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Abstract

Localization and tracking of objects is a fundamental component of robotics. In order to effec-
tively interact with its environment and manipulate objects, a robot must be able to classify
and distinguish between multiple objects and the environment, determine the position as well as
orientation of these objects, and update these states in real-time. This project uses Microsoft’s
Kinect sensor and the Scaling Series algorithm to achieve these goals. The algorithm that was
developed for this project was able to accurately perform planar tracking (2 linear positions plus
orientation) of a triangle that was segmented by color.

1 Introduction

In order to allow robots to operate in unstructured environments, it is essential to successfully detect,
localize, and track objects. Localizing an object consists of determining its position and orientation
in 3D space. We will refer to this problem as object state estimation going forward. Beyond detecting
obstacles for manipulation and building environmental maps for navigation, a robot has to be able
to update these models and abstractions in real-time. In particular for manipulation tasks, the robot
has to simultaneously identify, localize, and track multiple objects.

Current state of the art research robots [1-3] are equipped with a variety of sensors allowing them
to interact with their surroundings. The most important of which are based on computer vision.
Over the last decade, there has been an abundance of research in computer vision algorithms as well
as hardware. In particular, Microsoft’s Kinect sensor has grown in popularity within the robotics
community because it is relatively cheap and yet accurate [4]. In this project, we use the Kinect
sensor and the Scaling Series algorithm, which together allow for real-time object recognition and
tracking.

2 Methodology
2.1 Previous Work

Segmentation Algorithms

Common segmentation algorithms include histogram thresholding, edge detection, and K-means
clustering [5]. Most segmentation algorithms rely on object features, such as edges and flat faces.



State Estimation Algorithms

State estimation is the determination of an objects position and orientation. As the dimensionality
of the problem increases, the number of discrete states increases meaning that exhaustive search
algorithms treating every possible state are prohibitively slow. One promising approach is based on
Scaling Series, as described in [4]. This algorithm was developed in the context of tactile perception,
where a robotic sensor detects collision points with objects and computes the most likely states based
on particle filters with annealing.

2.2 Our Method

We collected data using the Kinect, which captured a point cloud consisting of the object of interest
as well as the surrounding environment. To separate the point cloud into object and environment,
we need to apply a segmentation algorithm. Most segmentation algorithms were developed for static
images and therefore are less applicable to real-time tracking. For this reason and because of the
fact that we want this system to apply to any arbitrary object shape, we choose to segment based on
color and represent the objects as triangular meshes. Finally, we applied the Scaling Series algorithm
to estimate the objects state.

3 Technical Details

3.1 Technical Summary

We collected data using a Microsoft Kinect, segmented based on color and clustering, and estimated
the objects state using the Scaling Series algorithm.

3.2 Technical Approach
Data Collection

The Kinect was chosen for this project because it is relatively cheap and accessible. Due to its growing
popularity within the robotics community there are many resources available, including open source
SDKs. The Point Cloud Library (PCL), provides a means for efficient interaction with the point
cloud returned from the sensor [6]. For this reason and because we aimed at real-time capability, we
developed in C++. The Kinect provides data at 30 frames per second, allowing us to update state
estimations in real time with the current point clouds.

Segmentation

Color segmentation using data from the Kinect was used to separate the object from the environment.
This was done by filtering out all the colors in the environment besides those within a specific range
of the color of the object and then filtering any outliers that were left over. The first step in this
process was to determine the average color of the object. Using an image of the point cloud of the
data from the Kinect and a MATLAB script, the average RGB values of the color of the object were
found. These values were then transformed into CIE76 color space in order to use a simple metric
for determining the distance between colors [7]. Any points in the point cloud, transformed into the
CIET76 space, that were not within a range of the average were removed from the point cloud. Finally,
any remaining outliers were removed using a distance metric. An important aspect of segmentation
by color is the selection of an appropriate color for the object. Experimentation with the different



