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Abstract

When sitting down and enjoying a new 
beer many beer drinkers want to know everything  
they can about the beverage they have in front of  
them. Unfortunately, it often the case that this  
information is not readily or easily available on  
the bottle. With such a competitive craft brewing  
market, many breweries have begun to leave  
important information such as International  
Bitterness Units (IBUS), Alcohol By Volume  
(ABV), and even style off the bottle in order to  
make room for flashy, eye catching images. By  
utilizing SIFT descriptors, I present a simple and  
effective model for taking advantage of these  
flashy labels in order to provide a system that  
effectively identifies a beer from a user inputted  
photograph of the bottle. This identification of the  
beer name from a photo of the bottle creates a  
quick and easy way to provide users with  
information about the beverage before them.

1. Introduction

The past few years has seen a huge surge 
in the popularity of craft beers. A beer market 
once dominated by large corporations such as 
Aneuser-Busch and Miller Brewing Company is 
now segmented amongst thousands of smaller 
breweries, each of which brings dozens of beers 
to the table. As a result of this competition, many 
craft brewers have focused on making wild, 
flashy labels in order to make their beer stand out 
on a shelf of hundreds of competitors. 
Unfortunately for the consumer, this often means 
that important information about the beer can be 
difficult or impossible to find. For example, 
consider the label in Fig 1.

Figure 1.

This label is attractive and eye catching, 
with bright colors and a nice image in the center, 
but is not very informative. It tells us that the beer 
is an extra IPA, but lacks any information about 
the alcohol by volume or international bitterness 
units. Furthermore, it is not entirely obviously 
what the name of the beer is: Is it Sierra Nevada, 
or Torpedo? Or Sierra Nevada Torpedo? This lack 
of concrete information can be both frustrating 
and annoying to a beer drinker who wants to 
know everything they can about the beer they are 
about to enjoy. In addition, the ambiguity of the 
title of the beer can make it difficult (or 
impossible!) to remember the name of the beer 
should you want to purchase it again.

The motivation for this project was to 
solve these problems by utilizing the advantages 
that arise from flashy labels. While the desire to 
be eye-catching can often result in the labels 
being less informative, it also means that labels 
are likely to be highly differentiated. With so 
much effort going into being noticed, breweries 
are careful to make sure that their labels look 
different than any other beer on the market. By 
utilizing this differentiation, I propose a system 
that uses comparisons of SIFT descriptors in order 
to match a user inputted bottle to it's proper label. 
Once this label recognition is complete, we are 
able to return to the user not just the name of the 
beer, but also brewery information, IBUs, ABV, 
and more.

2. Previous Work
 
Label recognition has been applied in a 



number of areas other than beer labels, the most 
closely related and popular example being Vivno. 
Vivino is a mobile application that allows a user 
to obtain information about a bottle of wine by 
taking a picture of the label. Vivino's results are 
pretty accurate, and it has gained a lot of 
popularity since it's release. Seeing this 
application made me wonder why there was not a 
beer equivalent, and created the motivation for 
this project.

3. Recognizing Beer Labels

The overall goal of my project was to 
create a system that, given a database of beer 
labels and a query image of a bottle, could 
identify which label the bottle most closely 
matched. Once a match was found, further 
information about the beer could be passed on to 
the user.

The first step in this process was to obtain 
the labels for the database. To do so, I used an 
open source database at www.brewerydb.com. 
This database contains over 15,000 beers in total, 
10,114 of which had a corresponding label in the 
database. The photos in the database were of the 
labels peeled off of the bottle and laid flat, as can 
be seen in Figure 1. In addition to label images, 
this database also contained all of the information 
I needed to pass back to the user, including 
International Bitterness Units, alcohol by volume, 
style, brewery, and even ingredients. The photos 
of bottles used in testing were obtained both from 
crawling BeerAdvocate.com and from images 
taken by myself. In order to create as robust a 

Figure 2: Bottle Photos w/ Varying Angles and 
Illumination

system as possible, these photos were taken from 
varying angles with varying levels of illumination 
(Fig 2). In addition, some bottles were chosen that 
were of the same brand as a label in the database, 
but had a slightly different label.

After obtaining the images to be used in 
our database, SIFT (Scale-Invarient Feature 
Transform) [1] descriptors were calculated for 
each label, as well as for the query image (Figure 
3). The fact that SIFT is invariant to scale and 
illumination made it an obvious choice for this 
project, since photos are likely to be taken in 
dimly lit bars and from a variety of distances 
away from the bottle. These SIFT descriptors 
were the very heart of my system, and were used 
in a variety of different methods in an attempt to 
find the best solution to the problem of label 
recognition.

