
CS 231A Final Project
Real-time Webcam Gaze-tracking

Wen Hao Lui
whlui@stanford.edu

March 19, 2014

Abstract

Gaze-tracking is a useful technology that opens new avenues for HCI and research into hu-
man behavioral patterns. However, the image quality of current web cameras and the need for
real-time image processing makes specialized hardware the norm in commercial offerings. We
present a machine-learning based approach using well-engineered visual features to enable an
accurate estimate of the user’s gaze position using normal webcam hardware, without the need
for mounting on the user. Unlike other webcam-based approaches, we also model the user’s head
orientation to allow the user greater flexibility in viewing postures. Our successful experiment,
with a median error of 3.22° in determining the user’s gaze position, validates our approach.

1 Introduction
Eye-tracking is a valuable capability that has versatile applications, such as an input to a device or
a measurable metric for research. The strong eye-mind hypothesis [5] postulates that the amount
of time a person spends thinking about an object is proportional to the time spent looking at it.
Based on this premise, several companies like EyeTrackShop, YouEye and GazeHawk are offering
gaze-tracking services to allow product creators to see if users are looking at the correct elements
of the product, as opposed to being distracted by a side icon for example. Besides usability testing,
gaze tracking can also be used for market research, such as determining the products that grab atten-
tion in a shopping aisle, or identifying the most eye-catching features of a billboard advertisement.
Researchers also use eye-tracking to study human tasks like reading, web surfing, and driving [4]
in more detail. Another interesting application is in HCI [6, 8], where the user can use their eyes
to direct input to an electronic device. Besides the convenience afforded for some tasks, this also
allows physically impaired people to have an alternative input system.

1.1 Challenges
There are numerous challenges involved in gaze tracking, as explained by Kumar et al. [7]. The use
of web cameras dictate that the resolution of our video frames will be lower. Since the user’s eyes
take up a small fraction of the captured image, the actual image size that we work with is on the
order of 60 by 30 pixels for the whole eye. As the gaze shifts from the left edge to the right edge of
the screen, the pupil moves about 13 pixels at most from its original position. A direct mapping will
give a very coarse position estimate, further worsened by noise; hence we need additional features
to further fine-tune the output.

1

Figure 1: Illustration of problem. Given an image of the user captured by the webcam, we want to
identify the gaze co-ordinates of the user (highlighted with the blue circle).

Eye movement is also naturally jerkey, and saccades are a well-studied phenomenon in humans
and other animals. We aim to reduce the effect of this erratic behavior by applying a filter to smooth
out the movement.

Given the predicted gaze position P for a frame of the video stream,we apply an exponential
moving average filter or another smoothing algorithm in order to reduce the effects of saccades
(rapid eye movements, usually done subconsciously) and noise from measurement.

1.2 Our work
We choose to work on a webcam platform that is already present in most user environments. The
main challenge comes with the comparatively low image resolution and wide field of view - this
means that only a small number of pixels are used to represent the eye, and makes determining
visual features difficult and error-prone.

We tackle the usual formulation of the problem - given an image of the user, as shown in Figure
1, we want to determine the location on the screen that the user is looking at. Our approach uses
support vector regression (SVR) on robust features to obtain reliable estimates of the eye position.
As shown in Figure 2, using calibration images matched with the corresponding gaze co-ordinates
of the user, we extract the relevant features and train a linear SVR model. This SVR model is then
used to predict the gaze co-ordinates of future input images.

2 Previous Work
Traditionally, eye-tracking has been carried out with specialized equipment. Some invasive tools
used include special contact lens and magnetic search coils [1]. As video-recording and data-
processing capabilities improved, there has been greater interest in non-invasive optical methods
that can yield acceptably accurate results. Companies like Tobii have developed specialized cam-
eras that give accurate readings of the user’s gaze point, allowing for direct fine-grained control [9].
There has also been open-source development of eye-tracking software such as Opengazer [11] and
Gaze Tracker [2] that allows home users to turn their webcams into functional eye-trackers.