colors revealed that it was best to choose a color that does not have a mixture of RGB colors that
are similar to the environment. For example, when experimenting with the color brown and red, it
was found that skin tones and wooden tables were also segmented as well. Since the ultimate goal
would be to hold an object and perform localization and tracking, any color near skin tone would
not be an ideal choice for segmentation. After discussions with colleagues with experience in color
segmentation, the color green was chosen for the object. In addition to the challenges of choosing an
appropriate color, illumination and reflection affect the efficacy of segmentation by color. Depending
on the orientation of the object, some planes can become quite reflective which results in a washed
out color. This color can be outside the threshold value for the color filtering so those points get
removed. Calibration was performed based on the setup to try to mitigate these effects.

State Estimation

The ultimate goal of this project was to detect and localize an object in 6 Degrees Of Freedom
(DOF) (3 DOF for position and 3 DOF for orientation). Because of the high dimensionality of this
problem, an exhaustive search of state space is not an option for real-time applications. The Scaling
Series algorithm uses particle filtering with annealing and has been shown to function in real-time,
in the context of tactile applications [4]. It determines the most likely state of an object given
measurements of the objects position. We first implemented the algorithm for the case of 2 DOF
(planar translation). Once it was tested and debugged in 2 DOF it was expanded to 3 DOF (planar
translation and rotation).

The input to the algorithm is a representation of the object of interest. This could either be
in the shape of a point cloud or an analytic representation, such as the intersection of half-spaces.
The algorithm begins with the specification of an initial search space, encompassing all dimensions
of the state space. This forms a hyperellipsoid where the radii indicate the search boundary for
each dimension. Each iteration samples a pre-defined number of random particles from the search
region. Each particle represents a state and has associated new search spaces surrounding them. It
then computes the weights of these particles by transforming the object according to the particle
parameters, representing hypotheses of the objects true state. Initially, the weights were calculated
using the Mahalonobis distance between the transformed object represented as a set of points and
the closest measured points. This, however, involved the computation of all distances between every
point of measurement and all points representing the object itself. To optimize the run time, we
changed the objects representation from a point cloud to an expression using the intersection of half-
spaces. This representation allowed us to compute the minimum-distance metric using an analytic
expression. In order to avoid an exponential growth of the number of particles, eliminated a sub-set
by pruning particles that had weights lower than 40% of the max-weight. The remaining particles
were then used as the basis for the next search region, such that the new region is the union of the
search-spaces centered at the particles with radii reduced by a zoom factor from the radii of the
previous iteration. Figure 1 shows a schematic of this process for 3 DOF.
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Figure 1: Schematic of the Scaling Series algorithm.

Expanding to 6 Degrees of Freedom

We continued to expand the algorithm to 6D, which complicates the algorithm due to the increased di-
mensions of the hyper-ellipsoids representing the search region for the states particularly with regard
to the different dimensions representing the orientation of the object. There were many complexi-
ties and challenges to consider due to the representation of spatial rotation, including redundancies,
singularities, uniform sampling, and choosing a distance metric between 3D rotations. There are
many ways to represent 3D rotations and each representation has benefits and drawbacks. Each
added degree of freedom increases the search space, therefore a rotational representation using three
parameters instead of four is essential to preserving the speed of the algorithm. However, representa-
tions with three parameters have singularities and redundancies which complicate the discretization
of the search space. Perhaps the most difficult aspect of searching in three rotational dimensions is
that it is difficult to find a metric to compare 3D rotations. The solution is not a simple euclidian
distance between each of the three angle parameters like it is the case for the linear distances, be-
cause two rotations with distant parameters can actually represent similar orientations. [8] illustrates
different metrics for determining if two 3D rotations are similar. Even with such a metric it is still
very difficult to discretize the rotation-space in uniform regions. Currently, we are in the process of



evaluating the various representations and metrics.

