CS 231A Project Report

Title: Implementation of TLD Long-term tracking framework.
Authors: Jamie Ray, Jason Jong, Paul Chen

Abstract:
Long term tracking strives to locate designated objects in a video stream, while the object may change in scale,

rotation, illumination, or become occluded. In this project, we implemented the TLD framework as proposed in
2010 by Kalal et al. [1] This novel approach combines the outputs of a tracker and a detector in order to produce a
more robust system. The tracker’s output is used to correct the detector if necessary, and also allows the detector

to learn additional viewpoints of the object. Our results appear similar to that of Kalal.

Section 1 - Introduction:
We are interested in the long term tracking problem in computer vision in which an object in a video

stream is tracked over time [11]. The object may change in scale, rotation, illumination, or even be partially
occluded; where the goal is to recognize and track the object when it is present in the video stream. Preferably, a
detector can process the video in real time and reliably track the object for an indefinite amount of time.

A working solution for the long-term tracking problem has many interesting applications. If an object of
interest appears several times in a video, one could avoid having to manually scan the entire video and instead
generate a timeline of when it can be found so the user can focus on those ‘interesting’ times. A wildlife camera
looking for pandas could be processed to flag or report panda sightings for panda fans. We might imagine a
multiple-tracking system that can tag each object so that users could easily find their favorite actor, player, carin a
video, etc. Other potential applications include aerial surveillance by autonomous drones, video object

stabilization, or automated scientific data collection.
In 2010, Kalal et al. proposed the Tracking-Learning-Detection (TLD)

framework [1] that synthesizes recent advances in both trajectory trackers and
object detectors in a novel semi-supervised learning framework. In essence,
given an initial bounding box of the object to track, TLD continually augments
the detector with the new information from the incoming video with the help of

Learning

o
L

Me,
its
S o
2.

the tracker.

frag
oep Fuues

The TLD framework achieved impressive results, but still has several
limitations such as out-of-plane rotations, articulated objects, and single object
tracking. We attempted to reproduce TLD'’s results in this project, and in the
process gained further insights for potential improvements. There exists an
open source implementation, but by building as much as we can ourselves we

can learn about methods in computer vision, using the open source version [3] as a benchmark.

)

Tracking Detection

Feintializatio™

Section 2 - Review of previous work:
Object tracking is a decades-old computer vision problem with a variety of subtasks to be addressed [11].

It is naturally suited to use both geometry and appearance information. Recently, however, advances in computing
power have allowed much more sophisticated algorithms to track at or near frame rates. One can categorize this
variety of approaches in several ways, although the latest trackers tend to combine several concepts or
techniques. All must choose an appearance model to represent the object and background - the type of features
used to describe the object, and distinguish it from background patches. This aspect of the problem is similar to
object detection in static images, and trackers have used correspondingly more complex descriptors (HOG, LBP,
Gabor filters) as they have become successful in object detection. Others have realized that even richer features
can describe the additional temporal information based on optical flow (HOG/HOF), background subtraction
(eigenbackground), or explicit 3D modeling (HOG3D). There are also a variety of motion models that impose
assumptions about physically allowed changes - smooth motion, constant velocity or acceleration, etc. Finally, the

challenge of object tracking is in the range of changes over time that a tracker should be able to handle -
occlusion, intensity change, motion across the background, rotations, and
more. Thus, successful methods attempt to combine descriptions and
learning methods to optimally distinguish object from background in a
general way (that is, robust to these imaging variations). This usually

Multiple
Feature

Feature

involves online learning for adaptability to new views. P e —
Early trackers include Kalman filter approaches (a probabilistic / :

model which assumes a Gaussian distribution in state space, which in —

this case is the position/motion) and point correspondence with 'r::::?.:g - Learning

constraints like the KLT (Kanade-Lucas-Tomasi) tracker (finding interest — ' '

points using structure matrix and searching for similar points in the next

frame). The detection component often used variants of simple \\\ o

sliding-window cross-correlation. A variety of more complex approaches | information

have found success more recently. Most (including TLD) use multiple M,,m' Carlo :

features to describe the image. Learning systems include online SVMs or Sampling ||

random forests, as well as Monte Carlo-based methods like particle

filtering. Clearly, the space of tracking algorithms is quite large, with a

diversity of representations and strategies that attempt to optimize for
different parts of the complex tracking problem.

