
Leveraging Computer Vision Priciples for
Image-Based Shoe Recommendation

Amrit Saxena
Computer Science

Stanford University
amrit@cs.stanford.edu

Vignesh Venkataraman
Computer Science

Stanford University
viggy@stanford.edu

Neal Khosla
Computer Science

Stanford University
nealk@cs.stanford.edu

Abstract—We have developed an image-based shoe rec-
ommendation system to help modernize the retail industry.
This system assesses a dataset of over 10,000 men’s shoes
and extracts the shape, color, and texture associated with
each of these shoes. Using a combination of contour
detection, scale-invariant feature transform, color-based
clustering, and several other algorithmic approaches, it is
able to extract shape, color, and texture feature descriptors
with over 80% accuracy. It then recommends shoes that
are similar to a user’s input image on the basis of
these features by leveraging support vector machines, k-
means, k-nearest neighbors, and filtering techniques. On
the whole, our algorithm takes seconds to compute and has
a recommendation accuracy of over 88% for each of shape,
color, and texture across the top 10 recommendations for
each image.

I. INTRODUCTION

A. Background

The retail experience has changed very little over the course
of the past couple of decades. There have certainly been major
developments in terms of e-commerce and novel distribu-
tion channels. However, there has been little consumer-facing
change in the brick-and-mortar retail industry. In response to
the relatively slow rate of technological innovation in the retail
industry, we set out to utilize computer vision techniques to
modernize the industry. We identified real-time recommen-
dation systems for retail goods as an area with significant
opportunities for advancement. While e-commerce platforms
utilize techniques like collaborative filtering to power recom-
mendations for users, recommendations in brick-and-mortar
stores are still very low-tech and are generally driven by word-
of-mouth from friends and family and pitches by salesmen.
The problem lies in that it is difficult to build a useful user
profile vector and recommend things to people in real time
as they shop physically. Even if it were possible to track
this data, it is fairly difficult to compute recommendations
for items in the brick-and-mortar setting due to poorly-defined
taxonomies and a general lack of data properly and consistently
characterizing products in retail database systems.

We sought to develop a mechanism that could provide
extremely accurate and efficient recommendations without
having to depend on a large number of data points and artificial
intelligence seemed like the perfect tool to solve this problem.
As a result, we decided to leverage computer vision and
machine learning to build an algorithm that could recommend

retail goods on the basis of image similarity as such a process
would require no data outside of the images of the goods.

Our belief is that successfully computing recommendations
on the basis of image similarity would be a stepping-stone
towards building more robust recommendation systems that
could significantly improve the way in which people shop
as it would allow for more customized, flexible, and accu-
rate guidance in identifying desired goods. As this provides
significant value to commercial entities and consumers alike,
this is a problem that many people are trying to tackle in
the real world right now, albeit with varying levels of success.
Acknowledging that the problem that we were seeking to solve
was a difficult one, we decided to initially attempt to solve
a simpler subproblem. We proceeded by assessing shoes, a
retail product that is not overly variable or complex, in order
to maximize our chances of substantive results. Beyond the
relative lack of complexity in shoe styles, footwear is also a
significant industry within the retail space and represents trans-
actions of over $54 billion per year [8]. To classify the shoes,
we have chosen to extract features representing the shape,
texture, and color of the shoes as we have identified them
as key descriptors of shoes. The extraction and assessment of
these features constitutes the vast majority of our work.

We had started working on solving this problem as a part of
the CS 229 course, and although certain aspects of our project
had been successful, the project’s results left a lot to be desired
on the whole. Furthermore, we felt like the processes that we
employed lacked robustness and scalability. After conferring
with the CS231a course staff, we decided to reassess our
algorithmic approaches and tackle the problem from scratch.
A criticism we received from the staff was that there was very
little true machine learning in our project, aside from clustering
and computation of simple Euclidean distances. As a result,
it was difficult to gauge the effectiveness of our similarity
algorithm.

In response to this, we are taking a much more machine
learning and computer vision-intensive approach to tackle
the problem. We are reworking each of our features to be
more representative of the visual characteristics they represent,
and we are applying numerous computer vision and machine
learning techniques to maximize the effectiveness of these
improved features in delivering relevant and useful results to
the user. Additionally, as per the suggestions of the staff, we
have turned this into a partially supervised learning problem
by mechanically assigning labels to a sample from our dataset.
In addition to creating a far more robust algorithm, we have

1

also made significant progress towards making our algorithm
more flexible to allow for the analysis of more noisy images.

B. Dataset

For our initial analysis, we wanted to compile a dataset
of images with consistent lighting and positioning so that we
could focus on developing a robust algorithm without having
to worry about making sense of the noise in dirty images.
As a result, we created a dataset by scraping the data for
all of the 10,786 different men’s shoes that were listed on
Zappos.com at the time of scraping. We chose to use images
from Zappos for our project as the site contains a fairly
exhaustive set of shoes among its product listings and has
images with exceptionally consistent lighting, positioning, and
orientation. For each shoe, we scraped a side-view image of
a leftshoe facing left. Along with each of these images, we
scraped data about each of the products including the targeted
gender, the name of the shoe, the brand of the shoe, the shoe
price, color, and Zappos’ provided categorical taxonomy of
the shoe. While Zappos displays seven views per shoe, we
chose to only assess one view in our work as the flexibility
and performance of our algorithm would be severely impacted
if it depended on that many views per shoe. Furthermore, such
a dataset would require over 200 GB of memory and would
make it far more difficult for us to carry out our work with
diminishing returns.

