Synthesizing the Physical World with the Virtual
World: Computer Vision for Augmented Reality
Applications

Matt Vitelli
Department of Computer Science
Stanford University
Stanford, CA
mvitelli @stanford.edu

Abstract—The purpose of this project was to create an
augmented reality system for commodity smartphones. Users
gather a variety of images for a given scene and a room layout is
computed from the stream of images. Once the layout has been
computed, the lighting within the scene is estimated for photo-
realistic rendering. The room layout provides support surface
constraints for the virtual world, allowing users to interact with
the virtual world and place virtual objects within the scene.

I. INTRODUCTION

Augmented Reality (AR) technology has received in-
creased attention in recent years. Due to the proliferation of
commodity smartphones and improvements in mobile hard-
ware, we now have mobile devices capable of performing
computationally demanding tasks, such as image processing
and graphics rendering in real-time. While the hardware has
improved, the general methods for compositing virtual objects
have remained fairly similar to the approaches used in the
late 90’s, relying on known 3D shape priors to detect the
camera pose with respect to an established reference point.
The goal of this project was to use the methods of Furlan et
al [1] to estimate the scene layout and camera position for use
in augmented reality applications. Once the room layout and
camera poses have been established, users are able to interact
with the virtual world and overlay virtual objects on top of the
physical world observed by their camera.

II. PRIOR WORK

The prior work related to this project has primarily focused
on camera pose acquisition or room layout inference, with
augmented reality posed as a secondary goal. The task of
identifying the pose of a camera with respect to some world
reference frame has been extensively explored in the computer
vision community. Most methods can be broken down into
one of two categories: approaches that make use of semantic
information regarding the scene, and those that do not. Among
the non-semantic techniques, common approaches attempt to
localize a known marker (e.g. a checkerboard, QR codes)
and minimize the reprojection error between the observed 2D
points and their 3D correspondences [7]. More sophisticated
approaches utilize structure-from-motion (SfM) techniques and
estimate camera poses by decomposing the essential matrix,
which is obtained by point correspondences across consecutive

Saumitro Dasgupta
Department of Computer Science
Stanford University
Stanford, CA
saumitro @stanford.edu

Ayesha Mudassir Khwaja
Department of Electrical Engineering
Stanford University
Stanford, CA
aysh@stanford.edu

images. Recent methods such as [4] perform a combination
of localization and dense reconstruction in parallel, using the
intermediate reconstruction as a model to aid in localization.
While these non-semantic techniques are general, in practice
they often fail to generate dense reconstructions of the scene
and are sensitive to noise and outliers during the localization
phase. To overcome this, and also simplify the problem,
semantic techniques are used that make assumptions about the
indoor layout and attempt to find a layout model that fits the
scene. A common assumption is that most indoor environments
obey the Manhattan world assumptions. In [6], the indoor
layout is modeled as a box parameterized by 4 variables
corresponding to the angles from the horizontal vanishing
points.

III. SYSTEM ARCHITECTURE

To accomplish the task of indoor room augmentation, we
developed a system that runs on commodity smartphones. The
overall system architecture is displayed as a flow chart in
figure 1. The system is composed of two key components -
offline layout estimation and the real-time augmented reality
application.

A. Image Acquisition

The user initiates the process by using our mobile app
to capture a video of an indoor scene. These video frames
are analyzed by a heuristic that automatically selects frames
suitable for use with structure-from-motion estimation. This
heuristic works by first detecting ORB [5] keypoints in each
frame and matching them against the last selected frame. If a
sufficient number of matches are detected, we verify that the
disparity is sufficiently large between the two frames. Finally,
we compute the fundamental matrix as well as the homography
for these two frames and compare the number of inliers for
each transformation, as determined by RANSAC. The decision
to preserve/reject the frame is then arrived at using:

preserve
reject

if |Inliers(F")| > C,, - [Inliers(H)|

decision = .
otherwise

B. Offline Layout Estimation

The images acquired in the previous stage are fed into
the structure-from-motion pipeline. The resulting point-cloud
from the structure-from-motion pipeline is often noisy and
sparse, due to the limited number of images gathered and the
complexity of the indoor scene. To combat this and provide a
simpler parameterization for the final room layout, we make
use of the methods of [1] and use RANSAC to estimate the
planes passing through strong support surfaces such as the
ceiling, the floor, and the walls in the image. These serve as
the candidate layout components for the room and using the
particle filter optimization procedure proposed in [1], we are
able to hypothesize a box shape for the room structure.