However, some of the closest competitors to TLD include PROST [8], ALIEN [9], and Compressive
tracking [10]. PROST (Parallel Robust Online Simple Tracking) is quite similar in spirit to TLD, and tries to address
the ‘dilemma’ that adaptability creates - namely, without enough adaptation the system will fail when the object’s
appearance changes, but with too much it can overfit to a variety of noise sources, degrading performance or
causing drift [8]. As the degree of adaptability is difficult to parametrize and may depend on the application, PROST
combines components with increasing amounts of adaptation: cross-correlation with the initial object view (no
adaptability), online random forest detector, and optical flow tracking. The only significant difference of TLD is in the
middle component. Rather than using Haar features for base learners, TLD uses raw pixel values. Furthermore, it
updates the initial object view with new patches to be used in cross-correlation (injecting further adaptability),
pre-filters using a sliding window variance threshold, and trains the trees differently. PROST learns tree structure
online, while TLD chooses 13-deep trees using splits on random feature values, and only learns the leaf
probabilities online. It seems that these moderate changes, which increase adaptation of the cross-correlation
filter while reducing that of the random forest classifier, produce better performance, probably because they can
improve the quality of sampled training data and use it more effectively.

While PROST targets the adaptability problem, ALIEN (Appearance Learning In Evidential Nuisance)
focuses on dealing with non-invertible noise for which invariant features can’t be constructed (occlusion is the
dominant example) [9]. They note some poorly motivated choices of many trackers. Boosted versions [2] often
assume iid data and good labeling, which is far from the truth of semi-supervised online learning. In addition, the
object bounding box often includes background pixels, which if used can degrade the matching (and movement
across the background can substantially change the ‘object’ representation). To address these concerns, the
authors store oversampled SIFT features in an attempt to describe local regions of the object across multiple
views, which can be matched to query patches in a RANSAC-like way to estimate geometric transformation
between frames. They omit a motion estimation component, and instead restrict the motion by trying to detect the
object anywhere within a radius of the prior location. In essence, this is a feature matching approach (using SIFT
features and the standard ratio test) which restricts good matches using a shape model, compares matches to
object and ‘context’ (background) features to detect occlusion, and updates by trying to find discriminative features
(appearing only in the object or the context, but not both). This seems to achieve success similar to TLD with a very
different approach, and it would be interesting to investigate whether strengths of the two can be combined.

A third successful tracking approach (called Compressive Tracking, or CT) is similar in that it tries to
perform detection within a local region around the prior location [10]. It is based on the theory of compressed
sensing, citing theoretical properties of compressing patch descriptors using random sparse matrices and the

ability to discriminate between the compressed descriptors. As with ALIEN, the motion model is quite simple - just
look in the area around the last location and pick the highest-scoring patch. They use a large set of Haar-like
features, whose localization can give some robustness to occlusion, and compress to only 50 dimensions. The
random projection also guarantees (with high probability) independent gaussian distributions of the elements,
allowing the authors to train a Naive Bayes classifier on the compressed vectors online by simply estimating
means and variances of the individual gaussians.

These three state of the art trackers demonstrate some of the variability in terms of tracking theory and
approaches to object representation and detection. They focus on different sub-parts of the tracking problem, and it
would be nice to investigate whether their solutions can be integrated into the TLD framework. It is difficult to judge
which tracker is the ‘best,” given their different strengths and the fact that they were tested on different datasets
(probably playing to these strengths). However, we found TLD to be a compelling solution with value as a learning
experience.

Section 3.1 - Technical Summary:
We developed the system using MATLAB Object

for its convenience in prototyping and visualization state —> Tracking

L —P
(although one strength of the algorithm is a y'y
complexity footprint small enough to work in real ;g'iiz P .
time and/or on mobile devices). The authors X‘deo — - y 5 gt:JtECt
model the object as a set of size-normalized ame . Objectmodel | Learning [¢ g
patches of constant aspect ratio. Some of these k *E

patches truly represent the object, while others are update

patches known to be background. By comparing detector

patches in a new frame with this model, the

system can predict locations for the object and

compare them with tracking predictions. It is easy

to update using good or bad patches found in future frames.

The tracker performs the task of estimating the motion of an object between two frames. The authors
choose to estimate motion of points within the object’s bounding box using a Lucas-Kanade tracker and then
choose the median translation vector as their prediction (this is known as Median Flow), we followed suit. Then,
while each point’s motion is estimated independently, we have to use all these predictions to generate a
transformed bounding box in the new frame. In this approach, the old box is essentially translated by the median of
the per-point motion vectors (unless this motion is too large, in which case the tracker output that it has failed).