For the second layer of our analysis, we aggregated a
dataset by taking pictures of shoes ourselves. These images
were far noisier than the Zappos’ dataset that we leveraged for
the first part of our analysis as there was much more variability
in positioning, scale, rotation, illumination, and the background
of these images. As such, this dataset allowed us to assess the
flexibility of our algorithmic approaches.

II. PREVIOUS WORK

A. Review of Previous Work

Given the inefficiencies in the retail space, this is a problem
that many people are trying to tackle in the real world
right now. A clothing recommendation engine, Kaleidoscope,
initially tried to recommend similar clothing items to its users
by utilizing machine learning-based classification methods but
ended up settling for manual classifications due to an inability
to properly classify the stylistic elements of retail goods that
they were assessing [5]. Another company that was actually
fairly successful at classifying similar retail goods on the
basis of images was Modista, a computer vision-based retail
good recommendation service [7]. We spoke with one of the
co-founders of Modista about how to approach out project
and in our talks with him, he told us that his team had
worked on classifying retail goods by shape and color. He
also advised us to not tackle texture-based classification due to
its relative difficulty and the effectiveness of shape and color-
based classification.

There has also been a fair amount of non-commercial,
academic work in this space. While progress has been made to
solve individual subproblems of this problem, none of the work
has been particularly successful at creating a very accurate and
robust image-based retail good recommendation engine.

Fig. 1. A set of shoe recommendations generated by Modista.

In early 2013, Willimon et al. used a multilayer approach to
classify articles of clothing in a pile of laundry by leveraging
a combination of color, texture, shape, and edge information
from 2D and 3D in both a local and a global perspective [12].
While they improved upon the previous baselines by about
15%, they still only realized an accuracy rate of about 28%.
Nonetheless, specific aspects of the work were applicable to
the problems that we were seeking to solve. One aspect of their
work that inspired us was that they used SIFT descriptors to
gather 2D local texture data and we utilized a similar strategy
in our texture feature detection.

We also drew inspiration from Borras et al. through a
UAB Bellaterra paper entitled “High-Level Clothes Descrip-
tion Based on Colour-Texture and Structural Features” [11]. In
this work, the authors seek to interpret five cloth combinations
in a graphical structure to try to ascertain what someone is
wearing from an image. While the work that the researchers
did is interesting, they only achieved a 64% overall accuracy
due to occlusions, variable positioning, and an imperfect
extraction and classification of clothing features. As such, the
work reinforced the difficulty of the problem that we sought
to solve to us.

Another work that directly contributed to the development
of our algorithm, was a paper entitled “Perception for the
Manipulation of Socks” [13]. In this paper, the researchers
were able to classify whether a sock was properly oriented
or inside-out with over a 90% accuracy by using local binary
patterns for texture recognition and detection. We eventually
leveraged a combination of local binary patterns and spatial
pyramid matching in the development of our texture feature
extraction mechanism.

B. Significance of Our Work

The successful completion of this project has many signif-
icant academic and commercial implications. From a commer-
cial standpoint, this work can fundamentally change modern
commerce by making brick-and-mortar far more efficient and
personalized. While there have been a number of developments
in e-commerce to make it a more personal experience in recent
years, brick-and-mortar commerce can significantly benefit
from image-based recommendation systems. Deploying such
technology in a brick-and-mortar setting can make it easier
for consumers to find goods that they would like to purchase,

2

removing an operational inefficiency from the industry. Fur-
thermore, upon aggregating information about consumers as
they use an image-based recommendation service in a physical
setting, retailers would be able to build systems with more
relevant and real-time targeted advertising to consumers as they
shop. This would be a significant value add to consumers and
retailers alike.

From a theoretical perspective, this work can help optimize
feature extraction from images of clothing items. A robust
mechanism to classify the shape, color, and texture of shoes
could be directly applied to other types of clothing items.
From being leveraged in laundry machine-unloading robots to
identifying people in surveillance videos, this technological
development could have a wide range of implications and ap-
plications. Moreover, some of the computer vision techniques
used and developed in our approach could be parlayed to make
progress in other fields as well. From cancer cell identification
in the human body to detecting the presence of mines from
satellite images, aspects of this work can be leveraged in
solving a variety of significant problems.

III. TECHNICAL PART

A. Summary

In our efforts to create a robust recommendation system, we
began by analyzing and identifying what features might define
a shoe and its style. While we had initially hoped to use our
metadata (specifically the Zappos’ taxonomy of each shoe) as a
metric for the success of our classification of style, we quickly
concluded that Zappos provided extremely poor taxonomies.
Nearly 50% of shoes in the dataset were classified in the
“Sneakers & Athletic Shoes” category. Because this provided
taxonomy lacked any real granularity, we pivoted to approach
this problem as a partially unsupervised learning problem (we
labeled a subset of our images to build a support vector
machine-based classification system as a part of our final
algorithm). We then shifted our focus to determining a feature
set that would enable us to accurately group similar shoes.
Through a drawn out brainstorming process that involved both
numerous discussions and cursory explorations of different
approaches, our group concluded that the three main features
that defined shoes were shape, color, and texture.

1) Shape - We identified that shoes with similar shapes
tend to belong to the same style categories and
therefore concluded that the shape of a shoe would
give us significant fundamental insight into the style
of a shoe.

2) Texture - We decided that ascertaining the texture of
a shoe would make our recommendations far more
accurate as shoes with similar shapes and colors can
often be of vastly different styles. For example, a low-
cut brown running shoe and a low-cut brown casual-
wear skate shoe will have extremely similar shapes
and colors, but the running shoe would have a mesh-
like texture, while the skate shoe would have a much
smoother texture.

