Facial Verification using Fisher Vectors and Deep Nets

Francois Chaubard (fchaubar@stanford.edu), Mike Chrzanowski (mc2711@stanford.edu)

Abstract

Our project tackled the problem of verifying whether two facial images are of the same person or not.
Specifically, we sought to replicate the results of Simonyan, et al. in their paper “Fisher Vector Faces in the
Wild”, which achieves state of the art verification performance on the popular Labeled Faces in the Wild
(LFW) dataset. We then sought to obtain better performance by introducing new elements into the
processing pipeline such as feature augmentation and use of deep neural nets. Finally, we created a
publicly-facing website for our work at fisherfaces.com that anyone can use to perform verification in real
time.

1. Introduction

Teaching a computer to decipher between two faces is an unsolved task. Many companies such as
microfinance firms (Lenddo, Lending Club) and social networks (Facebook), spend millions of dollars to
perform user validation to answer the question “is this person who they say they are?”. One of the first steps
in validation is to ensure the picture associated with a profile is unique and consistent with other pictures
(i.e. passport/license pictures). For example, Lenndo is a microfinance company that delivers credit scores
based on Facebook profiles. Ensuring an applicant’s I.D. corresponds with his/her profile picture(s) is
essential in its verification process. The only way to do so is to compare the faces of the image of a
photo-1.D. and the Facebook profile pictures. If they deem two faces to be the same incorrectly, they could
very well give a loan to a phony account and lose money. Therefore, developing an algorithm that can
achieve human level accuracy in deciding same face vs. different face (as demonstrated in Figure 4) would
be extremely useful. The method we use to establish a baseline is that of the Simonyan, et al, paper “Fisher
Vector Faces in the Wild” [0]. From there, we experiment with various parts of the algorithm to try and
boost performance. We include below a schematic for the pipeline of the algorithm, although the details of
how everything works is presented in Section 3.

1) Create "Visual Words” in Sift Space via GMM

A

Figure 1: We create 512 “Visual Words” to describe a face by performing GMM (Gaussian Mixture Model) on a bank of SIFT
Descriptors generated from face data.

2)LeammWand b

argmin } " max [1 - y;; (b — (9~ 9;)"WTW (9~ ¢;)) 0]
Ll ¥

Figure 2: We create a Fisher Vector for each image and optimize the above formula to find W and b



3) Train, Test, and Use the Algorithm
o= [@51),¢§2),,“’¢E),¢E)]— + Same Face

H I @) 2 .—" (b_'d‘i’w'i:‘pj))
B—~ 0= [CD, Py Py, Py ]ﬁ ) Different Face
‘ Thresh Distance

Figure 3: We use the learnt W as a Mahalanobis Distance which can be interpreted as the distance of the differences of the Fisher
vectors in this subspace. We threshold this distance by another learnt parameter b and declare the Fisher vectors represent same faces
if the distance is below b, and represent different faces if the distance is above b.

We uploaded the parameters from our best performing algorithm to a webserver which serves as a frontend
for our work and which streamlines the process described in Figure 3, in an effort to study what weak points
our algorithm has; (i.e. with regard to certain skin colors, demographics, sex, etc). Below is the output of

two successful run of our algorithm on the website.

Same Face or Different Face?

Figure 4: Two outputs of fisherfaces.com which is a website that runs our algorithm on two user fed images. On the left, we have two
images of Professor Silvio Savarese and our algorithm correctly detects it as such. On the right, we have Dr. Savarese and John F.

Kennedy. Note that our algorithm also correctly detects that the two faces are different.

