
Hop Helper
A Beer Label Recognition Engine

Bryan Offutt
boffutt@stanford.edu
Stanford University

CS 231A: Introduction To Computer Vision

Abstract

When sitting down and enjoying a new
beer many beer drinkers want to know everything
they can about the beverage they have in front of
them. Unfortunately, it often the case that this
information is not readily or easily available on
the bottle. With such a competitive craft brewing
market, many breweries have begun to leave
important information such as International
Bitterness Units (IBUS), Alcohol By Volume
(ABV), and even style off the bottle in order to
make room for flashy, eye catching images. By
utilizing SIFT descriptors, I present a simple and
effective model for taking advantage of these
flashy labels in order to provide a system that
effectively identifies a beer from a user inputted
photograph of the bottle. This identification of the
beer name from a photo of the bottle creates a
quick and easy way to provide users with
information about the beverage before them.

1. Introduction

The past few years has seen a huge surge
in the popularity of craft beers. A beer market
once dominated by large corporations such as
Aneuser-Busch and Miller Brewing Company is
now segmented amongst thousands of smaller
breweries, each of which brings dozens of beers
to the table. As a result of this competition, many
craft brewers have focused on making wild,
flashy labels in order to make their beer stand out
on a shelf of hundreds of competitors.
Unfortunately for the consumer, this often means
that important information about the beer can be
difficult or impossible to find. For example,
consider the label in Fig 1.

Figure 1.

This label is attractive and eye catching,
with bright colors and a nice image in the center,
but is not very informative. It tells us that the beer
is an extra IPA, but lacks any information about
the alcohol by volume or international bitterness
units. Furthermore, it is not entirely obviously
what the name of the beer is: Is it Sierra Nevada,
or Torpedo? Or Sierra Nevada Torpedo? This lack
of concrete information can be both frustrating
and annoying to a beer drinker who wants to
know everything they can about the beer they are
about to enjoy. In addition, the ambiguity of the
title of the beer can make it difficult (or
impossible!) to remember the name of the beer
should you want to purchase it again.

The motivation for this project was to
solve these problems by utilizing the advantages
that arise from flashy labels. While the desire to
be eye-catching can often result in the labels
being less informative, it also means that labels
are likely to be highly differentiated. With so
much effort going into being noticed, breweries
are careful to make sure that their labels look
different than any other beer on the market. By
utilizing this differentiation, I propose a system
that uses comparisons of SIFT descriptors in order
to match a user inputted bottle to it's proper label.
Once this label recognition is complete, we are
able to return to the user not just the name of the
beer, but also brewery information, IBUs, ABV,
and more.

2. Previous Work

Label recognition has been applied in a

number of areas other than beer labels, the most
closely related and popular example being Vivno.
Vivino is a mobile application that allows a user
to obtain information about a bottle of wine by
taking a picture of the label. Vivino's results are
pretty accurate, and it has gained a lot of
popularity since it's release. Seeing this
application made me wonder why there was not a
beer equivalent, and created the motivation for
this project.

3. Recognizing Beer Labels

The overall goal of my project was to
create a system that, given a database of beer
labels and a query image of a bottle, could
identify which label the bottle most closely
matched. Once a match was found, further
information about the beer could be passed on to
the user.

The first step in this process was to obtain
the labels for the database. To do so, I used an
open source database at www.brewerydb.com.
This database contains over 15,000 beers in total,
10,114 of which had a corresponding label in the
database. The photos in the database were of the
labels peeled off of the bottle and laid flat, as can
be seen in Figure 1. In addition to label images,
this database also contained all of the information
I needed to pass back to the user, including
International Bitterness Units, alcohol by volume,
style, brewery, and even ingredients. The photos
of bottles used in testing were obtained both from
crawling BeerAdvocate.com and from images
taken by myself. In order to create as robust a

Figure 2: Bottle Photos w/ Varying Angles and
Illumination

system as possible, these photos were taken from
varying angles with varying levels of illumination
(Fig 2). In addition, some bottles were chosen that
were of the same brand as a label in the database,
but had a slightly different label.

After obtaining the images to be used in
our database, SIFT (Scale-Invarient Feature
Transform) [1] descriptors were calculated for
each label, as well as for the query image (Figure
3). The fact that SIFT is invariant to scale and
illumination made it an obvious choice for this
project, since photos are likely to be taken in
dimly lit bars and from a variety of distances
away from the bottle. These SIFT descriptors
were the very heart of my system, and were used
in a variety of different methods in an attempt to
find the best solution to the problem of label
recognition.

Figure 4: A Beer Label With It's Sift Descriptors

3.1 Training → Test Feature Matching

My initial attempt at a recognition system
was intended to give me an idea of what would
and would not work on a high level, and thus was
very simplistic. In this method the descriptors for
each training label were matched to descriptors in
the input image using a simple nearest neighbors
(or shortest Euclidian distance) calculation. If the
first nearest neighbor found using this method
was greater than 4/5 the size of the second nearest

http://www.brewerydb.com/

neighbor, then this match was thrown out. After
running through this method for each descriptor
in a training label, the total number of valid
matches for that label was tallied. After
completing this for every beer in the database, the
beer with the highest number of valid matches
was chosen as the best match for the input image.