3) Color - We also noted that from a visual perspective,
the color of a shoe is one of the first things that the
brain registers, and thus, that color might provide a
good feature to base recommendations on.

B. Shape

To ascertain shoe shapes, we first tried a fairly rudimentary
clustering approach to determine cluster centers corresponding
to different styles of shoes. By using the category taxonomies
from Zappos’ website, we computed prototypes for cluster
centers for each one of the major categories. To do this, we
converted each image corresponding to a given category to
a grayscale array and computed the average grayscale array
corresponding to each category. Once we had these initialized
cluster centers, we ran k-means on our entire dataset of images.
This technique resulted in a style classification accuracy of
about 55% on a randomly-selected, statistically significant
sample. As previously mentioned, we realized that one of
the primary reasons for this was that Zappos’ taxonomies
were highly generalized and thus did not do a good job of
differentiating between shoes with vastly different shapes and
styles and causing this method to significantly underfit our
dataset. Thus, for our next approach, we went through all
of our images and found nine images that we determined
were good representations of most of the distinct shapes
and styles of men’s shoes (i.e., low-tops, sneakers, high-tops,
boots, slippers, clogs, boat shoes, sandals, and flip flops). We
then clustered on the basis of these initialized cluster centers
and achieved a shape classification accuracy of about 75%.
Subsequently, since the only relevant factor for this step of our
algorithm was shape, we decided to mask all of the images
as illustrated in Figure 2. To compute these masks, we uti-
lized OpenCV’s thresholding capabilities [2]. Specifically, we
applied the inverse binary thresholding function on grayscale
images in order to turn the background of the image black
while whiting out the contents of the shoe itself. The inverse
binary thresholding function is defined by:

dst(x,y) =

{
0, if src(x,y) > thresh

maxVal, otherwise
(1)

Fig. 2. A mask computed for one of the shoes in our dataset.

Thus, by passing in 254 for our value of thresh and 255
for our maxVal, the background, which is entirely whitespace,
is transformed to black. Similarly, any space that isn’t pure
white (i.e., the shoe itself) is transformed to white. Now,
instead of running k-means clustering on the raw images them-
selves, we decided to utilize the grayscale array representations
of the masks of the images that we had selected as cluster
centers before and simply assigned each image in our dataset
to the cluster center that had the smallest matrix difference
from it as follows:

arg min
cluster

non zero count(cluster - image) (2)

3

This approach worked well, and we achieved a shape-based
style classification accuracy of about 80%.

Although this was an effective approach, it lacked any real
machine learning or computer vision basis; it was essentially a
comparison of two image masks while counting the number of
different pixels. Thus, our next approach began with turning
this unlabeled problem into a partially-labeled one. Specifi-
cally, we went through and labeled 1000 shoes based on their
shape.

We then sought to discover an accurate feature vector that
would allow us to classify any shoe into its proper shape
class, given just the image of the shoe. A logical starting
place for this was the shoe’s maximal external contour. This
was manifested as the trace of the shoe’s outermost image
boundary. We computed the external contours of each of the
shoes in our dataset by once again employing the inverse
binary thresholding method described in Equation 1. We then
extracted the contour of maximal size from this list of contours
as the largest contour in the list would correspond to a roughly
traced outline of the shoe.

Given the contour, we then had to decide what properties of
the contour we could potentially use as a feature vector. Some
options that we took time to test out included the moments
of the contour (these include the centroid and other pixel-
weighted averages across the image), the contour’s area, the
contour’s length, a polynomial approximation of the contour
using the Ramer-Douglas-Peucker algorithm, and the bounding
box of the contour. The eventual goal was to leverage one or
more of these properties into a support vector machine (SVM)
in order to train and classify shoe shapes. Having already
labeled 1000 images, we split them up into a training and
testing dataset and exhaustively experimented with each of the
features in isolation. Most yielded errors that were over 20%,
which would make the SVM classifier even worse in terms of
accuracy than our previous approach. Not content with this,
we proceeded to test out a few other strategies that all failed
for one reason or another. We actually tried feeding the raw
masked image (i.e. background is black, shoe area is white)
into an SVM with our provided labels and achieved nearly
60% error. Logically, this failure makes sense because of the
extraneous data that gets packaged in with the image mask.

Fig. 3. The bounding box computed for one of the shoes in our dataset.

However, selecting the bounding box as our feature vector
yielded excellent results. A bounding box is defined by its x-
origin, y-origin, width, height, and orientation. However, for
the purposes of this classification problem, we are guaranteed

to have a perfectly horizontal orientation of the bounding box
at all times, as the input images are all photographed in that
manner. Thus, the feature vector that we used in the SVM
consisted of the x, y, width, and height parameters. We tried
a variety of different kernels, and ended up settling upon a
radial basis function kernel for the purposes of our classifica-
tion as described in Equation 3. From this, we then created
a classification model that achieved a 94.6% classification
accuracy when we trained on 90% of the data and tested on
the remaining 10%.

K(xi, xj) = e−γ||xi−xj ||2 , γ > 0 (3)

Having developed two very different but quite effective
and complementary approaches to classifying shoe shape (i.e.,
the grayscale-mask difference comparison and the SVM-based
approach), we decided to leverage a combination of these
approaches in our final algorithm.