2

Figure 2: High-level overview of our approach. We collect calibration images tagged with the
gaze co-ordinates, then train a SVR model on the extracted features from the images. The SVR
model is then used to predict a new set of gaze co-ordinate based on extracted features from a new
input image.

2.1 Main Contribution
This project will follow in the spirit of these open-source projects and aim to create a working eye-
tracking program using a webcam. We plan to use easily available hardware like web cameras,
instead of specialized cameras, so as to keep costs low and make the potential user base as large
as possible. We also want to avoid using any equipment mounted on the body, which would bring
inconvenience to the user and again require specialized equipment.

We take Opengazer’s accuracy as a rough benchmark for expected performance. It has an error
of about 1.5-inch on a 15-inch screen. This translates to an angular error of about 4°. There were no
other publicly available real-time webcam-based gaze-tracking software available for comparison
(that did not require the user wearing a camera). Although there are inherent limitations due to the
poor resolution of web cameras, we discuss how we plan to approach this lower error threshold in
section 3.4.

Our learning model also improves on both commercial and open-source gaze-tracking offerings,
which typically require the user to hold their head in a still position. By modeling the orientation
of the user’s head, we can maintain accurate predictions of the gaze co-ordinates despite the user
shifting his or her head. This allows greater comfort in using the gaze-tracking software.

3 Approach

3.1 Overview
We collect training data through calibration, where the user sits still and looks at various pre-
determined points on the screen while the program records the eye features. We then use computer
vision techniques to extract key features from the calibration images. An SVR model is trained,
based on these extracted features and their corresponding gaze co-ordinates. The model can then be
used to make predictions of gaze co-ordinates given the extracted features of a new image.

3

3.2 Problem Formulation
Given a webcam stream containing a user, we want to identify the point on the screen that the user
is looking at. Parameters like screen size, position of camera relative to the screen, screen resolution
are assumed to be given. Additionally, we will make use of existing features in libraries like OpenCV
for facial detection and eye recognition to cut down on the amount of pre-processing work needed.
For subsequent discussions, we assume that the necessary pre-processing has been done so that the
two eye positions are known, and the positions of the eyes in the picture are also known.

For each image Q of the web stream, we want to output a screen co-ordinate P = (x, y) that is
as close as possible to the true gaze point P̂ . The error is then the pixel distance from the predicted
co-ordinate to the actual co-ordinate, ε = ||P − P̂ ||. This error distance can then be translated to an
angular error with the given distance of the face from the camera and the screen resolution.

3.3 Features
We choose to work with a small number of features in order to simplify the model and allow it
to better generalize to unseen examples. This is needed because our low quantity of training data
(arising solely from calibration images) makes our model very likely to overfit as we increase the
number of features.

We present our features and the methods used for feature extraction here. The methods chosen
needed to fit the criteria of precision (low variance) and speed. We need precision due to the sen-
sitivity of the gaze co-ordinates to slight changes in feature value, while the speed requirement was
imposed to enable real-time feedback to the user. After experimenting with several detection meth-
ods (RANSAC, Hough transforms, sliding windows, shape contexts, SIFT feature matching), we
found that the most reliable method was the generalized Hough transform [3]. By imposing certain
constraints on the search space, we are able to perform the required transforms in real-time. The list
of features is summarized in Table 1.

3.3.1 Face position in image

We want to localize the face in the image so that we know the reference frame the user is looking
from. In addition, it gives us a smaller search space for our subsequent features, saving computation
time. This feature was calculated using Haar cascades [10], and is a method already implemented in
OpenCV.

3.3.2 Eye position in face

Using Haar cascades only gives us a bounding box for the eye position, which is not accurate enough
for our purposes. We use a generalized Hough transform, as shown in Figure 6, to estimate the
position of the eye on a pixel level. We apply a Gaussian filter to remove noises, then use a Canny
edge detector to identify the edges that would comprise our shape of interest. For each eye, we have
a shape template based on the average shape profile of about 10 eyes. Each pixel in the detected
edges then votes for the position of the eye, casting one vote from the perspective of each pixel in
the shape template. That is, if the origin of the eye is o, then from the perspective p of the pixel in
the shape template, the pixel in location q in the original image would cast a vote for the pixel in
location q + (o− p). Tallying up the votes, the pixel with the highest count would be the predicted
eye position.