2. Previous Work and Key Project Contributions

2.1 Literature Review

Since before 1987, computer scientists have been developing algorithms to perform this very task. The first
few breakthrough algorithms were mostly subspace learning algorithms. The first of these, EigenFace [7],
takes a basket of face images and computes a linear subspace on its data matrix using PCA (Principal
Component Analysis) to discover a linear subspace that ideally spans the space of possible faces. However,
since the algorithm initially treats every pixel as a feature, it has a number of weaknesses, such as
non-robustness to misalignment, pose, and variation in light. Also, if the differences between the training
images and the test image is large, the algorithm will perform very poorly. EigenFace achieves 60% test
accuracy on the LFW dataset. FisherFace [8] is another subspace learning algorithm that finds the most
discriminating subspace for a set of labeled faces via Linear Discriminant Analysis. FisherFace performs
better than EigenFace in the presence of light and pose variation, but still performs poorly on test images of
persons not in the training set. Most of these linear subspace learning algorithms fail to capture a good
model for a face because the “face” subspace of the pixel-space is not linear, but instead rests on a high
dimensional “manifold”.

Other algorithms [9] attempt to solve for this manifold directly via more recent spectral methods, performing
Weighted Kernel PCA, i.e. finding a subspace of an infinite dimensional space. [10] attempts to find a
multilinear subspace, representing the face image data matrix as a tensor rather than a matrix. Although



each of these ideas result in improvement, none achieve performance anywhere near “human level”, 97.5%
[11]. This is, at least in part, due to the utilization of pixels directly as features. A more robust
representation of a face other than pixels is required, since pixels tend to be very noisy. Modern patch
descriptors such as SIFT, SURF, FREAK, etc, are much more robust to changes in illumination, rotation,
and scale, and therefore, make better initial features to use. This idea brought about a new batch of
algorithms that resulted in much better performance. In [18], Guillaumin, et al, utilize this representation to
reach performance of 79.27% with a fairly straight forward distance metric learning algorithm. They mention
that a single SIFT descriptor resulted in 74.6% accuracy just by itself!

There have been some attempts to look at the problem from an “elastic” graph perspective [12] and [19],
using something similar to an Object Bank approach, in which we look for landmarks on a face, determine
pose, and then attempt to either correct for this pose into a canonical form or compute a distance metric
directly. However, these algorithms are computationally very expensive since we are representing the face in
a 2D, or sometimes 3D, morphable model which is impossible unless we have more than one image per
face and there is a rotation difference in the images. We also require that there is no occlusion in either
image. These requirements make this type of model less fitting for our problem.

Finally, the most recent and popular approach to face verification utilize Neural Networks to either directly
solve from pixels to classification or from some post step after one of the previously mentioned algorithms.
[13] uses a 4 layer Pyramid CNN (Convolutional Neural Network) and achieves 85.8% on the LFW restricted
training setting. This approach, and other flavors of it, currently achieve state of the art on the LFW dataset
in the unrestricted setting but not on the restricted. We, therefore, look to merge the successful ideas of
these methodologies and the current state of the art on the restricted setting [0].

2.2 Key Project Contributions

We look to leverage the image representation of the Fisher vector approach of [0], since this algorithm works
the best in the restricted setting (87.47%) [11]. This suggests that this representation is the most

expressive and learns the fastest, i.e. on restricted training, it outperforms all other used features.

We conduct two broad experiments on the algorithm:

(1) For pre-Fisher vector formulation, we experiment with different amounts of SIFT descriptors to extract per
face image, 26k and 41k. We also attempt to add more interesting features to the SIFT descriptors. In the
paper, they add location features to the descriptors (the X, y coordinates of each densely sampled SIFT
descriptor). We experiment with adding not only location but color features and skin-pixel detection.
Attempting to add too much here will result in multicollinearity, hence, we are careful not to add overlapping
information.

(2) For post-Fisher vector formulation, the paper outlines a Mahalanobis distance learning algorithm using
Fisher vectors. However, we wanted to experiment with this. First, we attempt an SVM approach to
establish a baseline. We randomly sample 500,000 same face pairs and 500,000 different face pairs and
compute the difference of their Fisher vectors to give us 1 million training samples where each sample is a
67,584 “Differenced Fisher vector”. We use this to train a linear SVM. We also use these samples to train a
feedforward neural network (FNN). Since the dimensionality of the training samples is 67,584, we perform
SVD on the data set and only use the first 500 singular vectors (representing 69.6% of the energy of the
data matrix). We then perform the same SVM and FNN approach on a subspace of the data as well. The
results of these experiments are demonstrated and discussed in Section 4.



