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Abstract— We propose a hierarchical movemes structure for the 

problem of human action prediction. The features of human 

actions are calculated by HOG descriptors and exemplar-SVM 

models. The finer-grained descriptions (movemes) of the human 

action are calculated from these features using dynamic time 

warping based segmentation. The dataset we use is collected 

from Youtube and consists of clips from 20 different TV shows. 

Different numbers of layers and different classifiers are used to 

predict the future action. We achieve the best prediction 

accuracy 46.7% using SVM on the proposed hierarchical 

moveme model with 3 layers.  
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I.  INTRODUCTION 

Human action recognition is one of the most classic 

problems in the area of computer vision and there are many 

useful related applications. For example, automatic human 

action recognition in a video scene of a surveillance system 

helps abnormal event detection, person counting in a dense 

crowd, person identification, gender classification, etc. Motion 

sensing device like Kinect enables users to control and 

interact with their console/computer without the need for a 

game controller, but through a natural user interface using 

gestures and spoken commands. In this project, we focus on 

human action prediction. How and when is the future motion 

going to happen? One possible application of this is to detect 

fall or other dangerous motions of elderly people. According 

to World Health Organization, the world population is rapidly 

ageing. Between 2000 and 2050, the proportion of the world's 

population over 60 years will double from about 11% to 22% 

[1]. Other possible applications include automated robots, 

which can now respond faster and more accurate to human 

actions according to the prediction. 

Due to the promising applications of human action 

prediction, we aim to build systems and models that can 

estimate the states of human action with time order. In this 

way, after deciding the current state of the human action, we 

can predict how the action will proceed. In the future, 

successful models for human action prediction can be 

incorporated into light portable or mobile devices and make 

protecting elderly people and toddlers from falls, etc. an 

automatic and easy process without human intervention.  

In this project, we focus on predicting future human 

actions given their current behaviors as shown in Fig. 1. 

Specifically, given the current image of the human object, we 

want to answer what actions he/she will execute in the near 

future, e.g. next few seconds.  

However, most of the existing datasets lack finer 

annotations of human actions. For example, a hug might 

consist of opening arms, body approach/contact, closing arms, 

etc. In the current dataset, all different states of hug will be 

annotated with action ‘hug’ without differentiation. 

Nevertheless, these fine-grained action states are helpful while 

predicting future action. Thus, we introduce the concept of 

hierarchical movemes, which decompose the human actions 

into multiple layers with different levels of granularities to 

make our model closer to how people interpret human actions 

in reality.   

The learning problem with hierarchical movemes is more 

complicated since we have to consider the relation between 

movemes across different layers in addition to the relation 

between features and the action labels. We also have to 

predict a set of labels, i.e. labels for different layers, at the 

same time. Different classification methods are explored to 

solve the optimization problem with the proposed hierarchical 

model. The results show that using multiple layers of 

movemes achieves better prediction accuracy, which validates 

the presentation of hierarchical movemes and the claim that 

fine-grained action states help improve the prediction. 

II.  DATA SETS 

The dataset in this study is obtained from the 

Computational Vision and Geometry Lab, Stanford. The 

dataset was collected from Youtube and consists of video 

clips from 20 different TV shows. There are five action 

categories in the dataset, which are “High-five”, “Hug”, 

“Handshake”, “Kiss” and “None”. The total number of videos 

is 200 with 50 videos in each of the action category except for 

“None”. The frame numbers of the videos range from 

approximately 70 to 200. Additionally, the bounding boxes 

and the orientations of the five kinds of human activities are 

 
Fig.1. The predicted human actions given their current behaviours 

 



annotated. And all the information of the dataset are 

summarized in Table 1.  

III.  PREVIOUS WORK 

Recent research of human action prediction includes the 

work of recognizing detection of specific actions [2]-[4]. 

However, the proposed methods in these works require a 

relatively long sequence prior to the exact execution of the 

actions, such as the work in [2] and [3]. Specifically, they 

would need at least 3 seconds (or approximate 90 frames) 

before the actions really happens [2]. But this may not be a 

reasonable condition since that the time takes for one action to 

happen usually takes less than 1 to 2 seconds. If we not only 

aim to predict human action but require fast response to the 

action, we could only use shorter video clips or even single 

frame of the image in order to predict the action.  