Figure 4: A Beer Label With It's Sift Descriptors

3.1 Training → Test Feature Matching

My initial attempt at a recognition system 
was intended to give me an idea of what would 
and would not work on a high level, and thus was 
very simplistic. In this method the descriptors for 
each training label were matched to descriptors in 
the input image using a simple nearest neighbors 
(or shortest Euclidian distance) calculation. If the 
first nearest neighbor found using this method 
was greater than 4/5 the size of the second nearest 

http://www.brewerydb.com/


neighbor, then this match was thrown out. After 
running through this method for each descriptor 
in a training label, the total number of valid 
matches for that label was tallied. After 
completing this for every beer in the database, the 
beer with the highest number of valid matches 
was chosen as the best match for the input image.

While simple and fairly easy to 
implement, this method was not very effective. 
This lack of efficacy was due mostly to the fact 
that multiple key points in a training label would 
frequently map to the same point in the test image 
(Figure 5). Even worse, it seemed that the most 
common matches were between key points that 
were not relevant to the actual content of the 
label. This can be seen in Figures 4 and 5. Despite 
having nothing in common with the label on the 
bottle in the query image, these two training 
labels were selected as the two of the best 
matches because multiple key points in the labels 
matched to the edge of the bottle. Even though 
they tell us nothing about how close the labels are 
to one another, these matches are still considered 
valid, resulting in skewed results and poor 
accuracy. 

Figure 4-5: Poor Matches Between Edges

3.2 Test → Training Feature Matching

In order to solve the issues caused by 
arbitrary and uninformative matches, a second 
method was implemented. This second method 
was similar to the initial attempt in that  it 
involved matching between SIFT features, but 
was different in how it went about doing it. 
Rather than matching each individual training 

descriptor to a descriptor in the test image, it 
instead matched each descriptor in the test image 
to a descriptor belonging to one of the training 
labels.

The first step in this method was again to 
calculate the SIFT descriptors for each of the 
training labels. Once calculated, the descriptors 
for all labels were then merged together into a 
giant bank of all descriptors. In total, this bank 
contained more than 5 billion descriptors. Each 
SIFT descriptor in the test image was then 
matched to the descriptor in this bank whose 
Euclidean distance from the test descriptor was 
smallest. In this case I did not use the second 
nearest neighbor check as I did in the initial 
method because it is possible for two different 
beers from the same brewery to have very similar 
features (Figure 6). Since the distance between 
these two features is likely incredibly small, using 
the second nearest neighbor check would cause 
these two beers to trample out one another's valid 
matches. Once a match is found for each feature 
in the test image, the number of features matched 
in each training image is calculated and the image 
with the highest number of correspondences is 
chosen as the most likely beer match.

Figure 6: Two Beers From the Same Brewer with Similar 
Labels

This method was incredibly effective, but 
very slow. As stated above, the feature bank used 
in this method contains more than 5 billion 
descriptors. Each of these descriptors is a vector 
of 128 32-bit floats. As a result, storing this bank 
took over 2 gigabytes of memory. Unfortunately, 
since I was running this system on a machine with 



just 1GB of memory, it was impossible for me to 
store the entire bank at one time. The only 
solution to this problem was to re-calculate the 
SIFT descriptors for each training label every 
time I wanted to compare them to a descriptor in 
the test image. Computing descriptors this many 
times took 19 minutes without doing any other 
computations (additional results can be found in 
supplementary material), making it clear that a 
more tractable method was necessary.  

3.3 Test → Training Using a Subset of 
Features

My initial solution to this problem was 
simple: rather than use ALL of the descriptors 
from each training label in the bank, I instead 
randomly selected 20 descriptors from each label. 
These 20 descriptors for each label were then 
added to the bank, resulting in a bank of just 
202,280 descriptors, significantly less than the 5 
billion descriptors in our original method. Since 
these descriptors took up just a tenth of a 
gigabyte, the entire bank could be easily stored in 
memory. This significantly cut down on running 
time, since the bank could be calculated one time 
and then stored in memory for subsequent runs. 
The smaller bank further cut down run time 
because each test descriptor had to be compared 
to just over 200,000 descriptors rather than a 
whole 5 billion (approximately 25,000 times less). 
Overall this method presented a faster, more space 
efficient solution to the problem while 
maintaining relatively acceptable level of 
accuracy (more information can be found in 
supplementary materials).

3.4 Test → Training Using K-Means 
Clustering and Bag Of Words

While creating a bank from a subset of 
label descriptors significantly improved the 
tractability of my system, I wondered if I could 
make it even faster. The improved system still 
took a few seconds to run, an amount of time that 
would probably be considered too long in a 
commercial application. In light of this, I wanted 
to find a way to cut down running time to less 

than a second or two.
In order to do this, I utilized K-means 

clustering and a bag of words model. By taking 
the subset of label descriptors discussed in the 3.3 
and running k-means clustering (I would have 
liked to do this using the bank containing ALL of 
the features, but was again limited by tractability 
issues), I was able to group all of the descriptors 
into just 1000 clusters. The center of these 
clusters became my bag of words. I then used the 
same nearest neighbors matching discussed in 3.2 
to match each training label descriptor with it's 
nearest neighbor in the bag of words. How many 
times each centroid in the bag of words was 
matched for a particular label was then tallied in 
order to create a histogram for each training label. 
Each histogram was then normalized in order to 
ensure that the sum of it's entries was one.