3. Technical Details

3.1 Summary
We partition the processing pipeline into pre-processing, training, and testing stages, which we briefly
describe and in which we’ll go into detail in 3.2. The pre-processing step consists of first creating all dense
SIFT descriptors for all images and then selecting a subset of them to fit the parameters for a Gaussian
Mixture Model (GMM). We then use the GMM parameters to create Fisher vector representations for each
image, which we store for later use. The training step involves learning a projection matrix W and a threshold
b such that, for two Fisher vectors ¢;, ¢, of images of the same person:

fo=0) = b= (0= 0) W W(o;~¢;)
is very positive whereas for two images of different people, the same function produces very negative output.
Testing then consists of creating Fisher vector representations of two images and then observing the result
of the function above.

Because we sought to replicate their method (and hopefully improve on it), our algorithmic analysis hews
very closely to the analysis Simonyan, et al. present. Where we differ is chiefly in providing intuition and
clarification for various steps of the algorithm that confused us a priori as well as identifying the
implementation tricks that were required to make the algorithm work and which were not detailed in the
paper. We also discuss differences of approaches between our implementation and theirs, when applicable.
We then discuss the work involved to make fisherfaces.com operational and also talk briefly about
augmentations we tried to improve on Simonyan, et al’s algorithm, which saw no significant performance
boost.

3.2 Details
3.2.1 Things that Work: The Current Pipeline

3.2.1.1 Preprocessing

In the ‘Unrestricted’ setting, the creators of the LFW dataset have created 10 splits of the approximately
13,000 images in the corpus. The training set then consists of all images in 9 of the splits, and validation is
then composed of all images in the left-out split.

The first step is to first run the (MATLAB-implemented) Viola Jones detector on an image to create a
bounding box for the face in the image. The image is then cropped to this bounding box and is resized so
that it is 160 x 125 pixels. As is the standard, the color space is converted from RGB to grayscale.

We then fit a GMM model to the training data. For this, we iterate through each image in the training set and
compute its dense SIFT descriptor representation. Simonyan, et al. advocate using a stride of 1 pixel with 5
bin sizes that are scaled V2 apart to generate about 26,000 128-dimensional descriptors per image. We
actually found that using slightly smaller bin sizes to generate 41,000 descriptors works slightly better and
produces better results. We use the dense SIFT implementation provided in v1feat [20] for this task.

We note that each image consists of 160x125x3 pixels and, if we represent each pixel with 4 bytes, we get
about 234 KB. After the SIFT descriptor generation, each image representation now requires 128 * 41,000 *
4 bytes ~ 20 MB. As we have around 12,000 images in the training set, storing all 429 million descriptors for
the images would take about 234 GB. Although we have access to machines with this much RAM



(specifically, Amazon Web Service’s cr1.8xlarge EC2 instance has 244 GB and 32 CPUs), we found the
runtime of the GMM process on so many samples is unacceptably long. After consultation with Karen
Simonyan, himself, we found that in practice, a decent GMM fit can be achieved if we down sample 1 million
descriptors, uniformly. So, our process generates the descriptors per image and then samples 100 of them
for storage in memory. The rest are discarded.

At this point, Simonyan, et al. advocate calculating the RootSIFT representations of each descriptor. The

key idea here is that using the Hellinger kernel, which is defined as H(x,y) = . \X;[J7 , to compare
=1

histograms has been found to result in better matches than using Euclidean distance [1]. The steps involved
to use this kernel instead of Euclidean distance are straightforward: L1 normalize each descriptor and then
take the element-wise square root. However, we found that using RootSIFT resulted in little to no
performance impact on our final numbers, and so to simplify our processing pipeline, we excluded this step
for most of our experiments.