The other similar application of predicting human 

behaviors in the literature is to predict the trajectory of 

pedestrians for either flow control or for traffic control in 

dense-populated regions [5] such as subway or department 

stores. However in this study, we are more focused on 

predicting the real human action instead of only predicting the 

statistics of actions of a group of people.  

Furthermore, previous works rely only on the annotated 

labels, which may not be accurate or informative enough as 

described in section I.  The annotations in most of the dataset 

are only approximate to what the people in the frame are 

actually doing. As can be seen in Fig 2, the annotation of 

action is coarse and cannot accurately reflect the finer details 

of the action. Although all the actions in the frames are 

labeled as hug, these actions are actually more diverse and 

complicated. For example, in order to hug, we start from 

raising and opening arms, etc. If these actions can be 

described by finer-grained representations as shown on the 

bottom of Fig. 2, then the predictions can be made based on 

these representations. However, to the best of our knowledge, 

none of the datasets have this kind of finer-grained 

annotations of actions. Thus, in this project, we make a first 

attempt to automatically discover these finer-grained actions 

based on unsupervised methods.  

There are also works of predicting the actions without a 

learning scheme. And one of the most popular methods is 

siftflow [6]. The algorithm using siftflow would predict 

human actions by comparing the similarity between the 

features of query and candidate images calculated by the 

proposed siftflow descriptors. However, the performance of 

siftflow may not be competitive enough, since the information 

provided by the annotations of the dataset is not utilized. This 

kind of method is better suited for applications like image 

retrieval. In order to prove our viewpoints, we still try using 

siftflow to predict human action and the result is shown in 

Section VII. 

IV.CONTRIBUTION 

In this work, we proposed a method to automatically find 

the finer grained descriptions of the actions, which we call 

hierarchical movemes. Specifically, we use unsupervised 

method to learn the finer grained annotations of the action 

states.  

We also propose a multilayer hierarchical model to 

represent the structure of the optimization problem, which 

uses both the annotations in the dataset and the learnt 

hierarchical movemes.   

Finally, we use different kinds of classifiers to train and 

test our proposed model, which provides insights into which 

kind of classifier is best suited for action prediction with 

hierarchical movemes. 

V.HIERARCHICAL MOVEMES 

We propose a new representation called hierarchical 

TABLE I 

DATASET 

Video Source 
Clips from 20 TV shows on 

YouTube 

Total Number of Videos 200 

Frames per video 70 – 200 frames 

Frame Rate 20 Frames/s 

Action classes 

High-five 

Hug 
Handshake 

Kiss 

None 

Orientation classes 

Facing Left 
Facing Right 

Facing Toward the camera 

Back against the camera 

Bounding Boxes Human with actions 

 
Fig.2. Up: The original coarse annotation of the actions; Bottom: The finer-grain representation (movemes) of the human actions 
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movemes for future action prediction. The hierarchy depicts 

human movements at multiple levels of granularities from 

coarse to fine. Traditional action recognition methods focus on 

recognizing the higher level action classes. However, in action 

prediction, critical clues are usually hidden in finer grained 

motions. For example, an open arm usually implies hugging, 

but “open arm” is not necessarily an important class for action 

recognition, as shown in Fig. 2.  

In this section, the hierarchical movemes model and the 

algorithm used for finding the fine-grained movemes will be 

described. The hierarchical moveme model constructed in this 

project has three layers, where the three layers consist of 

movemes with different levels of granularities as shown in Fig 

3. In all three layers, the low level representations of the 

movemes are described by the HOG descriptors, which will 

serve as the input for our proposed algorithm for calculating 

the fine-grained movemes. The first layer of the hierarchical 

model consists of examples with the same action labels, ex. 

high five. The second layer further distinguishes between 

different orientations (viewpoints) of the person in the frame. 

These two layers utilize the annotations in the datasets so the 

classification is straightforward and supervised. Given “mid-

level movemes” that correspond to movements of people with 

consistent viewpoints, our goal is to partition the examples in 

each mid-level moveme into multiple “fine-grained movemes” 

each corresponding to a specific human pose type (e.g. raise 

hand, reach, etc.). Thus, movemes at the bottom level capture 

viewpoint-specific and pose-specific characteristics of the 

future action. However, the labels for the bottom-layer moves 

are not given and have to be discovered from the training set. 