The learning component is defined by two distinct goals of the detector (which are addressed by separate
‘agents’) - to correctly localize all appearances of the desired object, and to avoid predicting a location at which it
doesn’t appear (recall and precision). The PN learning framework leverages structure in the video stream to
harvest examples that can help with each of these goals. Namely, this structure is the spatiotemporal continuity of
object locations under conditions on the reliability of a track. New positive (P) examples come from the motion of
the object through frames, which is estimated by the tracker and can thus find views that may not be classified
correctly by the detector. Similarly, new negatives (N) come from the notion that the object is unique and can’t
appear in a drastically different position if the track is reliable, so patches far from the track location are taken as
negatives. Thus, it is important to note that the PN agents may help the detector discriminate a unique object from
other objects of the same class that appear elsewhere in the frame. A track is termed ‘reliable’ if it has ever
contained a patch that was well-matched (at some threshold) with an early part (e.g. first half) of the object model
(set of positive patches collected over time). Thus, it leverages the output of the tracker to choose potential patches
for training the detector, and the output of the detector to decide whether a track is ‘reliable’ enough to learn from. It
might be interesting to try to modify the learners. For example, we could try to help the agents realize when other
objects of the same class appear and flag them as positive instead of negative. We could add different ways to
measure the reliability, or have a parametrized tracker that could be updated via detector output.

The detector takes a cascaded approach to quickly eliminate the most unlikely swaths of the frame. The

o o Detection

first stage examines patches of the same aspect ratio as the object in a pyramid of locations and scales
throughout the image. It computes their variances, and discards any patch whose grayscale variance is
significantly different from the model patches (computing the variance with integral images). The next stage is an
ensemble classifier that averages predictions of base classifiers. Each base classifier is built of a set of binary
pixel comparisons within the patch (15x15 patch, 13 comparisons per classifier in the paper), and the bit vector
encoded by the comparisons is used to index into a posterior distribution of detection probability. The ensemble
score is thresholded, and high scores are passed to the final stage, a nearest-neighbor approach using the
model patches. The distance is measured by normalized correlation coefficient between the query patch and the
model patches, and the output score is a ‘relative similarity’ which compares the correlation with the
best-matching positive patch to the best-matching negative patch. The patch with highest relative similarity is then
the detector’s prediction of the new object location.

Section 3.2 - Technical Details:
Tracker

We are using the Lucas-Kanade tracker
with image pyramid representations based on
an implementation by Edward Wiggin [4]. The
tracker is given a seed bounding box from the
previous frame as output by the learner. Next we
pick points within the bounding box to track. We
first did this by uniformly sampling points within
the box, and also by corner points found by the
Shi-Tomasi corner detection method; then the
flow vector for each point is estimated. We then
calculate the median optical flow; we found the
most success with the median of the central fifty
percentile. We implemented failure detection by
setting a threshold for how large the median flow
vector can be. If the flow vector is too large, it
means the tracker is not going to be reliable, so
we indicate that in the output. This is to account for occlusions or when the object moves off screen. Finally, if the
tracker did not fail, we shift the position of the previous bounding box by the median flow vector to estimate the next
bounding box. In the image below, the green bounding box is the previous frame, and the blue points are the
corners found by the Shi-Tomasi method. The red bounding box is the position of next frame as estimated by the
Lucas Kanade algorithm. As we can see, the motorcyclist is moving upwards in the image.

Detector

Our priority for the detector is a faithful reproduction of the pipeline described in the TLD report without
using external libraries or toolboxes. This approach yielded better understanding of the detector's performance
and some insight into failure modes, as well as a variety of ideas for simple extensions to the methods used. The
detection component uses a multi-scale sliding window approach to try to find patches (of constant aspect ratio) in
the image that closely match prior views of the object. The scale is sampled in factors of 1.2, and the horizontal
and vertical position in steps of .1 * patch size in that dimension. Thus, even for a small frame, we may need to
examine of order 10”5 patches, making frame-rate computation challenging. To address this complexity issue, we
use a cascaded approach that aims to filter out (reject) a large number of candidate patches in the early stages,
which are less computationally intensive, before spending more operations on the most likely patches.