C. Lighting Estimation

Once a plausible room layout has been generated, we
estimate the lighting parameters for the scene. The process
for this is largely based on the approach of [3], however our
method benefits from using estimates across multiple views
and does not require any user-interaction to provide initial
estimates for the lighting or scene geometry. The process for
estimating the lighting from a sequence of images is described
as follows (figure 3: first we perform the Color-Retinex method
[2] to decompose each image used for the room layout into
the product of two images an albedo image and a grayscale
shading image describing the lighting in the scene. The Color-
Retinex method works by estimating the partial derivatives
of a log-intensity function describing the change of lighting
within a scene. Since lighting is largely constant across flat
surfaces, many of the partial derivatives will be zero, with
non-zero entries occurring at surface discontinuities. We can
form a system of linear equations of the form Az = b,
where x represents the log-intensity function, A represents a
matrix that computes a finite-difference approximation of the
partial derivatives of x, and b represents the estimated partial

Mobile

[Acquisition J

[Rendering / AR]

Server

[Structure from Motion

v

Room Inference]

v

[Layout Estimation

v

Lighting Estimation]

Fig. 1. Overview of System Architecture

derivatives of the log-intensity function. By solving this system
of linear equations, we are able to obtain an estimate of z,
the log-intensity function representing the shading image.We
obtain the albedo map by dividing the original image B by e*
and normalizing the resulting albedo map so that all values in
it lie between 0 and 1.

In addition to computing the albedo, we must also some-
how account for the indirect illumination within the scene.
Fortunately, because we have access to both coarse scene
geometry and the original images of the scene, this turns
out to be fairly straightforward. First, we discretize the room
geometry into a number of tiny patches. Each patch represents
an approximation of the indirect irradiance in the scene and
we compute this indirect irradiance hitting a patch by using a
gathering variant of the radiosity equation. For each patch, we
generate a number of rays distributed around the hemisphere
of the patch’s surface normal. These rays are then intersected
with the scene geometry and projected into the camera images
used for Structure-from-Motion. We weight each pixel sampled
within each image by the cosine of the angle between the
sample’s ray and the patch’s surface normal. As the number
of patches shrinks to infinity and the number of samples grows
to infinity, this approximation is equivalent to the integral in
the radiosity equation.

After computing the indirect irradiance map, we are able to
cancel out the effect of indirect illumination by the following
equation:

D=DB—pT

where D represents the direct lighting image, B represents
the original image, p represents the albedo estimates from the
Color-Retinex method, and 7" represents the indirect irradiance
image. We compute direct lighting images for each of the
original images used for Structure-from-Motion. With the
direct lighting, albedo images, and geometry estimates, we
are able to set up a non-linear least-squares optimization in
which we seek to minimize the summed squared error between
our synthetic lighting model and our direct lighting estimates.
This optimization is quite general and nearly any collection of
relatively simple lighting models can be used, as long as they
contain only a small number of parameters. For the purposes
of this project, we assume that nearly all indoor scenes contain
either a single point-light or spotlight that accounts for most of
the light within a scene. While this assumption does not hold
true in general, in practice these simplified models perform
quite well and users are usually not very sensitive to small
changes in illumination. After the optimization is complete,
we have a collection of lighting parameters that can then be
used for real-time rendering.

D. Real-Time Application

The server returns the best candidate room layout, lighting
parameters from the lighting optimization procedure described
earlier, estimates for the camera intrinsics, and poses for each
of the images used for reconstruction. The box is encoded
by the eight vertices corresponding to each corner of the
box. Once the room layout has been estimated, the user can
launch the augmented reality application on their phone and
begin interacting with virtual objects. The augmented reality
application is written in Unity 3D, a popular game engine used

by independent game developers and large commercial compa-
nies. The real-time application takes the box structure, intrinsic
parameters, and pose estimates for a given view as an input
and outputs a rendered scene of the augmented reality world
from a physically accurate perspective (i.e. the virtual world
is rendered from the same perspective as the real camera). To
accomplish this, we must transform the intrinsic parameters
expressed in pixels to homogeneous device coordinates in
OpenGL. To perform this, we convert the intrinsic matrix as
follows:

[v ca
KSfM: 0 ﬂ Cy
0 0 1
—2a 2 Cx

= 12 0

i % g

K = -n

o0 o

L 0 0 -1 0

where K¢y denotes the intrinsic matrix estimated from
the Structure-from-Motion pipeline, K, denotes the intrinsic
matrix used by OpenGL, n and f are the distances to the
near and far planes, while w and h are the width and height
respectively.