C. Texture

To compute textural similarities between shoes, we first
employed a texture descriptor called Local Binary Pattern
(LBP). Figure 4 depicts the basic concept behind the LBP
algorithm. LBP features are represented by first calculating the
difference in grayscale value between each pixel in the image
and its 8 direct neighbors. Then, the signs of those calculated
differences are noted. Since there are 8 neighbors, each with
the possibility of having a positive or negative difference,
there are 256 possible LBPs. Because we applied the VLFeat
library’s LBP implementation to our dataset, we adhered to
their standard of reducing those 256 possible LBPs to 58
quantized LBP possibilities, which depend on the transitions
between negative and positive differences when the neighbors
are scanned in anti-clockwise order. Reducing the number of
quantized LBP possibilities to 58 allows the computation of a
more reliable histogram that is ultimately the final output of
this algorithm [6].

Fig. 4. A demonstration of the basic algorithm behind Local Binary Patterns
(LBPs) [13]. LBPs are calculated by first computing the difference between
each pixel and its neighbors. Then noting the resulting pattern of positive
and negative differences, the sequence of binary values representing positive
and negative changes is mapped to a quantized value in the histogram that is
outputted.

After calculating the LBP features for each of our im-
ages, we compared their texture-based similarity by utilizing
OpenCV’s compareHist function to calculate the correlation
between two histograms [9]. This function denotes the distance
between any two histograms H1 and H2 as:

d(H1, H2) =

∑
i(H1(i)− H̄1)(H2(i)− H̄2)√∑

i(H1(i)− H̄1)2
∑
i(H2(i)− H̄2)2

(4)

where H̄k is the mean of the values in Hk or 1
n

∑
iHk(i).

4

After implementing this basic version of LBPs and ap-
plying it to our dataset, it became evident that our method
of comparing textures was not properly functioning. First, we
observed that the comparison of texture as an additional factor
in our similarity engine (along with color and shape) was
having no effect on the outputted set of recommended shoes,
revealing that our engine was not weighting texture correctly.
However, in trying to determine how to reweight the algorithm,
we discovered that almost all texture histograms for all images
were being categorized as 99% or more identical. This led
us to believe that our texture algorithm was not giving us
any insight into differences in texture between images and
thus needed to be refitted. Our first attempt to solve this
problem was to switch from comparing the histograms using
the compareHist function to measuring the Kullback-Leibler
Divergence (KL Divergence) between the two distributions.
However, our issues persisted, prompting us to reconsider our
original LBP feature determinations. In order to investigate
this, we temporarily edited the recommendation algorithm to
recommend shoes solely on the basis of texture and were
achieving less than 25% accuracy. After analyzing possible
causes extensively, we concluded that our algorithm was not
weighting the more granular textures in the shoes heavily
enough and was just matching the significant white region
of the images, which did not contain the shoe as similar. To
address this, we decided to implement a modified version of
Spatial Pyramid Matching to get more granular features[14].
Spatial Pyramid Matching works by creating histograms of
features for progressively smaller sized subdivisions of each
image and weighting the more granular histograms more when
comparing two images histogram features. Figure 5 depicts the
idea behind Spatial Pyramid Matching for a trivial example
with 3 quantized features.

Fig. 5. A depiction of the Pyramid Matching algorithm for a trivial example
with 3 quantized features. The image is divided into 3 different levels of
resolution for which feature histograms are computed and weighted more
heavily for higher resolution subdivisions [14].

For the purposes of our texture-matching algorithm, we
leveraged this concept by creating LBP histograms for progres-
sively smaller subdivisions of our images for use in calculating
the similarity between two images. We utilized VLFeat’s
functionality that allows the user to specify different resolution
divisions of the image, enabling us to use the same LBP library
by calculating extra histograms for finer resolutions than
exclusively the entire image. Through iterative consideration
of different grid sizes, we were able to settle on dividing our
images into 1, 4, and 12 subregions and improved our isolated

texture recommendation accuracy to approximately 65%.

While this approach showed promising improvements, it
was still far from perfect. As such, we read through many
research papers for good texture feature extraction mecha-
nisms, but could find nothing that was generalized or accurate
enough to deal with the wide variety of textural patterns that a
typical shoe contains. After considering a variety of different
approaches, we adopted a bag-of-words model, leveraging
scale-invariant feature transform (SIFT) to assess the textures
of the shoes in our dataset as per the advice of Professor
Savarese.

The bag-of-words model draws its origins in natural lan-
guage processing applications [1]. As formalized in a computer
vision context, the BoW model can be applied to image
classification by treating image features as ‘words.’ Thus, the
‘bag’ of visual words becomes a simple histogram based on
some generated vocabulary of visual words. The generation of
a BoW model generally comes down to three key steps: feature
detection, feature description, and codebook generation. In
general, the first two steps are handled by your choice of
feature detector/descriptor, of which there are a vast multitude
of choices from which to pick. Codebook generation is left to
the user of the BoW model. The goal of this step is to build up
some vocabulary of visual words, with which each computed
feature descriptor will be compared. The codebook is analo-
gous to the dictionary produced by an NLP implementation of
the BoW model.

The first tough design choice we faced was which de-
tector/descriptor algorithm to use. We initially chose SIFT
because of its widespread use and the large number of re-
search works that we read that leveraged it in some form.
Additionally, there was robust support for the SIFT algorithm
OpenCV’s Python manifestation. That said, in retrospect, we
could have used SURF or ORB or any number of other
keypoint detector/descriptor algorithms, but didn’t find the
need to due to the great success of the SIFT approach.

Fig. 6. The sift features extracted for one of the shoes in our dataset.