The first stage is a simple variance-based filter. In the TLD paper, this stage requires patches to have
variance at least half that of the initial patch. As this piece is responsible for reducing the candidate set to a
manageable number, it must spend very little time per frame. After building a naive (and obviously much too slow)

version, we switched to using integral images over the normalized grayscale pixel intensities (and squared
intensities). These allow efficient computation of the expected intensity and squared intensity over any patch (using
one additions and two subtractions each). We later optimized further, noticing that patches are tiled horizontally
and vertically over the image. This means that a group of patches with only horizontal offsets covers a set of rows
in the image, such that variance of these patches only depends on intensities in that set of rows. Thus, for
computing patch variance in this group, we need only the integral of those rows, and can compute mean values
with a single subtraction.

While the variance filter as described can effectively prune a large
number of candidate patches (usually > 90% in testing, although highly
dependent on the the complexity of the object to be tracked relative to the
image), some simple changes could help with performance. One option
is to also set an upper limit on the patch variance. The toy example
illustrates the value of this approach — suppose we want to track a dark
rectangle moving across a background of white noise. Then we are really
searching for a patch of very low variance, while the background has high
variance. The initial approach cannot filter any patches in this scenario,
leading to considerable slowdown in the later stages. More realistic
examples of this phenomenon can be imagined, such as a
uniform-intensity boat on choppy water, or a hand moving across
wallpaper. A second problem is that this stage doesn't seem to be able to
learn from new appearances, at least as described. Thus, it will have
difficulty tracking changes in the statistics of the object's intensity over
time, which might be caused by varying illumination, non-Lambertian reflections, rotation out of plane, or occlusion.
The last is quite difficult to address, but it would be interesting to explore a more sophisticated variance filter that
can also learn the variances of non-object patches to better recognize occlusion. However, the first three are all
variations we would like to be able to deal with, and simply recording variances of new training patches can help.
We thought about several methods to learn from new patches, and decided to take a weighted mean of their
variance with the prior variance estimate. However, later work will explore a better system for training this stage that
will find a lower and upper variance threshold that best separate the object from the background in a particular
frame, then average these with previous thresholds. Finally, we note that there are still many simple
object-background pairs that this method fails to discriminate, resulting in too many candidates passed to the next
part of the cascade. One is a mostly-dark object with a bright spot (maybe a car with headlights) on a textured
background, and and another is an object with the same intensity as the background but different color. It is
expensive to use positional information, which is reserved for later stages, but these problems can be targeted by
a more sophisticated description of the pixel distribution in a patch. Color histograms are a fairly popular tracking
method [5-7], so we built a follow-on stage that compares coarse color histograms to do additional filtering. The
current version uses Bhattacharya and chi squared distances between weighted histograms of pixel hues from the
HSV color space, with the weight related to saturation so that hues with low saturation don’t contribute as much [7].
Once adequate labeled testing data is acquired, we plan to
quantify the ability of these enhancements to improve ensemble odkds raio
tracking performance.

The second stage of the cascade is the 'ensemble
classifier,' which aggregates the results from a set of base
classifiers, each of which performs binary comparison of
several horizontal or vertical pairs of pixels in the query
patch. The result of these comparisons yields a bit vector
(one bit per pair) that can index into a probability table
describing the posterior probability that the patch contains
the object given the observed bit vector. These posteriors are
based on counts of that bit vector (which can be considered

IS
S

-3
S

80

index (bit vector) into posterior

base classifier

as a descriptor for the patch) occurring in positive and negative training patches coming from the PN agents. The
number of such pixel pairs is 13, although the reason for this choice isn't clear, and leads to a table with 213 =
8192 entries and therefore considerable sparsity. Nevertheless, it seems to perform reasonably, although varying
this parameter is something we'd also like to test on labeled data. We originally chose to use 1000 base

classifiers with 13 pairs each, but requiring 13000 comparisons per candidate patch. However, the system seems
to perform equally well with a smaller number (250x8 = 2000 pairs), which seems to be a good choice as the
cascade’s speed is limited by this stage (taking > 80% of the time). We can also motivate this choice by realizing
that each training patch only updates the counts at a single index, so until the number of training patches is
significantly larger than 2000 (which would take quite some time) the counts will be fairly sparse - we show this
effect by plotting the odds ratio and noting that the non-unity entries are sparse. The TLD paper doesn't specify the
number of base classifiers, although we could assume that it uses each possible pixel comparison once, yielding
around (w*(w-1)/2 * h) + (h*(h-1)/2 * w) pairs, or 5250 for a normalized patch size of 15x15. Obviously, an ensemble
with a single base classifier may not extract enough information to filter well — it is worth examining different
tracking situations and quantifying the number of base classifiers at which performance saturates (as well as the
number of pairs per classifier). In the initial implementation, the probabilities from each base classifier are
averaged to obtain an overall 'probability’ of the object being in the patch, which is thresholded to reject patches
with low probability. Training the ensemble is as simple as incrementing the counts of descriptors found in any
training patch for which it predicts the incorrect label. In this way, the stage attempts to learn only from the difficult
examples.