Prior to running GMM, the authors also advocate running PCA to reduce the dimensionality of the the
descriptors so as to reduce the amount of noise introduced when fitting the means and covariances of the
GMM clusters. This is extremely important as these will be used as a dictionary in the rest of the pipeline.
We find the 64 most significant principal components to project the sampled SIFT descriptors onto and then
serialize this matrix for later use.

At this point, for each post-PCA descriptor, we add spatial information regarding its keypoint, which is not
captured by SIFT descriptors a priori. Specifically, we add the values [£ f%, %f—;] , Where (x, y) is the center
of the patch of image data that this particular descriptor belongs to, w is the image width (125 for us), and h
is the image height (160). Thus, after these steps, we have a descriptor matrix of dimensionality 66x1
million. Finally, we fit 512 clusters to this data using v1 gmm, a parallelized implementation available in
vlfeat. To further prevent overfitting, we constrain the cluster covariance matrices to be diagonal. This
process takes about half an hour and results in 512 means, covariances, and priors that are then serialized
for later use.

Having fit our GMM parameters, we then create a Fisher vector for each image. A Fisher vector for an image
is a collection of partial derivatives of the log-likelihood of the descriptors being generated from these fit
parameters [2]. Formally, for image z that is represented with SIFT descriptors X = {x,,...,x.5} , we solve the
following optimization problem:

maximize L(X]0) = g log(p(x4|0))
n=1

K
subjectto Y, wy=1
=l

Where:

K
POenl0) = 2 wip(n|0))
=1

exp(—S 1) T o)
@aPR)z
N = the number of descriptors (ie, 41,000)
w, = fitted mean of cluster k, X, = fitted diagonal covariance matrix of cluster k
D = dimensionality of the the means and descriptors (ie, 66), K = the number of clusters
(ie, 512)

Dp(xnl0,) =



And we define each element j=1,...,D of % and ‘%Z’—i@ as [3]:

Oon 1)
(1) — oLX6) _ _1 i ki
Oy e ; Nm nZ::l ‘Ink—sz

2
/(X 0 M)

@ _ oL — _1 _
(Dk] = N A ngl dnik zk/-’/»z 1)

%

where,

— Wip(Xn|0)
K

Zl wp(xa|6,)

J=

Dk

For image z, we define Fisher vector ¢, as:
9. = [q)l(l) q)](Z) q)K(l) q)K(Z)]
We then store each Fisher vector for later use in the training step.

3.2.1.2. Training

Given the Fisher vector representations of the images in the training set, we seek to learn a matrix W and
threshold b such that b—((pi—(pj)T WTW((pl-—(pj) is very positive when images i and j are of the same person

and very negative when they are not. Simonyan, et al. choose to go about achieving this goal with the
following steps:
1). imposing a margin be learnt:
Vi (b= (¢;~ (Pj)TWT W(p;i—¢))>1
where y;is +1if i and j are of the same person and -1 otherwise
2): using a hinge-loss cost function:

argminy ;> max[1 =y (b= (0;=9)" W' W(g;~ @), 0]
L

As this cost function is convex in b but not in W, training is done with stochastic subgradient descent
where, for each iteration, two Fisher vectors are chosen, with an equal probability of the two images being of
the same person or not. An update at iteration t is then only performed on W and b if the correct
classification was made with insufficient margin or if the classification was incorrect:

W =W, —vwyy Wt((Pi_(Pj)((Pi_(Pj)T

by =b Yy

Note that after consultation with the authors, we chose y,,=0.5 and vy, =10. Finally, as the problem is
non-convex, the authors choose to initialize W by creating a matrix of all the Fisher vectors, performing PCA
on it, and then using the top 128 principal components as the rows of W.