While simple and fairly easy to
implement, this method was not very effective.
This lack of efficacy was due mostly to the fact
that multiple key points in a training label would
frequently map to the same point in the test image
(Figure 5). Even worse, it seemed that the most
common matches were between key points that
were not relevant to the actual content of the
label. This can be seen in Figures 4 and 5. Despite
having nothing in common with the label on the
bottle in the query image, these two training
labels were selected as the two of the best
matches because multiple key points in the labels
matched to the edge of the bottle. Even though
they tell us nothing about how close the labels are
to one another, these matches are still considered
valid, resulting in skewed results and poor
accuracy.

Figure 4-5: Poor Matches Between Edges

3.2 Test → Training Feature Matching

In order to solve the issues caused by
arbitrary and uninformative matches, a second
method was implemented. This second method
was similar to the initial attempt in that it
involved matching between SIFT features, but
was different in how it went about doing it.
Rather than matching each individual training

descriptor to a descriptor in the test image, it
instead matched each descriptor in the test image
to a descriptor belonging to one of the training
labels.

The first step in this method was again to
calculate the SIFT descriptors for each of the
training labels. Once calculated, the descriptors
for all labels were then merged together into a
giant bank of all descriptors. In total, this bank
contained more than 5 billion descriptors. Each
SIFT descriptor in the test image was then
matched to the descriptor in this bank whose
Euclidean distance from the test descriptor was
smallest. In this case I did not use the second
nearest neighbor check as I did in the initial
method because it is possible for two different
beers from the same brewery to have very similar
features (Figure 6). Since the distance between
these two features is likely incredibly small, using
the second nearest neighbor check would cause
these two beers to trample out one another's valid
matches. Once a match is found for each feature
in the test image, the number of features matched
in each training image is calculated and the image
with the highest number of correspondences is
chosen as the most likely beer match.

Figure 6: Two Beers From the Same Brewer with Similar
Labels

This method was incredibly effective, but
very slow. As stated above, the feature bank used
in this method contains more than 5 billion
descriptors. Each of these descriptors is a vector
of 128 32-bit floats. As a result, storing this bank
took over 2 gigabytes of memory. Unfortunately,
since I was running this system on a machine with

just 1GB of memory, it was impossible for me to
store the entire bank at one time. The only
solution to this problem was to re-calculate the
SIFT descriptors for each training label every
time I wanted to compare them to a descriptor in
the test image. Computing descriptors this many
times took 19 minutes without doing any other
computations (additional results can be found in
supplementary material), making it clear that a
more tractable method was necessary.

3.3 Test → Training Using a Subset of
Features

My initial solution to this problem was
simple: rather than use ALL of the descriptors
from each training label in the bank, I instead
randomly selected 20 descriptors from each label.
These 20 descriptors for each label were then
added to the bank, resulting in a bank of just
202,280 descriptors, significantly less than the 5
billion descriptors in our original method. Since
these descriptors took up just a tenth of a
gigabyte, the entire bank could be easily stored in
memory. This significantly cut down on running
time, since the bank could be calculated one time
and then stored in memory for subsequent runs.
The smaller bank further cut down run time
because each test descriptor had to be compared
to just over 200,000 descriptors rather than a
whole 5 billion (approximately 25,000 times less).
Overall this method presented a faster, more space
efficient solution to the problem while
maintaining relatively acceptable level of
accuracy (more information can be found in
supplementary materials).

3.4 Test → Training Using K-Means
Clustering and Bag Of Words

While creating a bank from a subset of
label descriptors significantly improved the
tractability of my system, I wondered if I could
make it even faster. The improved system still
took a few seconds to run, an amount of time that
would probably be considered too long in a
commercial application. In light of this, I wanted
to find a way to cut down running time to less

than a second or two.
In order to do this, I utilized K-means

clustering and a bag of words model. By taking
the subset of label descriptors discussed in the 3.3
and running k-means clustering (I would have
liked to do this using the bank containing ALL of
the features, but was again limited by tractability
issues), I was able to group all of the descriptors
into just 1000 clusters. The center of these
clusters became my bag of words. I then used the
same nearest neighbors matching discussed in 3.2
to match each training label descriptor with it's
nearest neighbor in the bag of words. How many
times each centroid in the bag of words was
matched for a particular label was then tallied in
order to create a histogram for each training label.
Each histogram was then normalized in order to
ensure that the sum of it's entries was one.

When given a training image, the same
steps were executed in order to create a training
histogram. This test histogram was then compared
to the histogram for each training label and the
training label with the histogram most similar to
that of the test image was selected as the best
match. This method significantly reduced the run
time of my system, but ended up really crippling
the accuracy (more information on results can be
found in the next section).