Again, understanding the detail of the ensemble classifier yields some insight into potential
improvements. We note above that the ensemble score is taken to be a probability, but weights the votes of each
base classifier equally. However, imagine we have two base classifiers — one which has observed many
instances of its corresponding descriptor, and one that hasn't. It seems likely that we can get a better detection by
trusting the more experienced base classifiers — i.e. the ones that have a larger number of counts in the
corresponding entry of their probability table. Thus, we switched to a weighted average of the base probabilities,
with the weight given by the number of counts. It is easy to see that this amounts to simply aggregating the positive
and negative counts for a set of patches, so we can see the adjusted 'ensemble’ as a single classifier that
compute into potential improvements. Such a change of approach is probabilistically motivated if we can assume
that a larger number of counts can give us greater confidence, which may be at fault if the object versus
background appearance changes significantly. In that case a large number of counts could correspond to the old
appearance, whereas a smaller number might signal a descriptor (bit vector) of the object's new appearance, thus
making it more trustworthy. As for the variances above, we may take a weighted sum of previous and incoming
counts to compute 'pseudo-counts' that can facilitate adjustment to new views of the object. Finally, the cascaded
nature of the detector, use of binary comparison, and calculation of integral images in the previous stage
immediately brings to mind a Haar cascade classifier (Viola Jones method). All the pieces were in place to
compute binary descriptors using pixels in the integral images rather than the raw pixel values, and it was trivial to
change the code to compare means over rectangular patches. This extension was recently implemented, and it
would be interesting to do a more complete comparison with the raw pixel version, different options for quantizing
the Haar features (the current binary quantization checks whether the computed value is positive or negative, but it
might be valuable to use more thresholds), a full boosted Viola Jones style detector, or even a random projection
of a larger feature space as done in the compressive tracker.

The third stage is designed to be both the most
selective and computationally intensive, because it should ;

be working to discriminate between a small group of difficult N / W\ [~
candidate patches. The TLD paper implements this stage as /

a modified nearest-neighbor classifier, computing | \} J
normalized correlation coefficients between the query patch oss| /]‘
and all 'model' patches. The model consists of a set of
patches (normalized to 15x15 pixels) that have been chosen i
by the PN experts as object (positive) or background /l

(negative). In essence, this stage finds the closest-matching positive and negative patches that have been
previously observed, and compares the correlations. If the best correlation with a positive patch is much higher
than the negative, the query is more likely to contain the object. The actual score used is termed 'relative similarity,
and defined as the ratio of the best positive correlation with the sum of the best positive and negative correlations
(so that it ranges from 0 to 1). Any candidate patches with relative similarity greater than 0.6 are taken to be true
observations of the object (from the detector's point of view) and have passed the cascade. Training is again fairly
simple, and amounts to adding new patches to the set of model patches if they are incorrectly classified (or within
some small margin of the classification boundary). If there are too many patches in the model, some are randomly
removed or 'forgotten' to save memory and time.