To properly use the BoW model with some type of pre-
dictive model, we needed our learning problem to be at least
partially supervised. As such, we took the first 500 shoes in
our dataset and labeled them based on texture. We realized
that the biggest weaknesses of our initial texture classification
approaches were an illumination and color-based tendency to
spit out leather dress shoes when given a dark black running
shoe. As such, we sought to build an engine that could
properly classify shoes on the basis of the type of texture
that they had and sought to classify shoes into the texture
categories of leather, mesh/athletic, and other (where other is
a catch-all class including canvas, suede, plastic, etc). Having
labeled the first 500 shoes with these classes, we then ran
the SIFT algorithm on our dataset to detect the keypoints and
texture descriptors in each shoe. Once we had computed these,
we proceeded with the canonical BoW codebook generation

5

approach: we ran a k-means clustering algorithm on all of the
keypoints and computed 1000 different cluster centers. These
1000 cluster centers corresponded to the “words” in our “bag,”
and we vector-quantized each keypoint in each image to the
closest cluster center as described in Equation 5.

kp[image]← arg min
cluster

||cluster - sift[image]||2 (5)

From here, we computed per-image histograms of the
keypoint centroid distribution. To ensure correctness, we vi-
sually compared histograms between shoes of similar and
different texture types (i.e. leather to athletic vs. leather to
leather) and verified that shoes within the same class had
similar histograms, while shoes of different texture classes
had noticeable differences in their histograms. Finally, we once
again leveraged a RBF kernel-based support vector machine as
described in Equation 3 to classify the histograms generated
by this approach. This generated classification model had a
roughly 80% overall accuracy when trained on 90% of our
labeled data and tested upon the remaining 10% of our labeled
data. This represented a marked improvement upon all of the
approaches we had used before and all of the approaches
that we had encountered in the literature that we had read in
preparation for this project. As such, if we ran an exclusively
texture-based similarity engine, it would be 80% accurate
given this three-label setup.

Fig. 7. An illustration of vector quantization to compress data.

One of the weaknesses of this approach is its limited scope
of texture classification; it can only distinguish between three
very simple classes of textures. Looking forward to future
development, we hope to experiment with some texton-based
features and a superpixel-based approach. Another weakness
of our texture algorithm is its reliance on the bag-of-words
model, which is notorious for ignoring the spatial relationships
among visual words. A suggested solution to this problem is
to implement spatial pyramid matching within the histogram
generation step, which will add a spatial hierarchy through
the use of coarse and fine grain subregions. That said, we are
extremely pleased with the improvements of our model as they
currently stand.

D. Color

Our first attempt to create relevant color features for each
shoe involved computing color histograms over the entire
image for each pixel’s RGB values. We then compared the
histograms of all of the shoes using a correlation metric in
the OpenCV compareHist function library [9]. However, this
yielded mixed results: although we were able to correctly
match the primary color of the shoe, the histogram compari-
son was weighted too heavily by the frequency with which
each color appeared. The primary color of the image was
dominating the histogram’s structure, hindering our ability to
differentiate based on secondary colors. This suggested that
our initial approach would not work, and we started to explore
other methodologies.

Our second approach sought to classify the colors of the
shoes by utilizing a modified form of k-means clustering to
identify the top four most prevalent color cluster centers in
a given image. More specifically, we ran the scipy python
library’s vq.kmeans clustering function for 30 iterations with
randomly selected initial cluster centers until convergence,
where convergence is defined to be:

∑
i

(Ri − R̄i)2 + (Gi − Ḡi)2 + (Bi − B̄i)2 ≤ 0.00005 (6)

where (R̄i, Ḡi, B̄i) is the cluster center that the current
pixel (Ri, Gi, Bi) has been mapped to [10]. Both the cluster
centers and the mappings between pixels and their closest
cluster centers are returned for the iteration with the lowest
overall error. Figure 8 illustrates an example output of this
clustering algorithm run on a shoe in our dataset where the
four most prevalent colors are shades of light grey, dark grey,
blue, and white.

Fig. 8. An example of the output from the k-means based color clustering
with four cluster centers that we employed to match colors. In this image, the
predominant colors are discovered to be blue, light grey, dark grey, and white.

We then mapped the RGB cluster centers into the
CIEL*a*b* (L*a*b*) color space, which is a more visual
color metric according to its definition. The L*a*b* color
space is designed such that the mathematical distance between
two points in the color space approximates perceived visual
distance between two colors (i.e., how the human eye would
classify their closeness) [3]. Moreover, when compared to the
RGB color space, there is much greater uniformity of color
spacing, meaning that the relative distances between colors
become meaningful measures of ranking color similarity. The
conversion from RGB into this space allowed us to calculate
similarity between colors using a simple Euclidean distance
function and accurately approximate similarity in color as a
human would perceive it. These cluster centers were then
precomputed for our entire dataset in order to optimize the
speed of the algorithm for future color-based comparisons.

6

Finally, we sorted the four color values of the cluster centers
by ascending luminosity, allowing us to make an ordered
comparison of the color centroids. The color similarity score
of any two images in our data set was calculated to be the
sum of the square of the Euclidean distance between each of
the color centroids in the L*a*b* color space as described in
Equation 7.

arg min
i 6=image

||centroids(image) - centroids(i)||2 (7)

Therefore, a smaller similarity score represents a smaller
difference between the color distributions of two images and
thus a smaller difference in their visual color similarity because
of the properties of the L*a*b* color space. A randomly-
selected, statistically significant sample was fed into our color
similarity engine and the top-10 results for each shoe were
manually verified as color matches or not. The similarity mea-
sure achieved an accuracy rate of 95%, indicating the success
of our color feature construction and similarity matching.