When given a training image, the same 
steps were executed in order to create a training 
histogram. This test histogram was then compared 
to the histogram for each training label and the 
training label with the histogram most similar to 
that of the test image was selected as the best 
match. This method significantly reduced the run 
time of my system, but ended up really crippling 
the accuracy (more information on results can be 
found in the next section).

4 Results

In order to test the accuracy of the 
proposed methods, I ran a set of 50 bottle images 
through systems 3.2, 3.3, and 3.4. This test set 
included photos taken at a variety of scales and 
illuminations. In order to further ensure 
robustness, bottles whose labels shared features 
with other beers in the database (Figure 6) were 
included, as were cans and bottles whose labels 
slightly differed from the corresponding database 
label. Because Beer Advocate often had incorrect 
bottle images, the test images had to be hand 
selected to ensure that they matched a label in the 
database.

Each system was trained using the dataset 
from brewerydb.com as discussed in section 3. 
All methods were trained using all 10,114 beers 
with the exception of the method discussed in 3.2. 



Figure 8: Correct Guesses Out of 50

Because this method took over 20 minutes to run 
per beer when using the full data set, this system 
was instead trained using just the first 531 beers 
in the database.

As can be seen in figures 7,8, and 9, each 
of the three methods had very different results. 
The method proposed in 3.2 was the most 
effective, correctly identifying 96% of the beers 
in our test set. Of the two tests where the correct 
beer was not chosen, one had the correct choice as 
the runner up. Also worth noting is that both the 
runner-up and incorrect primary guesses in this 
case had the exact same label with the exception 
of the text identifying the beer name. For the 
second incorrect test example the system 
predicted the correct label as being the fourth 
most likely choice. All three of the beers in front 
of the correct label were from the same brewery, 
and thus had very similar bottles. 

While this method was incredibly 
accurate, it also ran the slowest of the three, 
taking approximately 10 seconds to run the 
system. This number is even worse when you 
consider the fact that this method was run on a 
subset of just 531 beers rather than the entire 

Figure 9: Run Times for Single Beer

10,000. Thus, if it were able store and run on the 
entire set the run time would be roughly 20 times 
longer, making it the slowest by over three 
minutes.

The method proposed in section 3.3 was 
the most balanced of the three approaches. 
Despite only using 20 features from each training 
label, this method was able to correctly identify 
the beer in the test image 64% of the time. 44% of 
the time the system chose the correct beer as the 
only number one choice, while remaining 20% of 
the time the correct beer was tied for the most 
likely spot. These “ties” for first place were 
usually shared between 2 to 4 beers. In a real life 
application these ties would be nearly as good as 
singling out a best choice, since you could return 
to the user the images all of the beers tied for first 
and allow them to select which beer is theirs. This 
method also ran relatively efficiently, and was 
able to make a prediction after approximately 8 
seconds.

Unlike the first  two methods, the k-means 
method discussed in section 3.4 was not very 
accurate at all. When run on our test set of 50 
beers, this method was only able to correctly 
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identify two of them, while the remaining 48 
didn't even have the best guess in the top 5. 
Though these results may seem shocking at first, 
they actually make pretty good sense. Boiling 
over 5 billion features down into just 1000 
clusters gets rid of a lot of information, and can 
make different labels resemble one another much 
more than they actually do in real life. By 
increasing the number of clusters to a larger 
number, more accurate results could be obtained 
(unfortunately, clustering into 1000 clusters 
already took my computer 10+ hours!). However, 
this method was effective in speeding up our 
system, and was able to make a prediction in just .
3 seconds. Unfortunately, this speed is not nearly 
enough to make up for such horrible accuracy. 

5 Conclusions

Overall, I think the results of this project 
are promising. Though it may not have been 
blazing fast, I was able to achieve my goal of 
developing a system  that can identify beer labels 
with incredible (90%+) accuracy. This method 
was limited only by the hardware it was running 
on, and could be executed significantly faster 
given a machine with more memory and 
computing power, something that is relatively 
easy to come by with modern day cloud 
infrastructure. Given a machine with a lot of 
memory and a quick processor this system could 
go from taking 20-30 minutes to being executed 
in just a few seconds. 

In addition to this, I was also able to 
develop a faster, lighter weight system that was 
able to maintain greater than 60% accuracy 
despite running in under 10 seconds. This result is 
especially promising when you consider the fact 
that the system is choosing these correct labels 
out of a pool of over 10,000. All in all, I believe 
that these two systems provide accurate, tractable 
solutions to the problem of beer label recognition.
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