As we learned in class, methods that operate on raw pixel data tend to be less robust to varying image
conditions than those using transformed representations like SIFT. It seems, then, that the final stage is ripe to be
upgraded to features or techniques with more power than what is only a small step up from a sliding-window
cross-correlation search. One natural choice might be to generate e.g. HOG descriptors for each patch and
compare those. However, given that the patches are already normalized to a constant and fairly small size, we
thought it would be interesting (and computationally tractable) to apply a convolutional neural network as the
final-stage classifier. This provided a great opportunity to learn more about CNN techniques, which have recently
been very successful but saw little coverage in the course other than our guest lecture. It is also a good candidate
for online learning, which is difficult for many learning methods but necessary to work with changing object views
in the tracking problem. Ideally, the CNN can discriminate as successfully, and offer potentially better
generalization with less memory overhead because the patches can be learned from without storing them. The
approach we take is similar to the educational example of digit classification found at [12]. However, all of the code
is written from scratch in an object-oriented way, rather than using the provided starter code. It includes neuronal
layers capable of convolutional filtering, nonlinear pointwise activation, max-or-mean pooling, fully-connected
information propagation, and a variety of loss functions for the output layer. Moreover, based on difficulty with
initialization and slow training, we replaced the standard sigmoid with a 'softsign' activation and accompanying
weight protocols as suggested by [13]. The current version of the CNN consists of a convolutional layer with 7 9x5
learned filters (the same aspect ratio as the patch), a softsign nonlinearity, a mean pooling layer over 5x3 patches,
a fully-connected layer with softsign nonlinearity, and a logistic loss output. It is trained via minibatch SGD with
momentum, this time implemented using the starter code from UFLDL [12]. We hypothesize that a well-tuned CNN
should be able to generalize better to new views and learn the relevant features distinguishing object from
background, and thus may outperform the normalized correlation approach in testing. However, it is difficult to
design the layer architecture and tune parameters, especially for the online learning. We show the training and test
accuracy for this network (using the initial training patches), noting that it converges to high accuracy. The
nearest-neighbor approach achieves 100% accuracy, but the difference may not be significant. We also display
some of the learned filters to verify that they can capably describe interesting features of the object - in this case,
they appear to compare (red vs blue) blobs of different sizes and orientations.

Unfortunately, while the simplicity of the detection cascade provides a great starting point for more
sophisticated enhancements, a few of which have been explored above, the performance in the videos doesn't
seem to be limited by the detector output. This can
be observed on our primary video, where the initial
detector is able to find the object when it is in frame
and localizes better than the full TLD pipeline. For
this example, performance seems more affected
by significant motion, which hurts the tracker, but
not the detector unless blur changes the
appearance. Furthermore, with a lack of labeled
data it is difficult to characterize the potential
benefits of the extensions described above. Thus,

i

2 4 2 4

convolutional layer learned filters

the quantitative comparison of different detection 2 2 2
methods will be carried out in future work. In each . I . .
6 6 6
8 s 8

case, we take what is a very simple filter and modify the type of features used or the way the decision is made
while preserving the general approach of that stage — these include filtering using patch statistics (intensity but no
position information), binary comparisons (position-dependent, but only weakly encoding intensities), and finally a
high-fidelity classification that relies on all pixels in the patch (both position and intensity). We believe that each is
well-motivated by the material covered in class or other successful methods in computer vision, coupled with an
understanding of the detection internals gained by faithful reimplementation.

Learner

The learning component of the TLD tracking framework relies on the integration of the tracker and
detecting boxes. Once the tracker and detector outputs their best bounding boxes, we send these boxes to an
integrator. This integrator finds the detector box with the largest “overlap” with the current tracking box. To find this
overlap, we use something similar to Jaccard distance: we divide the intersection of the areas of these two
bounding boxes by the total area that these two boxes encompass. If the “overlap” of these two boxes exceeds a
certain threshold, we declare the integrated box as sufficiently detected and tracked, and we use the patch
overlaying this box to help train the detector for better and more recent chances to the image.

As an example why this is necessary, the object we track will seldom maintain the same shape or colors
as its original image. Thus, it is necessary to make constant updates to the detecting framework so that the new
patches used to train the detector will be of an object relatively similar to one of the previous frame, but because of
rotations, deformations, and scaling to the object, this new detector will just to take care of these modifications.

Once we have the best bounding box returned by the integrator and have been approved for learning, we
generate multiple bounding boxes around the best bounding box. These boxes undergo rotation, translation, and
scaling in order to generate a level of noise. We then take these set of bounding boxes and send them through
experts: the P-expert and the N-expert. The P-expert focuses on the temporal structure of the image. The P-expert
independently examines the randomly generated hypotheses and determines ones with enough overlap with the
tracker. It assumes the tracker as truth and marks these as positive examples to be placed as a positive example
in the detector. The N-expert focuses on spatial structure. Independent of the P-expert, the N-expert will take the
patches that have been marked as positive by the detector and marks all other patches (those that should be
positive, but were not matched) as negative. Thus, the P-expert focuses on false negatives while the N-expert
focuses on false positives. With the combination of the two, the detector system becomes a flexible framework for
detecting a moving and changing object.