We describe the details in the following paragraphs. 

A. System Block Diagram 

The system block diagram for calculating the hierarchical 

movemes is shown in Fig. 4. After calculating the finer 

grained movemes for each action and orientation class, we can 

build our proposed hierarchical model as shown in Fig. 3 

based on these movemes.   

B. Ensemble of Exemplar-SVM models 

Given the high dimensional HOG descriptors of each 

image, we would need to calculate the similarities matrix 

between each image for clustering in subsequent steps. The 

similarity matrix would be a K by K matrix, where the (i,j) 

entry in the matrix correspond to the scores of running the ith 

detector on the jth image. And the detector that we used here 

is the exemplar-SVM classifier.  

The exemplar-SVM models [4] are based on training a 

separate linear SVM classifier for every exemplar in the 

training set. Each exemplar-SVM is defined by a single 

positive instance and many other negative samples. The 

negative examples are selected from the images not containing 

the same human activities. Each exemplar defines its own 

HOG dimensions respecting the aspect ratio of its bounding 

box. After calculating the exemplar-SVM models, each frame 

in an action category will be tested with the exemplar-SVM 

models in that same category. The output score from each 

model in that category can represent the input frame in a 

vector form. Specifically, if there are 200 positive examples in 

the “High-five” category, then each sampled frame in that 

category will be represented as a vector with 200 dimensions, 

where the elements of the vector are outputs from the 200 

exemplar-SVM models trained from those 200 frames that fall 

in the High-five category.  

The advantage of using the scores from the exemplar-

SVM detectors is to separate frames corresponding to 

different subcategories of actions as far as possible, since 

these models are trained with negative examples from other 
 

Fig.4 The block diagram of hierarchical movemes generations 
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Fig.3 The model for the hierarchical movemes 

 



subcategories. In order to predict human actions, the inputs for 

these models are the frames that are prior to the target human 

actions. To reduce the computation required, we do sampling 

by taking one frame out of every five frames. 

C. Dynamic Time Warping (DTW) based Sequence 

Segmentation and Alignment 

Once we have the similarity matrix, we cluster the frames 

of the person using a recently proposed temporal clustering 

algorithm [7]. We use a dynamic time warping (DTW) kernel 

to achieve the invariance of temporal order. The dynamic time 

warping method is used for both the segmentation of the video 

clips and the segment alignment. After representing each 

sampled frame as a vector using exemplar SVM models, 

dynamic time warping is used to segment the video frames in 

time, where the most similar frames will stay within the same 

segment.  

After getting these segments, dynamic time warping will 

be used again for aligning two temporal sequences with 

different speeds. Based on the similarity matrix calculated in 

V.B and applying the dynamic programming algorithm, the 

optimal alignment of the segments in different video clips can 

be calculated. The reason we apply it here is to take the 

different speeds of action in different videos into 

consideration. And after segmentation and alignment, the 

number of alignments would be the number of finer-grained 

action states, i.e. atomic motion segments corresponding to 

the same pose type are merged into a fine-grained moveme as 

shown in Fig. 5.  

D. Hierarchical Moveme Generation 

After successfully clustering atomic motion segments 

corresponding to the same pose type across different video 

clips, we can train models based on the HOG descriptors for 

the fine-grained movemes at the bottom layer. The difference 

of the movemes at the bottom layer with other two layers is 

that it has the finest grained details of the action without the 

need of annotations in the dataset. The fine grained movemes 

can also be interpreted as the latent variables of the provided 

annotations. Visualization of the clustered images 

corresponding to one specific action state across different 

video clips is shown in Fig. 6. The blurs on the left column of 

the figure are due to input training samples from different 

video clips.  