The third and fourth rows are required for hardware ras-
terization and the third row takes the virtual camera’s far
and near clip planes into account. The non-zero terms are
necessary for depth values to be properly mapped to the Z-
buffer. Depending on the representation of screen coordinates
in the graphics display, the second row of the matrix may
be negated. This corresponds to how the graphics display
defines the display origin - either by defining it from the upper-
left corner or the bottom-left corner, respectively. In addition
to transforming the intrinsic matrix, we must also transform
the extrinsic parameters of the camera to align with Unity’s
coordinate frame. Since the room layout inference encodes
the box and pose coordinates in a right-handed coordinate
system but Unity encodes its coordinate frame in a left-handed
coordinate system, a transformation is needed to convert the
right-handed coordinate frame into a left-handed coordinate
frame. To accomplish this, we transform the camera’s rotation
matrix by 7 radians in the X direction and -7 radians in
the Z direction. In addition, we also negate the camera’s X
position to align with the transformed right vector. It should
be noted that the choice of these transforms is arbitrary
and the reasoning behind choosing this transform is entirely
dependent on how the augmented reality application chooses
to define the axes of the world coordinate frame. In the case
of Unity’s representation of the world coordinate frame, this
transformation happens to be appropriate.

E. Using Support Surfaces for Augmented Interactions

To model the augmented reality interactions between the
virtual world and the physical world, we use the supporting
surfaces from the box layout to constrain the placement of
objects to lie along one of the planes corresponding to the
box. We project a ray from the current camera pose to the
environment and find the nearest intersection between the box
and the camera. This nearest intersection lies along one of the

Fig. 2. The estimated layout overlayed on top a static frame. The test model
can be interactively positioned anywhere within the room by the user.

box’s walls. Once we have found the nearest intersection, we
transform the user’s virtual object’s pose to be centered at the
intersection point with the up vector aligned to the support
surface’s normal direction. This allows users to interact with
the scene and construct virtual worlds on top of the physical
world (see figure 2.

F. Physical Material Augmentation

An interesting application of our pipeline is that it offers
users the ability to not only insert virtual objects into the scene,
but also augment the physical materials of the original scene. A
wall or floor can be digitally re-textured using the combination
of geometric and image-based cues. To accomplish this, we
project the albedo maps from each image onto the room’s
geometry. At each point on the room’s geometry, we have a
color value representing the average albedo from all images.
Since most albedos tend to be fairly constant in their brightness
and color responses, they are easy to segment reliably. By
segmenting the albedo colors for each face, we are able to
build a collection of alpha-masks that users can use to blend
between the original scene’s materials and a set of augmented
materials. Using this approach, we can transform simple scenes
such as a conference room or lounge into fantastic scenes such
as medieval dungeons or futuristic cityscapes. An example of
this can be seen in figure 4.

IV. RESULTS

Figure 2 shows a screenshot of our AR app running on an
Apple iPad. The estimated layout overlayed on the scene from
which it was generated. The virtual model in the foreground
can be interactively positioned anywhere within the room by
the user

The images shown in figure 4 demonstrate the renderings
produced by the augmented reality application from the esti-
mated room layout. While the rendered results demonstrate
a 1-1 correspondence with the estimated layout, our room
layout inference algorithm does not always produce physically
plausible layouts from the set of input images. Generally,
the inference algorithm tends to produce realistic layouts for
simple, clutter-free scenes where at least three support surfaces

are directly visible. Because our inference algorithm makes use
of the Manhattan world assumptions, the algorithm struggles
with rooms with complex geometry and multiple support
surfaces that are not orthogonal to one another.