Section 4 - Experiments:

MMFilk et

In the following images, we have an example run of our
TLD framework. Each image contains boxes of varying
colors. The blue box represents the current tracker
box. The magenta box represents the single bounding
box outputted from the detector that most closely
matched the tracker’s box. As in, this is the box that
will be used by the integrator to calculate the best
bounding box, which is displayed in yellow. In the next
frame, the tracker uses the previous best bounding box
(previous yellow box) in order to track the next frame.

MFilt er

When the tracker and detector box have enough overlap, we
know the resulting yellow best bounding box is sufficent to
be used for learning. In these instances, we generate a set
of hypotheses from the yellow bounding box and learn from
these resulting boxes.

EnzetnbleFilter

In certain circumstances, the tracker cannot even find
the object anymore. In these situations, we assume
that the object has gone off screen. In these situations,
we specifically indicate that the object has not been
detected. The yellow box is simply a representation of
the best detector box found, but it is not a good
representation in this case of object detection.

hIMFilt er

However, when the object reappears, we can see that the
tracker will be constantly reinitialized with the yellow
bounding box. We see here that the tracker reinitializes,
and we can now continue to detect the object once again

Section 5 - Conclusion:

In this project, we were able to implement the Tracking Learning Detection framework for the long term
tracking problem. Our implementation is able to successfully track objects in a video stream continuously while the
object is still on screen. We are also able to detect when the object is occluded and then recover when the object
returns on screen. We are also able to increase the robustness of the detector by automatically augmenting it with
training data from additional viewpoints of the object as they are show in the video.

Section 6 - References:

10.

11.

12.

13.

Tracking-Learning-Detection. Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas, IEEE TRANSACTIONS ON PATTERN
ANALYSIS AND MACHINE INTELLIGENCE, VOL. 6, NO. 1, JANUARY 2010
http://epubs.surrey.ac.uk/713800/1/Kalal-PAMI-2011%281%29.pdf

On-line Boosting Trackers. S Stalder, H Grabner, ETH Zurich. http://www.vision.ee.ethz.ch/boostingTrackers/

TLD Code and data: http://cmp.felk.cvut.cz/tld

Median flow tracker, Edward Wiggin.
http://www.mathworks.com/matlabcentral/fileexchange/30822-lucas-kanade-tracker-with-pyramid-and-iteration

A Scale Adaptive Tracker Using Hybrid Color Histogram Matching Scheme. Nikhil Naik, Sanmay Patil, and Madhuri Joshi.
ICETET, page 279-284. IEEE Computer Society, (2009) http://web.mit.edu/naik/www/tracking/naik_icetet 09.pdf

Color Feature Detection. T. Gevers, J. Weijer, H Stokman. http://staff.science.uva.nl/~gevers/pub/CIP06.pdf

Boosting Color Saliency. T. Gevers, J. Weijer, A. Bagdanov. |IEEE TRANSACTIONS ON PATTERN ANALYSIS AND
MACHINE INTELLIGENCE, 2005 http://hal.archives-ouvertes.fr/docs/00/54/86/15/PDF/pami2005b.pdf

PROST: Parallel Robust Online Simple Tracking. Jakob Santner, Christian Leistner, Amir Saffari, Thomas Pock, Horst
Bischof. CVPR, page 723-730.IEEE, (2010). http://gpudvision.icg.tugraz.at/papers/2010/santner_cvpr2010.pdf

Object Tracking by Oversampling Local Features (ALIEN). Federico Pernici, Alberto Del Bimbo.
http://www.micc.unifi.it/pernici/index_files/ALIEN final.pdf

Realtime Compressive Tracking. Kaihua Zhang, Lei Zhang, and Ming-Hsuan Yang. ECCV 2012, Part lll, LNCS 7574, pp.
866—879, 2012 http://www4.comp.polyu.edu.hk/~cslzhang/CT/eccv_ct_camera.pdf

Recent advances and trends in visual tracking: A review. Hanxuan Yang, Ling Shao, Feng Zheng, Liang Wang, and
Zhan Song. Neurocomputing 74(18):3823-3831(2011) http://Ishao.staff.shef.ac.uk/pub/Tracking NeuCom2011.pdf
Convolutional Neural Network Exercise. Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen.
http://ufldl.stanford.edu/tutorial/index.php/Exercise: Convolutional Neural Network

Understanding the difficulty of training deep feedforward neural networks. Xavier Glorot, and Yoshua Bengio.