VI.APPROACHES   

We learn a classifier for each moveme in the hierarchical 

structure given a hierarchy of movemes. Our goal in this 

project is to predict future actions based on a single frame. For 

each moveme, we learn a classifier based on the appearance 

features, i.e. the HOG descriptors. Multiple classifiers were 

explored, including simple CART, naïve Bayes, random forest, 

and SVM. In addition, we also explored using only the first 

layer, the first two layers, and all three layers in order to 

justify our claim that using finer-grained movemes (the 3rd 

layer) helps improve the prediction accuracy. Our scoring 

function for labeling an example X with movemes Y is written 

as: 

       = ∑    
         

    + ∑         

           
   
    (1) 

where X is the feature vector for the person in a frame, which 

is associated with labels corresponding to one branch of the 

movemes hierarchy: Y = {  ,   , …  }. L is the number of 

hierarchies, i.e. L=3 in our case.    corresponds to the future 

action label,    corresponds to the label of a future action with 

a particular viewpoint, and    corresponds to the fine-grained 

moveme label that is automatically discovered by our 

clustering algorithm. 

A. Scoring Function  

The scoring function can be separated into two parts: the 

unary model part and the pairwise model part. 

(1) Unary model    
        :  

This potential function captures the compatibility 

between the feature X and the moveme   .         denotes 

the response of running the moveme classifier of    on the 

frame feature vector X. We can learn the unary model 

utilizing multiple standard machine learning methods, which 

we will explain later in this section.  

(2) Pairwise model         

             

This potential function captures the co-occurrence between 

a pair of movemes across different levels of the hierarchy. 

           is set to 1 if there is an edge between moveme    

and moveme      in the hierarchy. Otherwise,   . This 

means we exclude the co-occurrence of certain pairs of 

movemes: e.g. a person cannot be described by movemes 

 
Fig.5 The alignments of the segmented sequence correspond to three states 

of the actions 

 

 
Fig.6 Visualization of the learnt fine-grained moveme templates based 
on the HOG descriptors. The upper row is the visualization of a “Hug” 

and the lower row is the visualization result of shaking hands 

 



corresponding to the prior observations of different actions at 

the same time.         

  is the model parameter that favors 

certain pair of movemes.            is the same across 

different machine learning models since we are using the 

same training dataset and thus the same hierarchical structure, 

while parameters         

  are learnt and can be different. 

For an example X that corresponds to a person in a single 

frame, our goal is thus solving the optimization problem:  

                         (2) 

The inference for example X is on a chain structure where we 

jointly infer moveme labels at all levels together using Belief 

Propagation. The moveme at the top layer of the hierarchy    

corresponds to the future action label of the person and is used 

to text prediction accuracy. Our inference procedure also 

returns more detailed predictions of the person (e.g. viewpoint, 

temporal state) through movemes at finer-grained layers of the 

hierarchy (i.e. latent variables in our model): {  , …  }. 

After specifying the scoring function and the optimization 

problem we aim to solve for each example X, we now 

describe different methods we utilized to learn the model 

parameters    
  and         

  with different L, i.e. L = {1, 2, 3}.  

B. Using 1
st
 layer moveme (L=1) 

    A coarse-level moveme models generic pose and 

viewpoint characteristics of a certain action that is going to 

happen in the future. Each frame within a moveme is 

associated with the same future action label, ex. hug. The 

models are trained on top of the features to predict how likely 

the person will perform an action in the near future. Thus, this 

is a standard multi-class classification problem with no 

pairwise model part. The models we utilized are briefly 

described below. 

(1) SimpleCART 

CART stands for Classification and Regression Trees [8]. 

SimpleCART builds a decision tree using recursive 

partitioning routine. Tree-based methods partition the feature 

space into a set of rectangles, and then fit a simple model (like 

a constant) in each one. To simplify matters, we restrict 

attention to recursive binary partitions. The space is first split 

into two regions, and the response is modelled by the mean of 

Y (label) in each region. We choose the variable and split-

point to achieve the best fit. Then one or both of these regions 

are split into two more regions, and this process is continued, 

until some stopping rule is applied [9]. 

(2) Naïve Bayes 

A naive Bayes classifier is a simple probabilistic 

classifier based on applying Bayes' theorem with strong (naive) 

independence assumptions. Despite their naive design and 

apparently oversimplified assumptions, naive Bayes classifiers 

have worked quite well in many complex real-world situations. 