While this is an extremely promising result, we sought
to make color classification even more robust by taking into
account the frequency of each color appearing in each image.
For example, a shoe that is mostly red with blue highlights
should not necessarily return a shoe that is mostly blue with
red highlights as a top match. To try to achieve this proper
weighting, we recomputed all the color cluster centers and
also stored their frequencies in the image to file. Then, we
multiplied in the absolute value of the difference of frequencies
between color centroids as a part of our similarity score
computation; that is, if shoe 1’s first centroid has a frequency
of 75% and shoe 2’s first centroid has a frequency of 70%, we
will weight the Euclidean distance between shoe 1 and shoe 2’s
first centroid by 0.05. In practice, this actually didn’t do very
much to our results, although it did occasionally eliminated
extraneous results. We also experimented with transforms
into the HSV color space, which is an alternate cylindrical-
coordinate-space transform of color [4]. Again, the effects of
this were negligible on our algorithm, and thus we decided to
stick with the aforementioned approach.

E. Final Algorithm

After identifying these features and optimizing their ex-
tractions, we worked to develop our algorithm to compare
shoes based on the similarity of these features. Initially, we
hypothesized that our data and the problem that we were
attempting to solve would inherently lend itself to a clustering
algorithm based on the features of each shoe because it would
allow us to find the intrinsic “groupings” or structure in the
data, if it existed. Unfortunately, we quickly discovered that
such a structure did not seem to exist. Our attempts to run
k-means on our feature set yielded very poor results as the
clusters determined did not result in recommendations that
humans would label as similar shoes and instead resembled
what seemed to be an almost random assortment of shoes. As
a result, we abandoned clustering in favor of a filtering-based
system for determining similarity that leveraged a combination
of the features that we extracted, as outlined in Algorithms 1, 2,
and 3.

In summary, our final algorithm relies on precomputed
shape and texture classes for each image in our dataset (which
we store on file). When an image is supplied to the algorithm,
it is resized and reshaped to proper dimensions and classified
based on the shape and texture SVMs, using the feature vectors
detailed in Section III (i.e., bounding box for shape and BoW
+ SIFT for texture). We then filter out any images in our
dataset that aren’t shape matches for our input shoe due to
the high classification accuracy of our shape classification
system. Subsequently, we discount the scores of shoes that
do not match the image’s texture classification to account for
the lower classification accuracy of our texture classification
system. We then utilize our mask-based and LBP-based shape
and texture algorithms to further prune the results, filtering out
poor image mask matches and poor LBP matches. Finally, we
apply our color matching algorithm (i.e., CIEL*a*b* Euclidean
distance with frequency weighting) on what is left in our result
set, returning the top 10 closest matches.

Algorithm 1: Shoe Recommendation Algorithm
1 load image % Shoe image
2 load image mask % Shoe mask
3 shape SVM ← computeShapeSVM
4 texture SVM ← computeTextureSVM
5 for each shoe 6= image and
shape SVM [shoe] == shape SVM [image] in
dataset do

6 if texture SVM [shoe] == texture SVM [image]
then

7 shape scores[shoe]←
nonzero(image mask − shoe mask)

8 else
9 shape scores[shoe]←

0.9× nonzero(image mask − shoe mask)

10 for each shoe in top fourth of shape scores by num
of shoes in the same cluster center do

11 texture scores←
compareHist(image LBPs, shoe LBPs)

12 for each shoe in top third of texture scores do
13 overall scores←

∑
(color distance)2

14 print top 10 shoes from overall scores

Algorithm 2: Compute Shape SVM
1 load images % Images in sample
2 load labels % Classification lables
3 load bboxes % Bounding box data for images
4 for each shoe in images do
5 data[shoe]← bboxes[shoe]

6 return train(data, labels)

IV. EXPERIMENTAL RESULTS

For all unsupervised aspects of our algorithms, we mea-
sured the accuracy for a randomly selected sample of 400

7

Algorithm 3: Compute Texture SVM
1 load images % Images in sample
2 load labels % Classification lables
3 for each shoe in images do
4 descriptors[shoe]← SIFT (shoe)

5 centroid, klabels = kmeans(descriptors, 1000)
6 counter = 0
7 for each shoe in images do
8 temp = counter
9 for each j in

xrange(temp, temp+ len(descriptors[shoe]) do
10 histograms[shoe][klabels[counter]]+ = 1
11 counter+ = 1

12 histograms[shoe, :]/ = len(descriptors[shoe])

13 for each shoe in images do
14 data[shoe]← histograms[shoe]

15 return train(data, labels)

shoes as this represents a statistically significant sample size at
the 95% confidence level with a 5% confidence interval. For
supervised aspects of our algorithm, we directly computed the
accuracy.

A. Shape

As described in Section III, our shape classification accu-
racy improved from 55% to 94.6% over four iterations upon
our algorithmic approach. The approaches and accuracy rates
are showcased in Table I.

TABLE I. SHAPE CLASSIFICATION ACCURACY BY METHOD

Method Accuracy
pixel-based k-means clustering 55%

pixel and prototype-based k-means clustering 75%
mask and prototype-based k-means clustering 80%
RBF SVM classification of bounding boxes 94.6%

An intriguing set of considerations during our work were
the effects that the number of classification categories and the
SVM kernel choice had upon our results. In our assessment
of the support vector machine-based technique, we considered
three different sets of shape classifications for our dataset. The
first set of labels contained the following 10 degrees: athletic
shoe, converse-type shoe, boat shoe, high-top sneaker, slipper,
dress shoe, casual sneaker, boot, sandal, and other. The second
set of labels contained the following 5 degrees: low-top shoe,
high-top shoe, sandals, boots, and other. And the third set of
labels contained the following 3 degrees: low-top, high-top,
and other. The accuracies of these three labeling approaches
are summarized in Table II.