AISTATS, volume 9 of JMLR Proceedings, page 249-256.

http://machinelearning.wustl.edu/mipapers/paper files/AISTATS2010_GlorotB10.pdf

10

http://www.google.com/url?q=http%3A%2F%2Fepubs.surrey.ac.uk%2F713800%2F1%2FKalal-PAMI-2011%25281%2529.pdf&sa=D&sntz=1&usg=AFQjCNGhKsvF1Ef0uDL58GS1CIMvp4nV-A
http://www.google.com/url?q=http%3A%2F%2Fwww.vision.ee.ethz.ch%2FboostingTrackers%2F&sa=D&sntz=1&usg=AFQjCNEqWER_19lXbUkuUHrt-ll-rv4xxw
http://www.google.com/url?q=http%3A%2F%2Fcmp.felk.cvut.cz%2Ftld&sa=D&sntz=1&usg=AFQjCNEsO9AGGgic21gB9YTi0ndluIZgEA
http://www.google.com/url?q=http%3A%2F%2Fwww.mathworks.com%2Fmatlabcentral%2Ffileexchange%2F30822-lucas-kanade-tracker-with-pyramid-and-iteration&sa=D&sntz=1&usg=AFQjCNFnt6jzZq-FVAjfdLUIvgDhEh4RyA
http://www.google.com/url?q=http%3A%2F%2Fwww.bibsonomy.org%2Fauthor%2FNaik&sa=D&sntz=1&usg=AFQjCNE8IWpnCJa_1zGpD1LNXjs32X9vCw
http://www.google.com/url?q=http%3A%2F%2Fwww.bibsonomy.org%2Fauthor%2FPatil&sa=D&sntz=1&usg=AFQjCNFAeI-32jcwI4IVimPeyOCFXbpdzQ
http://www.google.com/url?q=http%3A%2F%2Fwww.bibsonomy.org%2Fauthor%2FJoshi&sa=D&sntz=1&usg=AFQjCNH1lwdknfKxMUd_m56o6fsHuXaADw
http://www.google.com/url?q=http%3A%2F%2Fweb.mit.edu%2Fnaik%2Fwww%2Ftracking%2Fnaik_icetet_09.pdf&sa=D&sntz=1&usg=AFQjCNHBpLsVVqXLVqcBEuCSRknA2TN2iw
http://www.google.com/url?q=http%3A%2F%2Fstaff.science.uva.nl%2F~gevers%2Fpub%2FCIP06.pdf&sa=D&sntz=1&usg=AFQjCNFDd1jbHctAQ82Mpsqx_w_indjOGA
http://www.google.com/url?q=http%3A%2F%2Fhal.archives-ouvertes.fr%2Fdocs%2F00%2F54%2F86%2F15%2FPDF%2Fpami2005b.pdf&sa=D&sntz=1&usg=AFQjCNFSZfzp0EJ9WsK0T_TruowdTJ_3Wg
http://www.google.com/url?q=http%3A%2F%2Fgpu4vision.icg.tugraz.at%2Fpapers%2F2010%2Fsantner_cvpr2010.pdf&sa=D&sntz=1&usg=AFQjCNHtDqUVnFD5Ga4p_tGJwKvcQWN3eA
http://www.google.com/url?q=http%3A%2F%2Fwww.micc.unifi.it%2Fpernici%2Findex_files%2FALIEN_final.pdf&sa=D&sntz=1&usg=AFQjCNEu_HXURIDHSifMSIV2T747W4eQ1A
http://www.google.com/url?q=http%3A%2F%2Fwww4.comp.polyu.edu.hk%2F~cslzhang%2FCT%2Feccv_ct_camera.pdf&sa=D&sntz=1&usg=AFQjCNE3NeEe6fHhcJV-Se__TUmigPFVKA
http://www.google.com/url?q=http%3A%2F%2Flshao.staff.shef.ac.uk%2Fpub%2FTracking_NeuCom2011.pdf&sa=D&sntz=1&usg=AFQjCNGb-B3MpA4W2grm8YgaO0IklYnV5Q
http://www.google.com/url?q=http%3A%2F%2Fufldl.stanford.edu%2Ftutorial%2Findex.php%2FExercise%3A_Convolutional_Neural_Network&sa=D&sntz=1&usg=AFQjCNF4ZgplmuUvoqzBbIG5kuM5MqigEA
http://www.google.com/url?q=http%3A%2F%2Fmachinelearning.wustl.edu%2Fmlpapers%2Fpaper_files%2FAISTATS2010_GlorotB10.pdf&sa=D&sntz=1&usg=AFQjCNEe3npSchasGIhehbokb2QEuVg-iA