3.2.1.3. Testing

Testing whether two images are of the same person simply involves using the learnt parameters from the
preprocessing stage to construct Fisher vectors. The learnt W and b parameters are then used to see
whether the distance is larger or smaller than b, and a decision is then made. We note that, once all
parameters are unserialized, the most expensive step is the Fisher vector creation process: this tends to
run for about a minute on an AWS m1.small machine. As matrix operations are highly optimized, reaching a
decision for a pair of Fisher vector is extremely fast.

3.2.1.4. fisherfaces.com

fisherfaces.com is currently pointed at a single AWS m1.small machine with 1.7GB of RAM and one
single-threaded CPU. It was built with the Flask web application micro-framework available for Python. Users
are allowed to upload two reasonably-sized images to the website, which are then sent through a method
that exactly implements the testing process mentioned in 3.2.1.2. Parameters are learnt on a much more




capable machine that has 4 cores and 16GB of RAM and are then copied remotely to the webserver so that
they can be used for on-demand verification. The training, testing, and on-demand verification code is all in
Python and can co-exist nicely with the website code. However, all of the preprocessing steps must be
written in MATLAB as we heavily leverage v1feat. So we have to make a new call to instantiate MATLAB
every time a new request comes in, which is very problematic as the startup time for the program is
relatively slow (ie, around 5-8 seconds). Although several packages exist that try to run MATLAB as a
server, we found these applications are not currently maintained and very bug-ridden. This startup overhead,
combined with the slow, single-threaded CPU and low RAM available means that requests typically take
about a minute to process. We plan on migrating to a larger machine once we can get grant funds from
Amazon for this. In the meantime, the website is not available to serve multiple requests, and so the website
backend has been coded in such a way as to only allow one job to be processed at any one point in time.

3.2.2 Things that Didn’t Work

3.2.2.1. Using a Denoising Autoencoder before Initializing W

One of our suspicions when we began this project was that the introduction of a layer that captured
non-linear similarities between Fisher vectors and which occurred right before the initialization of W might
result in better generalization performance. The intuition here was training was very susceptible to the W
initialization step, and performing PCA is just equivalent to performing a linear transformation of the training
data. So, it stood to reason that a non-linear transformation would capture similarities that were previously
overlooked. To test this idea out, we tried to train a single-layer denoising autoencoder (DA) from the
Theano Python library with the Fisher vectors as the input data.

Briefly, a DA is similar to a feed-forward autoencoder in that it is given a set of training instances, each of
size n, and tries to reconstruct a particular training instance using weights learnt for its k hidden units,
where k < n. That is, for each training instance x, we have from [4]:
y=o(Wx+b)
where y is the compressed representation of x, o(-) is the sigmoid function, W is the weight matrix to learn, and b is the learnt bias.
The graphical model then tries to reconstruct the training instance from the compressed representation:
x'=o(W'y+b')

where W’ and b’ are a new set of learnt parameters.

It then tries to minimize the reconstruction error > Hx(i)—x'([)Hz through back propagation. DAs also add

Gaussian noise to the input data in order to learn a more robust mapping from the input to the
reconstruction. Unfortunately, we found that training DAs takes an extremely long time - over 24 hours for a
particular training/test split using very powerful machines. To put this in perspective, we can perform the
entire 3.2.1.2 training pipeline on the same machines in about 5 hours. Also, we could not come up with a
choice of parameters that resulted in better verification accuracy than when the DA step was completely left
out. We discuss these results in greater detail in Section 4.

3.2.2.2. Using a Feedforward Neural Net for Training

More ambitiously, we were interested in seeing how well we could approximate the current pipeline by using
a simple, multi-layered neural net. That is, we removed the training and testing steps outlined in 3.2.1.2 and
3.2.1.3 and instead, used a trained neural net to classify pairs of images. The visible layer was ¢;—¢;for two
images i and j. This first layer was of dimensionality 67,584, the first hidden unit layer was initially around
dimensionality 1024, the second layer 128, and the final layer had 2 units that output the likelihood of this
pair originating from the same person or not. For simplicity and runtime consideration, we did not pre-train
the layers: if initial results looked promising, we would then implement this additional (in terms of runtime)
step.