TABLE II. SHAPE CLASSIFICATION ACCURACY BY LABELS

Method Accuracy
10 degrees 54%
5 degrees 94.6%
3 degrees 90.5%

As such, we realized that there was a trade-off between
the granularity of the classifications and the accuracy of our

algorithm. The labels with 11 degrees had a high level of
granularity, but a low accuracy rate, while the labels with 5
degrees had a lower level of granularity, but a significantly
higher accuracy rate. As we felt that the labels with 5 degrees
captured the granularity that we needed for the purposes of our
recommendation system, we decided to move forward with the
labeling scheme.

Another major decision that we had to make in the com-
putation of our final accuracy measure for the support vector
machine-based shape classification approach that we employed
was the type of kernel that we would utilize in our SVM.

Fig. 9. The accuracy rates in shape classification across RBF, 3-degree
polynomial, sigmoid, and linear kernels.

From the results in Figure 9, we can see that the radial basis
function kernel outperforms the three other kernel choices that
we considered. This makes sense as the radial basis function
kernel defines a much larger function space than the other
kernel choices. This makes it far more flexible by allowing it
to model far more functions with its function space than the
sigmoid, linear, and polynomial kernels that we assessed.

B. Texture

As mentioned in Section III, we were able to increase the
texture classification accuracy from less than 25% to about
80% by iterating upon our algorithm and testing a variety of
algorithmic approaches. These approaches are summarized in
Table III.

TABLE III. TEXTURE CLASSIFICATION ACCURACY BY METHOD

Method Accuracy
KL-divergence on LBP histograms 25%

Spatial Pyramid Matching on LBP histograms 65%
RBF SVM classification of SIFT-generated BoW models 80%

As in our assessment of support vector machine-based
classification for shapes, we also assessed the number of
degrees in our labelings in our classifications for textures. We
tried two labeling schemes. The first labeling scheme had 7
degrees, namely cloth, mesh, leather, suede, rubber, canvas,
and other. The second labeling scheme had 3 degrees, namely
mesh/athletic, leather, and other. The performance of these two
schemes is captured in Table IV.

Once again, we noticed a trade-off between granularity
and accuracy. Valuing accuracy in our recommendation system
and realizing sufficient granularity in the three-degree labeling
scheme, we decided to move forward with that approach in
our final algorithm.

8

TABLE IV. TEXTURE CLASSIFICATION ACCURACY BY LABELS

Method Accuracy
7 degrees 58%
3 degrees 80%

As in our shape classification, a support vector machine
using a RBF kernel yielded the best results. These results are
shown Figure 10.

Fig. 10. The error rates in texture classification across RBF, 3-degree
polynomial, sigmoid, and linear kernels.

C. Color

As described in Section III, when assessing a randomly-
selected, statistically significant sample, we manually veri-
fied the top-10 outputted results as color matches or not.
Through this process, the color feature accuracy was assessed
to be about 95%, indicating successful color feature extraction
through our clustering and (L*a*b*) color space conversion-
based approach.

D. Overall

Because of the unstructured nature of this problem, deter-
mining a system for measuring the accuracy of our recommen-
dation engine was not possible in a traditional sense. Thus, in
order to appropriately evaluate our system, we calculated accu-
racy by simulating the way a user might judge the accuracy of
our system. To do this, we ran through a randomly selected,
statistically significant sample of images in our dataset and
examined the 10 best matches for each of these images. We
then judged each of the recommendations on whether it closely
matched the original shoe in each category of shape, color and
texture, and computed a score from 0-10 for each of these
categories based on the number of shoes in the top-10 that
closely matched the original shoe in the respective category.
In other words, for each category of each image, we had a
score that was x

10 where x was the number of recommended
shoes that closely resembled the original shoe’s traits in that
category. We then averaged the ratings for all the shoes in order
to receive an accuracy score for our algorithm in suggesting
similar textures, colors, and shapes. Thus, in total, our accuracy
for each attribute was computed as shown in Equation 8.

∑
recommended shoes that matched category∑

total recommendations
(8)

Using this method, we were able to determine our rec-
ommendation engine achieved 96% accuracy in suggesting
similarly shaped shoes, 94% accuracy in suggesting similarly
colored shoes, and 88% accuracy in suggesting similarly
textured shoes. Figure 11 demonstrates a standard output from
our recommendation system.

Fig. 11. This is a randomly selected output of our recommendation system
where the shoe on the left is the original image that the user queried and the
3 shoes on the right are the top-3 recommended shoes.

E. Dealing with Noise

We also worked on experimenting with noisy images in
our analysis. We first wrote an algorithm that would be able
to extract a shoe from a noisy image and white out the
background by once again leveraging a thresholding function
like the one in Equation 1 and using OpenCV’s external
contour detection functionality and were able to convert images
taken from a smartphone camera as show in Figure 12.

Fig. 12. This is shoe that has been converted to a form that can be used by
our recommender system.

This approach worked fairly well, but also depended on the
shoe being of a relatively dark color to find its largest external
contour and did not perform all that well on light-colored shoes
as a result. We then ran this image in our recommendation
system and had mixed results as shown in Figure 13.