4

Figure 3: Generalized Hough transform for eyes, nose and mouth. Image descriptions from left
to right: original image, Canny edge detection applied, shape template used, Hough voting pattern,
identified keypoints based on most popular location vote. We apply Canny edge detection to the
given images, then use the detected edges and a template to vote for the position of the eye/nose,
taking the highest-scoring pixel as the correct position. The Hough voting pattern uses as the origin
the right corner of the eye, the right nostril, and the right corner of the mouth.

Figure 4: Hough circle transform for pupil detection. We impose a tight constraint on the mini-
mum and maximum radii to keep the search space small.

3.3.3 Pupil position in eye

We use Hough circles to detect the pupil positions, specifying a minimum and maximum radius in
order to limit the search space. The gradient-based approach in OpenCV did not yield sufficiently
consistent circle centers, so we implemented our own approach based on Canny edge detectors
(Figure 4).

3.3.4 Head orientation

We use additional generalized Hough transforms to determine the nose and mouth positions. In
addition to the two eye positions, we now have four key points that we can use to generate point
correspondences (see Figure 5) between any two images of the face. We can use this to calculate the
transformation matrix that converts points in one image to another, and from the coefficients of the
matrix we can deduce the orientation angles of the head.

5

Figure 5: Matching keypoints for transformation matrix calculation. We use four corresponding
points (one each from the eyes, nose and mouth) to specify the transformation matrix from one
image to the other.

Feature Description
φ0 Constant bias term
φ1 Face position in image
φ2 Eye position in face
φ3 Pupil position in eye
φ4 Head orientation

Table 1: List of features for position estimation.

3.4 Learning
Given the features in Table 1, we can perform linear regression with an SVM to map the relationship
between features and the gaze co-ordinates. We can use a linear kernel due to the geometry of
the problem - the gaze co-ordinate varies linearly with the measured feature. In the case of some
non-linear features (such as angles), we do a pre-computation by taking the arcsine of the angle
with respect to the zero position. Using a linear kernel also helps with learning, because of the low
amount of calibration images we can obtain. A higher-dimensional kernel will suffer from the curse
of dimensionality and very likely overfit the training data.

We train two separate SVMs, one for the x-axis and one for the y-axis. The optimization problem
for the SVM becomes:

min
wx

1

2
wT

xwx + C
∑
i

max(|xi − wT
x φ(Q)| − ε, 0)

Where φ(Q) is a vector generated by the features described earlier, C is the weight given to
errors, and ε is the threshold distance within which a prediction is labeled correct. A similar for-
mulation holds for the y variables. The ε term allows the regression to focus on the mis-predicted
examples as support vectors instead. We also use the absolute deviation instead of squared devia-
tion to make the regression more robust and less easily skewed by outliers (due to the non-Gaussian
distribution of error).

6

Figure 6: Identified key features in the image. The blue rectangle indicates the bounding box
found by the Haar cascade for face detection. Eye, nose, and mouth positions were found using
generalized Hough transforms. We found pupil positions using Hough circle transforms.

The predictor for the gaze co-ordinates is then:

(x, y) = (wT
x φ(Q), wT

y φ(Q))

4 Experiments
We collected 60 images for training our model. Each picture is taken when the user is looking at a
randomly-generated co-ordinate on the screen, and subsequently tagged with the same co-ordinate.
Using this training set of 60 images with labeled gaze co-ordinates, we trained 60 different models
using the leave-one-out cross-validation approach in order to maximize the use of limited training
data. We report the aggregated error for the trained models on their respective unseen test images
in Figure 7. The median error is 148.3 pixels and the mean error is 240.3 pixels. The experiment
was conducted on a 22-inch screen with 1920x1080 resolution, viewed from a distance of 25 inches.
This corresponds to a median angle error of 3.22° and a mean error angle of 5.22°. As can be seen
from the error histogram, the error follows an exponential distribution that makes outliers skew the
mean error significantly. We use the median error as a more robust gauge of the performance of our
system.