3.2.1 Integration

With segmentation and the scaling series working independently, the next step was to integrate the
two. As an intermediate step, we generated artificial measurements and stored them in a dummy
PCL point cloud. This allowed us to validate the algorithm by comparing the output to a known
solution. Our first test case was a simple triangle. To determine its dimensions, we took a static
image with the Kinect and stored it within a PCD file. Next, we imported it into MATLAB, and
plotted the XY points. Figure 2 was our result, and we were able estimate the three vertices as
(0,0),(0.2,0) and (0.2,0.1). This allowed us to check that we could achieve real time tracking, and
were getting accurate results since we could specify exactly which state the triangle was translated
to. Next we replaced the artificial measurements with actual online data from the Kinect — the point
cloud after applying the segmentation algorithm on the raw data.
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Figure 2: MATLAB representation of the triangular object from point cloud data.

4 Experimentation and Results

Experiments

We ran multiple experiments throughout this project to validate one step of the data pipeline at a
time.

Segmentation

We visually checked the point cloud in a viewer to determine the segmentation. We experimented
with different colored objects, different lighting conditions, different distances between camera and
object, as well as different angles to vary reflections.

Scaling Series

To test our Scaling Series algorithm we started by defining a simulated triangles points and its
expected state. We then checked how accurately the results compared to the expected result.



Integrated System

First we tested the integrated system using a manufactured triangle point cloud. Next, to test our
integrated setup with a live Kinect feed, the Kinect was mounted onto a metal frame roughly 1.2m
above the ground, as illustrated in Figure 3 and Figure 4. The object was a piece of paper with a
triangle outlined in green. With this setup, we manually moved the triangle and confirmed that it is

tracked accurately.

g?‘*

la:l'

Figure 3: Side view of the experimentation setup.

Figure 4: Top view of the experimentation setup.



Results

Segmentation

Figure 5 shows the the result of filtering with respect to brown color. The box is visible in the center
of the image, but so is a substantial amount of noise from the back ground. After calibrating the
color of the triangle to the lighting of the room and height of the Kinect we achieved segmentation

results shown in Figure 6.
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Figure 5: Resulting point cloud filtering on the color brown.

Figure 6: Resulting point cloud filtering on the color green.



Scaling Series

We ran the 3DOF Scaling Series algorithm 1000 times, choosing a random initial state. We then
calculated the relative error of each parameter (estimated value - actual value)/actual value. We
summed these up and took the average to receive the following results:

Parameter | Average % error
X 3.47
- 4.89
0 5.56

Integrated Algorithm

We setup a viewer to display our point clouds in real time. Figure 7 depicts the results using the
dummy triangle. The green dots represent the simulated measurements and the red dot represents
the estimated state (the vertices of the triangle). Due to time constraints we ran our experiments
on our integrated application in 2D and 3 DOF (planar translation with rotation). Some results of
state estimation with 3 DOF are shown in Figure 8 and Figure 9. The states were updated during
tracking as the object was moved around. The algorithm was able to update the states in real time.

Figure 7: Dummy triangle point cloud with resulting position prediction indicated with a red point.

Figure 8: Resulting prediction using live feed from the Kinect at one location.



Figure 9: Resulting prediction using live feed from the Kinect an another location.

Next Steps

Throughout the project we expanded the dimensionality of the scaling series algorithm. We started
with 2D translation and later expanded 2D with rotation (3DOF), and 3D position with 3D rotation
(6 DOF). We are in the process of fully debugging and integrate the segmentation algorithm with
each version of the scaling series algorithm. We did commit each one to version control so we can
continue to debug, test and optimize the algorithms for the different dimensionalities and scenarios.
We believe that the performance can be improved significantly by tuning the parameters of the
Scaling Series algorithm (final discretization resolution, initial search region, number of new particles
per search-space).

5 Conclusion

The most challenging part of this project was the implementation of the algorithm performing state
estimation. This project shows that the scaling series algorithm works for tracking a planar object
in real-time. It has the potential to be expanded to higher dimensions and continue to provide high
frequency estimates. The algorithm is independent of the segmentation method, allowing others to
be substituted in depending on the properties of the object you want to track. This algorithm could
be ported to a robots vision system to allow for real-time manipulation and navigation tasks.
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