We tried each node having its own W and b parameters as well as having each node in a layer share them.
Unfortunately, we found this method was not competitive with the current pipeline in terms of memory,
runtime, or verification performance. Moreover, increasing the dimensionality of the hidden layers meant
storing larger and larger dense weight matrices, and using more training data also meant storing the
differences of many Fisher vectors in memory. We attempted a second layer of 9024 and the training time
required was a week and a day. Although it achieved better performance, the training time was a deal
breaker. Although we noted that a higher dimension second layer would probably result in huge gains, we
eventually could not allocate additional memory resources to complete training of our neural net no matter
which framework we used: PyBrain, Theano, FANN (Fast Artificial Neural Network), or Matlab.

3.2.2.3. Learning a Separating Hyperplane Rather than a Projection Matrix

We were interested in seeing what performance we were capable of achieving using a simple separating
hyperplane rather than a projection matrix. That is, instead of using the training and test steps outlined in
3.2.1.2 and 3.2.1.3, we trained a L2-regularized SVM with a linear kernel using 1iblinear [5].Formally,
and as provided in the 1iblinear documentation, this classifier solves the following primal problem:

minyw!w+CY max[1—yw'x,;, 0]
i

Where: x;=¢;— ¢, for two different images j and k
;=1 if jand k come from the same person and -1 otherwise.

As with the W learning in 3.2.1.2, the labels of the training set are evenly split between same and different
person pairs. We chose 500,000 same pairs and 500,000 different pairs giving us 1 million Fisher vector
differences to use for training samples. However, after training the SVM with many different regularization
parameters, we never reached a performance over 50%. It is clear that, because it has an order of
magnitude fewer parameters to learn, the SVM’s performance would be a lower bound on the training
performance compared to learning a projection matrix, and it would almost assuredly be a lower bound on
validation performance as well. Thusly, we attempted to perform SVD on the data matrix to use only the top
500 left singular vectors, Dg,,=U,,, * X, in which Dy is 1 million by 500. Indeed, despite our attempts to
tune the SVM’s hyperparameters and form subspaces for our data matrix, we could not achieve results
better than 50% test accuracy.

3.2.2.4. Adding Additional Features During Fisher Vector Generation

Another suspicion of ours at the beginning of the project was that the pipeline presented by Simonyan, et al.
didn’t capture a host a features that might prove useful for verification performance. For instance, we
imagined that counting the number of skin pixels within the image area described by a specific SIFT
descriptor might be very valuable information to use, as might information about the background in certain
images. We primarily explored the inclusion of the fraction of skin pixels in the post-PCA SIFT descriptors.
That is, for a given image, we ran an implementation of the “gray world algorithm” that has been optimized to
detect skin pixels [6]. After the SIFT descriptors for a given image have been run through PCA, we then add
a feature that contains the percentage of skin pixels that are included in the region of a particular SIFT
descriptor, as determined by its corresponding keypoint. Unfortunately, we found that the inclusion of these
features slightly hurt validation performance. It seems like the Viola Jones detector is already capturing skin
information, and so the explicit inclusion of pixel data in the descriptors hurt generalization performance.
Rather than explore this further, we were more interested in dealing with the challenges of successfully
training the neural nets on our dataset.




4, Results
4.1 Evaluation Criteria

As mentioned in Section 3, we used the ‘Unrestricted’ version of the LFW dataset in which the 13,000+
images are partitioned into 10 splits. A training procedure would then use the images in 9 of the 10 splits to
generate as many training samples as required, and the last split would be used for evaluation. Specifically,
the LFW creators provide 600 specific image pairs to be evaluated per split, where 300 of these are of image
pairs of the same person and 300 are of different people. Our key metrics to judge the performance of our
pipeline was the Accuracy, Precision and Recall obtained on these 600 samples per evaluation split. We
defined a False Positive as our method deciding two images are from the same person when they were not,

and a False Negative was the opposite event occurring.