5 Conclusion
Using a few well-engineered features and a simple regression method, we have managed to the
predict the user’s gaze co-ordinates with a median error of 3.22°. This compares favorably with
other commercial and open-source offerings. As a comparison, most webcam-based approaches
have an error in the 2.5° to 5° range, while the median error with specialized hardware like the Tobii
Eye Tracker is around 0.5°.

7

Figure 7: Histogram of Testing Error. The error over the 60 training examples is computed using
leave-one-out cross-validation. The mean error is 240.3 pixels and the median error is 148.3 pixels

The major shortcoming with current eye-tracking software is that the user is required to sit still in
order for the calibrated model to be accurate. This makes gaze-tracking technology uncomfortable
for medium to long-duration use. One future extension to this work is to incorporate more of the user
pose data into the model, so that the model can still make accurate predictions even if the user’s pose
changes. We currently use the head orientation and position, but have yet to include the distance of
the user from the webcam. The user distance makes a significant impact on the gaze point, with the
error scaling linearly. Incorporating this variable into our model will further improve its accuracy
and also afford greater pose flexibility to the user.

References
[1] David A. Robinson: A method of measuring eye movement using a scleral search coil in a magnetic field, IEEE

Transactions on Bio-Medical Electronics. October 1963.

[2] San Agustin, Skovsgaard J., Mollenbach H., Barret E., Tall M., Hansen M., D. W., and J. P. Hansen. Evaluation of a
low-cost open-source gaze tracker. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications
(Austin, Texas, March 22-24, pages 77–80. 2010. URL http://doi.acm.org/10.1145/1743666.1743685.

[3] D. H. Ballard. Generalizing the hough transform to detect arbitrary shapes. Pattern Recognition, 13(2):111–122, 1981.

[4] A. S. Cohen. Informationsaufnahme beim Befahren von Kurven, Psychologie für die Praxis 2/83. 1983.

[5] M. A. Just and P. A. Carpenter. Eye fixations and cognitive processes. Cognitive Psychology, 8:441–480, 1976.

[6] M. Kumar. Reducing the cost of eye tracking systems. Technical Report CSTR 2006-08, Stanford University, Stanford,
April 2006. URL http://hci.stanford.edu/cstr/reports/2006-08.pdf.

[7] Manu Kumar, Jeff Klingner, Rohan Puranik, Terry Winograd, and Andreas Paepcke. Improving the accuracy of gaze
input for interaction. In ETRA ’08: Proceedings of the 2008 symposium on Eye tracking research & applications, pages
65–68, New York, NY, USA, 2008. ACM. ISBN 978-1-59593-982-1. doi: 10.1145/1344471.1344488.

[8] Alex Poole and Linden J. Ball. Eye tracking in human-computer interaction and usability research: Current status and
future prospects. 2010.

[9] S. Stellmach and R. Dachselt. Gaze-supported Interaction (Demo). Presented at the Mensch & Computer Workshop-
band, 2012.

8

http://doi.acm.org/10.1145/1743666.1743685
http://hci.stanford.edu/cstr/reports/2006-08.pdf

[10] Paul Viola and Michael Jones. Rapid Object Detection using a Boosted Cascade of Simple Features. Conference on
Computer Vision and Pattern Recognition (CVPR), 2001.

[11] P. Zielinski. Opengazer: open-source gaze tracker for ordinary webcams (software), Samsung and The Gatsby Chari-
table Foundation. 2008. URL http://www.inference.phy.cam.ac.uk/opengazer/.

9

http://www.inference.phy.cam.ac.uk/opengazer/

	Introduction
	Challenges
	Our work

	Previous Work
	Main Contribution

	Approach
	Overview
	Problem Formulation
	Features
	Face position in image
	Eye position in face
	Pupil position in eye
	Head orientation

	Learning

	Experiments
	Conclusion