V. FUTURE WORK

The work presented in this paper scratches the surface of
what is possible in virtual augmentation. There are a variety of
directions we could take to improve the current system. Some
of the most prominent ideas for improvements are as follows:

A. Real-Time Pose Estimation

While our system produces reliable estimates for the sup-
port surfaces of a room from a number of images, currently
only the images used in the structure-from-motion pipeline can
be augmented. One possible improvement would be to perform
camera pose estimation in real-time and provide users with the
ability to view virtual scenes from a variety of perspectives.
Using the images with known poses from the structure-from-
motion pipeline, we could establish point correspondences
between the images with known poses and live camera pose,
allowing us to infer the pose of the live camera.

B. Real-Time Layout Refinement

In addition to estimating the camera pose in real-time, we
could also use the live pose estimates to refine our structure-
from-motion reconstructions. From these, we could use the
improved structure-from-motion point-cloud to establish better
candidate components and infer a more accurate box layout for
the scene.

C. Improved Support Surface Modeling

One possible extension to this project is to provide a
more accurate representation of the room and model additional
support surfaces within the scene. Rather than simplifying the
room representation as a box, we could also model the geom-
etry contained within the room, such as tables, couches, and
chairs. By modeling these additional support surfaces, we can
provide more realistic interactions between the virtual world
and the physical world. In addition, knowing the placement of
common household objects and their support surfaces could
provide additional information for the room layout estimation
pipeline, possibly providing more accurate estimates of the
room structure (e.g. couches are usually against walls and
tables must be supported by the ground plane). There are a
variety of ways this could be accomplished. One method would
be to detect common household objects in 2D and fit the pose
of a known 3D model to the evidence observed in the image.
Another method would be to perform a dense reconstruction
of the room and use the reconstruction to provide constraints
for support surfaces.

VI. CONCLUSION

We developed a system for indoor augmented reality in-
teractions using room layout inference to establish support
constraints from the physical world. Unlike previous methods,
our method does not require estimation of the ground plane and
runs on a commodity smartphone. Because we only model the

primary support surfaces of the room, we are able to provide
realistic interactions from only a small handful of images
and overcome the need for a full dense reconstruction of the
physical scene.

VII. ACKNOWLEDGMENTS

We gratefully acknowledge Yingze Bao and Professor
Silvio Savarese for their valuable help and feedback on this
project and providing us with the resources to make this project
possible.

REFERENCES

[1] FURLAN, A., MILLER, S., SORRENTI, D. G., FEI-FEI, L., AND
SAVARESE, S. Free your camera: 3D indoor scene understanding from
arbitrary camera motion. In British Machine Vision Conference (BMVC)
(2013), p. 9.

[2] GROSSE, R., JOHNSON, M. K., ADELSON, E. H., AND FREEMAN,
W. T. Ground truth dataset and baseline evaluations for intrinsic
image algorithms. In Computer Vision, 2009 IEEE 12th International
Conference on (2009), IEEE, pp. 2335-2342.

[3] KARSCH, K., HEDAU, V., FORSYTH, D., AND HOIEM, D. Rendering
synthetic objects into legacy photographs. ACM Transactions on Graph-
ics (TOG) 30, 6 (2011), 157.

[4] NEWCOMBE, R. A., LOVEGROVE, S. J., AND DAVISON, A.J. Dtam:
Dense tracking and mapping in real-time. In Computer Vision (ICCV),
2011 IEEE International Conference on (2011), IEEE, pp. 2320-2327.

[5] RUBLEE, E., RABAUD, V., KONOLIGE, K., AND BRADSKI, G. Orb: an
efficient alternative to sift or surf. In Computer Vision (ICCV), 2011
IEEE International Conference on (2011), IEEE, pp. 2564-2571.

[6] SCHWING, A. G., AND URTASUN, R. Efficient exact inference for 3d
indoor scene understanding. In Computer Vision-ECCV 2012. Springer,
2012, pp. 299-313.

[71 ZHANG, Z. A flexible new technique for camera calibration. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 22, 11 (2000),
1330-1334.

Base Image Indirect Lighting

Albedo & Shading

.

Direct Lighting

Non-linear Least Squares

Fig. 3. An overview of the lighting estimation pipeline. Images are
decomposed into albedo and shading components and an approximation of
the scenes irradiance is computed. These estimates are used to approximate
the direct lighting in the scene, which is then used to optimize parameters for
the scene lighting model.

Physical Material Augmentation

Fig. 4. The final composited image of the virtual and physical scene.