4.2 Summary of Findings

The following table provides the results of a subset of our experiments:

Experiment Accuracy Precision Recall
Mahalanobis Metric - 26k — Non-DF - Non-Root 76.7 68.7 81.7
Mahalanobis Metric - 26k — Non-DF - RootSift 80.7 76.0 83.8
Mahalanobis Metric - 26k — DF - RootSift 81.5 73.0 88.0
Mahalanobis Metric - 26k — DF - Non-Root 82.5 75.0 88.2
Mahalanobis Metric - 41k — DF - Non-Root 83.8 78.7 87.7
Mahalanobis Metric - 41k — Non-DF - RootSift - VJ 86.0 77.3 93.5
Mahalanobis Metric - 41k — Non-DF - Non-Root - VJ 86.2 78.3 92.9
Mahalanobis Metric - 41k — Non-DF - Non-Root - VJ - SKIN 85.7 76.7 93.5
Linear SVM —C =1 - 41k — DF - Non-Root 50.0 50.0 50.1
Neural Network [67584,1024,128,2] - 41k — DF - Non-Root 73.5 74.2 731
Neural Network [67584,9024,128,2] - 41k — DF - Non-Root 78.5 79.2 78.1

We now describe the ‘Experiment’ categorization:

e |f the experiment learned a Mahalanobis Metric, then the basic categorization is ‘Mahalanobis
Metric - # of SIFT descriptors generated per image - Deep-Funneled or Normal LFW dataset -
RootSift used (or not)'. Additional fields are ‘VJ’, which means the Viola Jones detector was used,

‘SKIN’, which means skin pixels were used as features.

e |f the experiment learned a separating hyperplane, then the categorization is ‘Linear SVM - C
hyperparameter value - # of SIFT descriptors generated per image - DF or Normal LFW dataset -

RootSift used (or not)’.

e Finally, if the experiment concerned is a FNN, then it's of the form ‘Neural Network [visible units,
size of hidden layer 1, size of hidden layer 2, size of output layer] - # of SIFT descriptors generated
per image - DF or Normal LFW dataset - RootSift used (or not)’.

Where we note that the ‘Deep Funneled’ LFW dataset [17] is a slightly modified version of the normal LFW
dataset where a canonical template of the images has been learnt via a deep network and each image has
been transformed to fit that template. We achieve the best performance when learning a Mahalanobis



Distance on the LFW dataset with 41,000 generated SIFT descriptors per image and also using the Viola
Jones landmark detector. Surprisingly, the same experiment, when repeated on the Deep-Funneled dataset,
did slightly worse: this might just be due to choosing unlucky descriptors to compute the GMM parameters.
As we discussed previously, the addition of skin parameters causes slightly worse generalization
performance, as does the use of RootSift descriptors. Finally, as we noted, experiments that used SVMs
and Neural Nets generate performance numbers that are not competitive. We note that our optimal results
do not achieve the 93% accuracy reported by Simonyan, et al. We attribute this to a variety of factors,
including the fact that we only use 1M SIFT descriptors to perform GMM fitting as well as, most importantly,
the fact that the authors use outside training data to perform face alignment to aid in training.

5. Conclusions

Creating a successful facial verification algorithm is extremely challenging: image representations are very
high dimensional, and one must be sure the algorithm is expressive enough to capture important similarities
while preventing overfitting. Similarly, training neural nets is an extremely challenging process that requires
very high-resource machines running for very long periods of time. We successfully implemented Simonyan
,et al's work as a baseline, and we are still very confident in the ability of neural nets to increase verification
performance on the LFW dataset provided enough time and computation power. We hope to explore this
further in subsequent work.

