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Abstract

Pedestrian tracking is an interesting problem with useful applications in fields like surveillance and
pedestrian control at intersections. We implemented an algorithm for multiple pedestrian tracking using a
single static camera. We then applied our algorithm on a single moving camera by adding a
preprocessing step to compensate for camera motion. Our camera motion compensation achieved an
average L-2 error of 0.49 pixels on a real dataset and 0.27 pixels on a simulated dataset. Our
pedestrian tracking obtained a precision of 0.81 and recall of 0.86. When combined the tracker
obtained a precision of 0.67 and recall of 0.84.
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Figure 1: Pedestrian Tracking Flowchart. This flowchart gives an overview
of the process we used for camera motion compensation and pedestrian
Find rich detection and tracking. One branch deals solely with pedestrian tracking while
features the other branch performs camera motion compensation if necessary.
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Given a stream of images taken from a single camera, the objective is to identify objects of interest and
their motion across frames. Traditional techniques track objects based on the changes between frames,
but this strategy is complicated when the camera is not static. We aim to study the performance of the
former algorithm when combined with an algorithm to compensate for the ego-motion of the camera.

Many applications exist for pedestrian tracking. Traffic control, mobile robot navigation, and



surveillance all can make good use of a robust system. However, camera conditions are not always
ideal. Environmental factors like wind can cause camera instability, while illumination varies throughout
the day. Additionally, cameras may not be stable: for example, smartphones and robotic sensors. Since
tracking algorithms generally require stable images, whenever possible, it would be useful to stabilize the
frames by compensating for small perturbations in each frame.

Literature Review

The problem of motion estimation is common in computer vision. 3D camera movement leads to
complex changes in 2D images. The ability to follow the flow of pixels from one frame to another allows
has applications in video compression and motion compensation. Two main methods exist to solve this
problem. Pixel-based methods consider the pixel by pixel differences between image frames. One
method, optical flow [6] attempts to model pixel movement based on gradients in the images.
Feature-based methods attempt to find correspondences between higher level locations (such as
minEigen features or Harris corners) in the images. These correspondences can be used to build a
transformation between the two images; transformations can vary in complexity, from simple linear
models to more complex polynomial ones. Common techniques used for motion estimation are linear
regression and RANSAC [7]. The latter is more robust to outliers, but the former can be refined to filter
out such outliers and reestimate the transformation, as in [2].

An alternative approach to pedestrian detection and tracking involves the use of class specific object
detectors. Breitenstein et al [8] propose an algorithm that uses a first-order Markov model, considering
only information from the current and the last time step, and integrates both class-specific and
target-specific information in the observation model. A separate particle filter/tracker is initialized for
each person detected with high confidence.

There are some key differences between the approaches that use object detectors for pedestrian
detection and the one we use (pedestrian detection using background subtraction). The former is more
robust to noise and illumination changes. However, it requires training specific detectors for different
objects of interest. The latter approach can be used to detect multiple objects, though it is not as robust.

Technical details

Algorithm 1 (Person tracking using blobs) [1.]

The paper assumes a single fixed camera mounted at an arbitrary position. The images are processed at
three levels: at the level of pixels, blobs and pedestrians. Below we outline the major steps in the
process.

Preprocessing the images



The first step in the pipeline is to find the difference image for each frame, the image that remains after
subtracting the background. The background is established by using a few frames that have no objects
of interest. During this phase, the maximum fluctuations in pixel values are noted, and the threshold is set
to a value slightly higher than that. When objects of interest are present in a frame, this process gives rise
to blobs.

Blob tracking

Individual blobs in each image are connected regions that can be extracted using boundary following. To
track the movement of blobs, they are allowed to split, merge, appear and vanish across frames.
Further, for each blob the following metrics are calculated (1) area: number of pixels, (2) bounding
box: smallest rectangle holding the box, (3) density: area/bounding box area, and (4) velocity: pixels
per second in horizontal and vertical directions

To model the movement of blobs, blobs from frame i are compared to the blobs from frame (i-1). The
goal is to create the optimal bipartite graph with edges connecting the blobs in previous frame to the
blobs in the current frame.

For computational simplicity, the following constraints are added to the graph:
parent structure constraint: A blob may either merge or split but not both. This forces the
graph to be very disjoint; each connected component cannot have more than a single vertex of
degree more than one.
locality constraint: vertices can be connected only if their corresponding
blobs have a bounding box overlap area, which is at least half the size of the bounding box of
the smaller blob.

