between this
restricted region and ground truth LOC for n ∈ {1, 2, 3, 4}. (Bottom Cortical Maps) Consistency of predicted LOC obtained from
aligning using AFNI, FSL, and Shallow Tree Alignment with linear and Gaussian interpolation. Heatmap indicates how many subjects’
LOC were mapped to that voxel on the target surface.

a high degree of variance onto the target subject cortical
sheet. Often, there is little overlap with the ground truth
ROI and, most importantly, the mapping may place the re-
gion several centimeters away from its desired location, of-
ten on a different gyrus. By contrast, our method (Fig. 3,
bottom right) shows much less variance in the predicted
area, with the peak of the prediction fully contained within
the ground truth region.

These results suggest that our registration technique in-
creases the reliability of transferring the location of func-
tionally defined ROIs between subjects, which is an impor-
tant step towards obviating the need for prohibitively expen-
sive or impossible to obtain localizer scans.

5. Conclusion

In this project, we proposed a locally optimized regis-
tration method that directly predicts the location of a seed
region of interest (ROI) on a separate target cortical sheet
by maximizing the functional correlation between regions
and simultaneously constraining the global structure of the
mapping, while allowing for non-local deformations in its

topology.
Our method vastly outperforms two canonical baselines

(anatomical-landmark-based AFNI alignment and cortical-
curvature-based FreeSurfer alignment) in overlap percent-
age between predicted region and ground truth LOC and
our predicted maps are more consistent across subjects than
both baselines. Therefore, our technique improves the qual-
ity and reliability of matching and transferring the location
of functional ROIs across subjects, an important step to-
wards obviating the need for additional or impossible to ob-
tain localizer scans.

Furthermore, our work can directly and immediately im-
prove the quality of group maps for high-level visual areas
in countless fMRI studies. Consequently, this would dra-
matically increase the statistical power of such studies, as
a more accurate mapping to a common space implies less
smoothing and larger effect sizes. Moreover, our work rep-
resents a significant step towards obviating the need for run-
ning time- and resource-consuming localizer scans for ev-
ery study participant. Our method is also applicable to set-
tings where one needs to compare analyses and hypothe-
ses between datasets where functional localizers are miss-
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ing and gathering extra sessions of data is either expensive
(large number of participants) or impossible (unavailability
of former subjects).

Finally, the relationship between peaks of functional
contrasts and computation performed by cortex surround-
ing them is not well understood. Since our method im-
proves the quality of functional ROI mapping between sub-
jects, it becomes especially useful for investigating the key
complex relationship between anatomy, functional contrast
peaks, and cortical computation.
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