The central idea of Naïve Bayes model is presented in the 

following equation 

   |              

                                      |          ∏     |   
     (3) 

where C is the class variable and            are the feature 

variables from example X. The above is true under the 

assumption that each     is conditionally independent of every 

other    where j≠i. 

(3) Random Forest 

Random forests are an ensemble learning method for 

classification (and regression) that operate by constructing a 

multitude of decision trees at training time and outputting the 

class that is the mode of the classes output by individual trees. 

The training algorithm for random forests applies the general 

technique of bootstrap aggregating, or bagging, to tree 

learners. Given a training set           with responses 

Y =    through   , bagging repeatedly selects a bootstrap 

sample of the training set and fits trees to these samples. 

Specifically, for b = 1 through B: 

a) Sample, with replacement, n training examples from M, Y;  

call these   ,   . Train a decision or regression tree    on 

  ,   . 

b) After training, predictions for unseen samples M' can be 

made by taking the majority vote in the case of decision 

trees or by averaging the predictions from all the 

individual regression trees on M': 

  ̂  
 

 
 ∑        

    (4) 

Random forests use a modified tree learning algorithm that 

selects, at each candidate split in the learning process, a 

random subset of the features. The reason for doing this is the 

correlation of the trees in an ordinary bootstrap sample, i.e. if 

one or a few features are very strong predictors for the 

response variable (target output), these features will be 

selected in many of the B trees, causing them to become 

correlated. Typically, for a dataset with p features, √  

features are used in each split. 

(4) Support Vector Machine  

A multi-class SVM with linear kernel is trained to predict 

the action label for each frame. However, instead of using a 

standard loss function of Structural SVM, i.e. the 0 − 1 loss, 

which equally penalizes all incorrect predictions at any time 

prior to the future action, we introduce a new loss function 

that depends on the temporal distance to the future action: 

       {
                                
                                                     

  (5)  

                is the temporal distance to the starting point 

of the action we wish to predict, and t = 0 corresponds to the 

first frame of the action. T is the maximum number of frames 

before the action that we consider. µ ∈ (0, 1/T] is a tuneable 

parameter. The original 0-1 loss is inadequate for the task of 

future action prediction, since prediction from a frame at a 

long time before the start point of an action is obviously more 

difficult than from those at a few frames before the action 

takes place. If we treated them equally in training, the learnt 

decision boundaries might become unreliable. Using the new 

loss, incorrect prediction from frames longer before the action 

takes place receives fewer penalties.  

C. Using 1st and 2nd layer movemes (L=2) 

    A mid-level moveme models viewpoint-specific but 

pose-generic characteristics of the future action. Each motion 

segment within a moveme is associated to the same viewpoint 

and future action label. The differences between L=2 and L=1 

include:  



a) We now also have to learn the parameters    
  to predict 

the orientation (  ) for X in the unary model.  

b) The pairwise model is incorporated into the scoring 

function for L=2 so that         

  have to be learnt for 

features           . SimpleCART and SVM, both have 

already been described earlier, are utilized again to learn 

the parameters.  

D. Using movemes from all 3 layers (L=3) 

A fine-grained moveme models viewpoint-specific and 

pose-specific characteristics of the future action. Each atomic 

motion segment within a moveme is associated with the fine-

grained moveme label automatically discovered in the 

discriminative clustering process. Since SVM yields the best 

accuracy for both L=1 and L=2, we use SVM again for L=3. 

The differences between L=3 and L=2 include:  

a) We now also have to learn the parameters    
  to predict 

the fine-grained moveme label    for X in the unary 

model. While    and    labels are annotated in the dataset, 

   is not given but automatically discovered by our 

clustering algorithm. 

b)  In addition to       
 , we now also have to learn       

 , i.e. 

how we favor certain pair of movemes from layer 2 and 3.  

VII.EXPERIMENTAL RESULTS 

Our goal is to test the performance of the proposed 

method on future action prediction in the challenging real 

world scenarios. We choose a challenging dataset collected 

from TV shows as described in Section II. We use the 

training/testing split provided along with the dataset. For 

training, we sample a collection of frames from all of the 

videos in the training set, which contains more than 25, 000 

person examples.  