Subject to these constraints, the authors find the bipartite graph the minimizes the following cost function:
Cost(G,) = Z[P, in G;] |Area(P,) - S,(P,)| / max(Area(P,),S,(P,))
where S,(P;) = X[Neighbor N; of P,] Area(N,)

Here P, are the parent blobs in the graph G, where parent blobs are defined as those which have any of
the following properties:

(1) degree > 1 (blob was split)

(2) degree 0 (blob vanishes)

(3) degree 1 but only appears in i frame (blob appears)

The authors outline a simple algorithm to find the optimal graph. At the end of this stage, the velocity of
each blob in the image reference frame is used to initialize the next stage of pedestrian tracking. Figure 2
shows an example of this algorithm on the TUD Campus dataset.



Figure 2: Pedestrian Tracking via Blobs. The 4 blobs detected in the left

! 0 0 image are associated with the 3 in the right via the matrix to the left.2 blobs
disappear (left white and green), [empty rows]. 1 blob appears (right red).
0 0 0 [empty columns]Left red maps to right white and left blue with right green.We

overlaid the bounding boxes of the ground truth pedestrians.

Pedestrian tracking
Pedestrians are modeled as rectangular patches with certain dynamic behavior. The dynamics of the
pedestrians are modeled by the following equation:
x(t+1) =F x(t) + v(t)
X is a state vector [x1 y1 vI v2] that models the position and velocity in the image plane.
F is the transition matrix of the system
v(t) is a sequence of zero mean, white Gaussian process noise with a certain covariance matrix to model
the variance of acceleration.

Given the above dynamic model and the blob tracking results, pedestrian tracking is done in the
following steps:

1. Relating pedestrians to blobs: Pedestrians are related to blobs using a simple rule: if a pedestrian
was related to a blob in frame and that blob is related to another blob in the frame (through a split,
merge, etc.), then the pedestrian is also related to the latter blob.

2. Initialize pedestrian positions: In this step we initialize the pedestrians in new blobs that appear in
any image.

3. Predict pedestrian positions: We predict pedestrian positions in frames after they were initialized
using the velocity estimates which are updated after each iteration.

4. Refine pedestrian positions: We refine the pedestrian positions by employing a 2D search to find
the best position for overlap between the corresponding pedestrians and blobs.



Algorithm 2 (Ego-Motion Compensation) [2.]

Camera motion complicates background models by causing image-wide distortion between frames.
Successful methods for dealing with this ego-motion generally attempt to construct a camera
transformation between successive frames [3.], sometimes by assuming an affine or projective
transformation. Then with this adjustment, the previous techniques can be used for object tracking.

Jung and Sukhatme’s compensation algorithm involves using salient image features (e.g., corners and
areas with rich textures) [4.] to compute the transform between the image at time t-1 to the image at
time t. The feature correspondence between successive image frames is determined by the
Lucas-Kanade method [5.], a method used for determining optical flow. In this paper, however, we use
minEigen features to determine this correspondence.

With the correspondence of many features, it is possible to estimate the parameters of the camera

transformation T. In this paper, Jung and Sukhatme select a bilinear model, instead of an affine or
projective transformation. This nonlinear model, converting the image point f' to f', is reproduced
below:

t— t-1 t-1 t-1 t-1
fi=ay " +a f~ +a,+a; £

t— t-1 t-1 t-1 t-1
f'=a, {7 +a;f" +ag+a, 1 f

The a, parameters are estimated using least squares optimization. This provides an initial transform T,
which estimates the true camera transform. The estimate suffers when features belonging to moving
objects are corresponded. In order to base the transformation only on background objects, the
algorithm filters out features with high error. The remaining correspondences F, are used to recompute
a new estimate for the bilinear transform T.

The final bilinear transform T (treated as matrix below) is used to transform points in the image at time
t-1 to the image at time t. This compensated image can be used to compute image differences. Since in
the general case, the compensated image will not overlap completely with the image at time t, the
borders of the image frame cannot be used to detect or track moving objects.

In this paper, we select a quadratic model over the bilinear model because of the resultant reduction in
mean L2 error. Mean L2 error indicates the average distance the transformed feature points are from
their corresponding feature points in the next frame. The lower the error, the better the transformation. It
is worth being cautious of overfitting, but due to the large number of feature correspondences, the fits
seem to be quite good. When refining the transformation, we use the correspondences in the bottom 85
percentile of L2 error. In practice, this threshold causes matching features located on moving



pedestrians to become outliers.

c)
Figure 3: Camera Motion Compensation. The previous frame’s feature points are in red (a), with
the next frame’s in green (b). The quadratic transformation (c) shows the compensated red features as
blue. Most of the blue points are overlapped by the green features, indicating the transformation is quite
accurate. Black lines help illustrate how the image is stretched.