4 Results

In order to test the accuracy of the
proposed methods, I ran a set of 50 bottle images
through systems 3.2, 3.3, and 3.4. This test set
included photos taken at a variety of scales and
illuminations. In order to further ensure
robustness, bottles whose labels shared features
with other beers in the database (Figure 6) were
included, as were cans and bottles whose labels
slightly differed from the corresponding database
label. Because Beer Advocate often had incorrect
bottle images, the test images had to be hand
selected to ensure that they matched a label in the
database.

Each system was trained using the dataset
from brewerydb.com as discussed in section 3.
All methods were trained using all 10,114 beers
with the exception of the method discussed in 3.2.

Figure 8: Correct Guesses Out of 50

Because this method took over 20 minutes to run
per beer when using the full data set, this system
was instead trained using just the first 531 beers
in the database.

As can be seen in figures 7,8, and 9, each
of the three methods had very different results.
The method proposed in 3.2 was the most
effective, correctly identifying 96% of the beers
in our test set. Of the two tests where the correct
beer was not chosen, one had the correct choice as
the runner up. Also worth noting is that both the
runner-up and incorrect primary guesses in this
case had the exact same label with the exception
of the text identifying the beer name. For the
second incorrect test example the system
predicted the correct label as being the fourth
most likely choice. All three of the beers in front
of the correct label were from the same brewery,
and thus had very similar bottles.

While this method was incredibly
accurate, it also ran the slowest of the three,
taking approximately 10 seconds to run the
system. This number is even worse when you
consider the fact that this method was run on a
subset of just 531 beers rather than the entire

Figure 9: Run Times for Single Beer

10,000. Thus, if it were able store and run on the
entire set the run time would be roughly 20 times
longer, making it the slowest by over three
minutes.

The method proposed in section 3.3 was
the most balanced of the three approaches.
Despite only using 20 features from each training
label, this method was able to correctly identify
the beer in the test image 64% of the time. 44% of
the time the system chose the correct beer as the
only number one choice, while remaining 20% of
the time the correct beer was tied for the most
likely spot. These “ties” for first place were
usually shared between 2 to 4 beers. In a real life
application these ties would be nearly as good as
singling out a best choice, since you could return
to the user the images all of the beers tied for first
and allow them to select which beer is theirs. This
method also ran relatively efficiently, and was
able to make a prediction after approximately 8
seconds.

Unlike the first two methods, the k-means
method discussed in section 3.4 was not very
accurate at all. When run on our test set of 50
beers, this method was only able to correctly

Full Features (3.2)
20 Features (3.3)

K-Means (3.4)

0

2

4

6

8

10

12
10

8

0.3

System Run Time For a Single Beer

Correct Guess Result Lone Winner Tied For First Second Total % Accuracy

Full Features for Subset of 512
(3.2)

48 0 1 96%

20 Features for All Beers (3.3) 22 10 3 64%

K-Means Clustering (3.4) 2 0 0 4%
Figure 7: Results For Three Methods

Full Features (3.2)
20 Features (3.3)

K-Means (3.4)

0

10

20

30

40

50

60

48

32

2

Correct Guesses Out of 50

identify two of them, while the remaining 48
didn't even have the best guess in the top 5.
Though these results may seem shocking at first,
they actually make pretty good sense. Boiling
over 5 billion features down into just 1000
clusters gets rid of a lot of information, and can
make different labels resemble one another much
more than they actually do in real life. By
increasing the number of clusters to a larger
number, more accurate results could be obtained
(unfortunately, clustering into 1000 clusters
already took my computer 10+ hours!). However,
this method was effective in speeding up our
system, and was able to make a prediction in just .
3 seconds. Unfortunately, this speed is not nearly
enough to make up for such horrible accuracy.

5 Conclusions

Overall, I think the results of this project
are promising. Though it may not have been
blazing fast, I was able to achieve my goal of
developing a system that can identify beer labels
with incredible (90%+) accuracy. This method
was limited only by the hardware it was running
on, and could be executed significantly faster
given a machine with more memory and
computing power, something that is relatively
easy to come by with modern day cloud
infrastructure. Given a machine with a lot of
memory and a quick processor this system could
go from taking 20-30 minutes to being executed
in just a few seconds.

In addition to this, I was also able to
develop a faster, lighter weight system that was
able to maintain greater than 60% accuracy
despite running in under 10 seconds. This result is
especially promising when you consider the fact
that the system is choosing these correct labels
out of a pool of over 10,000. All in all, I believe
that these two systems provide accurate, tractable
solutions to the problem of beer label recognition.

6. References

[1] Lowe, David G. (1999) 'Object Recognition from Local
Scale-Invarient Features”. Proceedings of the International
Conference of Computer Vision 2. pp. 1150-1157.
doi:10.1109/ICCV.1999.790410

[2] The OpenCV Library. Dr. Dobb's Journal Of Software
Tools (2000) By G. Bradski

[3] www.BreweryDB.com

[4] www.Beeradvocate.com

http://www.Beeradvocate.com/
http://www.BreweryDB.com/