For testing, we predict future actions from a single video 

frame with different settings on the temporal distances to the 

start point of the action we wish to predict. Specifically, we 

measure the performances with 5 different temporal stage 

settings, from −20 to 0, with a step size of 5. The numbers 

denote the temporal distance (in frames) from the input image 

to the start point of the action. For example, the methods’ 

performances at a temporal stage −20 describe the 

classification accuracies given all of the testing frames within 

20 frames before the start point of the action we wish to 

predict. The temporal stage of 0 indicates all testing images 

are taken within 5 frames after the start point of the action, 

making the problem a conventional action classification 

problem.  

In addition to the methods described in Section VI, we 

also implemented siftflow [6] in order to compare with the 

results using other methods. Given a testing image, it first 

finds the nearest neighbor from the training data using the 

SIFT flow algorithm, which matches densely sampled SIFT 

features between the two images, while preserving spatial 

discontinuities. The future action label of the matched training 

image is directly transferred to the testing image.  

The comparison of results is shown in Fig. 7. The 3-layer 

prediction result outperforms all the other methods at all 

different temporal settings. As for 2-layer methods, SVM 

outperforms SimpleCART. As for 1-layer methods, SVM has 

the best performance, followed by Naïve Bayes, random forest 

and then SimpleCART. Siftflow has the worst performance. 

Comparing the same method using different numbers of layers, 

we can see that 2-layer SimpleCART has 14.7% higher 

accuracy than 1-layer SimpleCART. In addition, 3-layer SVM 

is better than 2-layer SVM, which is better than 1-layer SVM. 

The resulting prediction accuracies using different models at 

t=-10 is shown in Table II for ease of comparison.   

There is also a notable performance increase of our full 

model (3-layer SVM) as well as the 2-layer SVM moveme 

model, starting from 10 (around 0.5 s) frames before the 

action is executed. This is because the fine-grained appearance 

that characterizes the actions tends to appear around 10 frames 

before the action is executed. And the visualization of our 

prediction results are shown in Fig. 8. 

TABLE II 
SUMMARY OF RESULTS 

Method Number of layers 
Mean class accuracy 

(%) 

SimpleCART 1 25.2 

Random Forest 1 31.9 

Naïve Bayes 1 35.1 

SVM 1 37.1 

SimpleCART 2 38.5 

SVM 2 39.1 

SVM 3 39.5 

 
Fig.7 TV interaction actions prediction accuracy 

 
Fig.8  Result Visualization for different time t 
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VIII.  DISCUSSION 

There are some possible improvements for the current 

method. The proposed framework has a deterministic final 

predicting result. However, it would be more interesting if we 

can propose a model that predicts the probability distribution 

of the human action, e.g. predicting the future human action 

with a probability of 0.9 that he would hug and with 

probability of 0.1 that he would shake hands with others. The 

other possible extension of the hierarchical movemes is that 

since we have already known the fine-grained action state of 

the actions, we can use this to predict how much time later the 

person would have really executed the action. 

The other observation from the experimental result is that 

linear SVM outperforms the other classifiers. This may be due 

to the fact that our classification problem does not have a 

complicated decision boundary and thus SVM does a good job 

separating frames corresponding to different labels. Of course, 

the performance of different classifiers may vary as the setting 

of the problem and the dataset vary.  

The best result we achieve is approximately 46.7%, and 

we have demonstrated that our proposed model and the finer 

grained movemes can improve the performance. However, the 

prediction accuracy can depend heavily on the dataset. Since 

the dataset we use is collected from YouTube and consists of 

20 different TV shows, there is no clean background, which 

can affect the performance of the prediction. Thus, we also 

test the proposed method on the UT-Austin TV interaction 

dataset [10], and it has been shown that an accuracy of more 

than 83% is achieved on that dataset.  

IX.  CONCLUSION 

We have presented hierarchical movemes - a new 

representation for predicting future action from still images in 

unconstrained data. Different movemes in our representation 

capture human movements at different levels of granularity. 

Movemes are organized in a structured hierarchical model and 

the model parameters are learned in a max-margin framework 

considering the temporal distance to the future action. Our 

experimental results demonstrate that our model is effective in 

capturing the fine-grained details that improve the accuracy 

for future action prediction.  
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