Experiments
Datasets

The TUD Campus [8] and Stadtmitte [9] datasets contain a stationary camera video of pedestrians
crossing a street. Approximately 7 people are present per image. They walk in front of the camera and
occasionally past each other. This is ideal for our pedestrian tracking algorithm.

The ETH Zurich Sunny Day dataset is the video taken by a mobile robot traveling along a sidewalk.
Pedestrians tend to move towards or away from the robot in this dataset, making it less ideal for our

current pedestrian tracking scheme. Approximately 5 pedestrians are present per frame.

Pedestrian Tracking (Stationary camera)



We compute the precision and recall metrics (we consider a match if the ground truth pedestrian
bounding box and the one computed by us is above a threshold). We report a precision of 0.81 and a
recall of 0.86.

Figure 4: Pedestrian Tracking. Sample images from our dataset with tracked pedestrians in red and
ground truth in green

Camera Motion Compensation

We use the ETH Zurich Sunny Day dataset and compensate motion across frames. As described, we
compute a transformation between frames using corresponding feature points and then refine the
transformation. The original correspondences had a mean L2 error of 2.22 pixels, while the final mean
L2 error after motion compensation is 0.49 pixels. See Figure 3 for an example transformation.

Camera Motion Compensation Simulation

The ETH Zurich dataset involves too much camera motion for the Pedestrian Tracking algorithm, which
requires a background to be computed. We simulate random camera motion in the form of random
affine transformations (scaling, skewing, and translation) on the TUD Stadtmitte dataset in order to test
the camera motion algorithm.




Figure 5: Camera Motion Compensation Simulation. The original color image (a) had a random
transformation applied to it to obtain (b). Except for pixels lost during the transformation, the motion
compensation algorithm (c) restores the original image with an average L2 error of 0.27 pixels.

Random transformations are applied to each of the frames of the dataset. Then camera motion
compensation adjusts the images back to their original state so that they can be used for pedestrian
tracking, as in Figure 5.

a) - : b)
Figure 6: Simulated Background Image. A new background image (b) was estimated for the TUD
Stadtmitte dataset after the simulation. For comparison, the old background (a) is provided. The
backgrounds are computed by taking the mode of the pixels over the dataset in order to remove the
transient artifacts of pedestrians in the scene. The simulation does not degrade the background much,
and most dark spots are near the edges of the frame.

Pedestrian Tracking (Moving camera simulation)

We compute the precision and recall metrics (we consider a match if the ground truth pedestrian
bounding box and the one computed by us is above a threshold of 0.5). We report a precision of 0.67
and a recall of 0.84. The simulation’s background image (Figure 6) could have caused the decrease in
performance. Pedestrians are harder to detect on the sides and center of the image due to the additional
blackened regions of the image.



Figure 7: Pedestrian Tracking with compensation for simulated camera motion. Sample images
from our new dataset with tracked pedestrians after compensating for the simulated camera motion in
red and ground truth in green

Conclusion

In general, we find that blob tracking provides decent results. For pedestrian tracking recall and
precision were 0.86 and 0.81 respectively, but our implementation degrades in accuracy as we track
more frames. One reason for this error is that we are tracking in 2D instead of 3D, which makes our
velocity estimates less accurate. Occluded pedestrians present a difficult challenge as it is not clear how
long they should be tracked based on last velocity before being dropped. For our specific dataset, the
ground truth simply dropped them as soon as they were occluded, which artificially hurts our precision
score.

The current pedestrian tracking algorithm is general. It can track not only pedestrians, but also cars and
other moving objects. However, the use of blobs means the tracker can get confused between different
object classes. Worse, targets that do not move cannot be detected under this system, and a
background image is required to compute the blob locations. Use of pedestrian detectors could increase
accuracy of the pedestrian tracking system.

Camera motion compensation is a very promising preprocessing step for the current algorithm. High
accuracy transformations (with less than 0.5 pixel average error) can be achieved in real world and

simulated datasets without hampering the performance of the pedestrian tracker (only a small drop in
performance). Unfortunately, at this time, the algorithm’s reliance on a background image forces camera
motions to be localized to a common area in order to maintain good performance.
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