Fig. 13. This is the output of putting the noisy shoe image through our
recommendation system.

These results were promising in that they had the correct
color recommendations and generally had the correct shape
recommendations. However, they were problematic in that
the texture of the noisy shoe image had been misclassified
as “leather.” As such, only leather shoes were returned by
our recommendation engine, while the original shoe was
actually had a “meshy/athletic” texture. This seemed to have
been the result of illumination that was inconsistent with the

9

standardized illumination in our clean Zappos dataset. As such,
we decided to make our algorithm more flexible and stopped
completely filtering out results that didn’t match our texture
SVM-based classifications by adding the discounting factor
mentioned in Section III. Doing this resulted in the far more
promising results depicted in Figure 14.

Fig. 14. This is the output of putting the noisy shoe image through our
recommendation system with our modified algorithmic approach.

While our current algorithm does a fair job at generating
results with a reasonable amount of shape and color accuracy
for user-generated, noisy images, there is still work to be done
to better capture the texture of such images. That said, based
on previous work and our own experiences while working on
this project, we realize that near-perfect texture classification
is something that should be worked towards, but is extremely
difficult to achieve. As such, these results were quite promising
in that they suggest that we should work towards making
our algorithm even more flexible and heuristic-based than it
is right now to avoid a missed texture classification resulting
in poor results when the rest of our algorithm is performing
well. Moving forward, our algorithm needs to be made more
robust to deal with variance in rotation, illumination, scale,
and translation more effectively.

V. CONCLUSIONS

As alluded to in Section IV, our results are encouraging in
that they suggest that we have developed a successful approach
to address this problem. Not only do we have high accuracy
rates for classifying clean datasets, but we have also been
able to parlay some of this success to make our algorithmic
approaches compatible with noisy, user-generated images, a
key component of this problem moving forward if we want it
to eventually become a consumer-facing application.

That said, we certainly have room for improvement.
Though it may be difficult to significantly improve upon the 4-
12% recommendation error rate in our three feature categories,
we can improve our overall algorithm by making it more
flexible. This can be seen in the results of Section IV-E,
as making our algorithm more flexible gave us fairly good
results despite a textural misclassification. Our rationale behind
making this change is that the SVM-based texture classification
accuracy of our algorithm is approximately 80%. Since this
isn’t 100% accurate, we thought that employing a weighting
scheme to different textural classifications instead of strictly
filtering on the basis of these classifications, would ensure
that an incorrect classification wouldn’t completely prevent the
final recommendations from being accurate.

Additionally, our algorithms are not yet robust to a high
degree of variability and cannot be deployed in a setting where
users can input extremely noisy images. Our initial results upon
trying to tackle noisy datasets have been promising and we
are excited to continue making our system more flexible and

robust. To do so, we need to reevaluate the ways in which we
extract and assess different features from our images as we
need to be conscious of images with inconsistent illumination,
positioning, scale, and orientation. Our algorithm for shape
feature detection is dependent on orientation as our algorithm
demands contours of the left view of leftshoes. Furthermore,
our algorithms for color and texture are dependent on lighting
and would require image orientations similar to those in our
dataset for any sort of reasonable comparison between two
images. To address these issues, we will work on normalizing
for illumination and potentially analyzing more views of a shoe
than just the left view to be able to account for images of shoes
that have a different orientation.

We are pleased with our progress thus far and look forward
to further enhancing our work. In the coming quarter, we want
to focus on dealing with noisy images and building a mobile
application with this technology that people can use to help
them shop in the brick-and-mortar setting and feel that CS
231M would be a good setting for us to continue building out
this technology.

ACKNOWLEDGMENT

We would like to thank the CS 231A course staff for all
of their support, advice, and encouragement throughout the
course. We especially appreciate the assistance of Professor
Silvio Savarese and CS 231A Head TA, Kevin Wong, for all
of their extremely helpful insights to improve the algorithmic
approaches that we employed in our project.

REFERENCES

[1] Bag of Words Model. http://cs.nyu.edu/ fer-
gus/teaching/vision 2012/9 BoW.pdf.

[2] Basic Thresholding Operations - OpenCV Documentation.
http://docs.opencv.org/doc/tutorials/imgproc/threshold/threshold.html.

[3] CIELAB Color Models Technical Guide.
http://dba.med.sc.edu/price/irf/Adobe tg/models/cielab.html.

[4] HSV. http://www.cs.rit.edu/ ncs/color/t convert.html.
[5] Kaleidoscope. http://kalei.do/.
[6] lbp.h File Reference. http://www.vlfeat.org/api/lbp 8h.html.
[7] Modista. http://modista.com/.
[8] National Shoe Retailers Association.

http://www.nsra.org/?page=About Us.
[9] OpenCV Histogram Documentation.

http://docs.opencv.org/modules/imgproc/doc/histograms.html.
[10] SciPy Cluster VQ Kmeans Documentation.

http://docs.scipy.org/doc/scipy/reference/generated/
scipy.cluster.vq.kmeans.html.

[11] A. BORRAS, F. TOUS, J. L., AND VANRELLD., M. Classification of
clothing using midlevel layers.

[12] B. WILLIMON, I. W., AND BIRCHFIELD., S. Classification of clothing
using midlevel layers.

[13] PING CHUAN WANG, STEPHEN MILLER, M. F. T. D., AND ABBEEL,
P. Perception for the manipulation of socks.

[14] S. LAZEBNIK, C. S., AND PONCE., J. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, New York, June 2006, vol. II, pp. 2169-2178.

10