6. References

[0] Simonyan, Karen, et al. Fisher Vector Faces in the Wild. [11] "Results." LFW : Labeled Faces in the Wild. University of
<http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/simonyan13fisher.pdf>. Massachusetts, n.d. Web. 19 Mar. 2014.

[12] Zhu, Xiangxin, and Deva Ramanan. "Face detection, pose
estimation, and landmark localization in the wild." Computer Vision and
should know to improve object retrieval. Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE, 2012.
<http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/ara [13] Fan, Haogiang, et al. "Learning Deep Face Representation." arXiv
preprint arXiv:1403.2802 (2014).

[14] Pedregosa, Fabian, et al. Scikit-learn: Machine Learning in Python.

[1] Arandjelovic, Relja, and Andrew Zisserman. Three things everyone

ndjelovic12.pdf>

[2] Garg, Vinay, Siddhartha Chandra, and C. V. Jawahar. Sparse
Journal of Machine Learning Research 12. Scikit-learn: Machine

Discriminative Fisher Vectors in Visual Classification.

Learning in Python.
<http://delivery.acm.org/10.1145/2430000/2425388/a55-garg.pdf>.

<http://jmir.org/papers/volume12/pedregosalial/pedregosalia.pdf>.
[15] Bergstra, J, et al. "Theano: A CPU and GPU Math Expression

[3] Fisher vector fundamentals. VLFeat.org.

<http://www.vlfeat.org/api/fisher-fundamentals.html>.
Compiler." Proceedings of the Python for Scientific Computing

Conference (2010).

[4] Denoising Autoencoders (dA). deeplearning.net.

<http://deeplearning.net/tutorial/dA.html>.

<http://www.iro.umontreal.ca/~lisa/pointeurs/theano_scipy2010.pdf>.
[5] Fan, Rong-En, et al. "LIBLINEAR: A Library for Large Linear

[16] Huang, Gary, et al. "Labeled Faces in the Wild: A Database for
Classification." Journal of Machine Learning Research 9 (2008):

Studying Face Recognition in Unconstrained Environments."
1871-74. <http://www.csie.ntu.edu.tw/~cjlin/papers/liblinear.pdf>.

X i i <http://vis-www.cs.umass.edu/Ifw/Ifw.pdf>.
[6] Jain, Guarav. Skin Detection. MATLAB Central.

[17] Advances in Neural Information Processing Systems (NIPS) (2012).
Learning to Align from Scratch. Web. 19 Mar. 2014.

<http://www.mathworks.com/matlabcentral/fileexchange/28565-skin-detection>.
[7] Sirovich, Lawrence, and Michael Kirby. "Low-dimensional procedure
for the characterization of human faces." JOSA A 4.3 (1987): 519-524. <http://vis-www.cs.umass.edu/papers/nips2012_deep_congealing.pdf>.
[8] Belhumeur, Peter N., Jogo P. Hespanha, and David Kriegman. [18] Guillaumin, Matthieu, Jakob Verbeek, and Cordelia Schmid. "Is
"Eigenfaces vs. fisherfaces: Recognition using class specific linear
projection." Pattern Analysis and Machine Intelligence, IEEE
Transactions on 19.7 (1997): 711-720. Vision, 2009 IEEE 12th International Conference on. IEEE, 2009.
[9] Yang, Ming-Hsuan, Narendra Ahuja, and David Kriegman. "Face [19] V. Blanz and T. Vetter. Face recognition based on fitting a 3d
recognm'on using ke.rnel elg‘enfaoes. Image processing, 2000. morphable model. IEEE TPAMI, 2003.

proceedings. 2000 international conference on. Vol. 1. IEEE, 2000.

[10] Chang, Hong, et al. "Spectral range selection for face recognition [20] Vedaldi, Andrea. VLFeat. VLFeat.org. <http://www.vlfeat.org/>.
under various illuminations." Image Processing, 2008. ICIP 2008. 15th

IEEE International Conference on. IEEE, 2008.

that you? Metric learning approaches for face identification." Computer

10



