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Abstract	
  
A method for simple stereo vision reconstruction is proposed specifically for use in a 
developmental environment for image guided radiation therapy.  The method employs feature 
matching, fundamental matrix calculation to narrow matches and image rectification as 
precursors to an auto-calibration implementation.  Experiments showed that the method still 
requires significant improvement before it is useable while also offering important insight into 
the necessity of increasing the match-able features in the acquired images. 

1.	
  Introduction	
  
Radiation therapy has been utilized for decades in treating cancer.  The most common form of 
radiation therapy delivery is known as external beam radiation therapy in which a medical linear 
accelerator is used to deliver high-energy photons to a targeted region within a patient's body.  
The delivery of the radiation is carefully planned to deliver sufficient radiation to eradicate 
malignant cells while sparing healthy tissue as much as possible.  The success or failure of 
therapy depends heavily on the patient being in the correct position during treatment.  To this 
end, a host of techniques have been employed to ensure proper alignment between the patient’s 
actual and planned location.  These techniques include patient immobilization, x-ray imaging and 
most recently optical tracking technologies.   

Over the last two years an optical tracking system known as Vision RT has been clinically 
implemented.  The system utilizes a set of ceiling mounted 3D cameras to create a surface 
corresponding to the patient.  This surface is then registered (aligned) to the patient planning CT 
and the position is compared to ensure that the patient is in the correct location and remains there 
throughout the duration of the treatment. 

As we work to extend the capabilities of these types of systems it would be extremely useful to 
have available a simple 3D reconstruction algorithm that would be able to reconstruct stereo 
views without extensive calibration.  This would be particularly useful as we work with different 
systems within the room.  Therefore the goal of this project is to develop a method to quickly 
and simply reconstruct stereo views from previously recorded image sequences. 



2.1	
  System	
  Requirements	
  and	
  Challenges	
  
The main role of this algorithm is to allow us to quickly asses the value of some of the 
techniques for monitoring radiation therapy that we are investigating in our lab.   Since time in 
the therapy rooms is limited to after hours and weekends, it is necessary for us to be able to set 
up an experiment, collect data and remove our equipment from the room all within a matter of a 
few hours (unless we want to stay either all night or all weekend).   Additionally, in most cases, 
we only have one camera available.  This means that we have to set up a scene, image it from 
one location, move the camera and image it again.  In addition to the necessary mobility of the 
setup, it is also very constrained in terms of space, as the treatment rooms are relatively small 
and somewhat cluttered. Taken together, these factors make it infeasible to perform calibration 
using many of the techniques generally employed in the computer vision world.  Many of these 
rely on simultaneous capture of images from two cameras and the use of carefully placed 
calibration grids.  It would be ideal if an algorithm could estimate a 3D reconstruction from two 
views without any additional information. 

The major challenges of working with camera systems, specifically lighting and image quality, 
are greatly magnified when working in radiation therapy rooms.  In most instances, light levels 
are kept relatively low for the comfort of patients.  In general therapists prefer to be able to 
adjust the light levels for each patient, introducing additional variation to the lighting levels in 
the room.  Additionally, for some of the specific applications in our lab, it is necessary for us to 
detect very small amounts of light.  The result is that we often operate with an extremely large 
aperture setting (sometimes as low of f/0.95) and high gain on our cameras.  The result is that our 
images often have a very narrow depth of field and contain significant amounts of noise.  Also, 
factors other than overall image quality often dictate the exposure settings used for the camera.  
Hence, it is not uncommon for the images to generally be either slightly under-exposed.  This 
combined with the fact that the scenes we are interested in are either highly uniform or have 
repetitive patterns makes any sort of image processing difficult, but especially attempts to 
perform reconstruction. 

2.1	
  Review	
  of	
  Previous	
  Work	
  
As stated above, Vision RT is a commercially available system made up of two ceiling mounted 
3D cameras and software to locate and track patients during radiation therapy.   While the system 
is certainly capable of much more, the current clinically available functions include patient 
alignment and tracking of patient motion to ensure that the patient remains within a specified 
envelope during treatment.  If the patient moves outside of this envelope (a common example 
being that the patient starts coughing) the system detects this motion and halts the radiation 
therapy until the patient has returned to the specified envelope. 



Other optical tracking systems have also been employed to track the breathing motion of patients 
receiving therapy to regions of the body that experience significant movement during a breathing 
cycle (i.e. the lungs or adjacent organs, interestingly enough, lung cancer is one of the most 
common cancers treated with this type of therapy).  Many of these systems include a special 
marker/fiducial that is placed on the patient’s chest.  Some markers include infrared LEDs or 
highly reflective spots that enable them to be easily tracked by one or more cameras in the room.  
Since the goal of these systems is to simply estimate where the patient is in his breathing cycle 
(i.e. are the lungs full or empty), there is no need for 3D reconstruction.   

Finally, the simplest vision system that is actually required by law to be operational whenever a 
therapy session is active, is a basic video and audio feed of the room to the control console.  This 
enables the therapists (the individuals who actually operate the machines) to monitor what is 
going on inside.  There is some work being done (mentioned at a recent symposium, but not yet 
published) to implement computer vision techniques at this “whole room” level to identify and 
track things in the room in order to identify problems that a person might miss.  Errors include 
positioning the patient incorrectly, not installing or installing the incorrect accessory on the linear 
accelerator or leaving an object in a location where the linear accelerator will collide with it.  
Similar to the Vision RT system, this system would also be implemented using depth cameras. 

On the computer vision side of things, auto-calibration has been a field of interest for sometime 
(see Faugeras or Hartley).  Most methods involve either a structure from motion approach or 
utilizing a priori knowledge about the scene (for example utilizing known flat surfaces).  
However, all of these methods require relatively precise point location extraction and matching 
across views.  Given the specific challenges of our operating environment it seems safe to 
assume that the major challenge lies in obtaining sufficiently clean data to make use of one of the 
previous implementations. 

2.2	
  Improvements	
  
Our method will seek to identify robust and repeatable matches in the face of shallow depth of 
field and high noise images.  Originally within the scope of the project was the actual 
implementation of the auto-calibration.  However, as will become clear in the experiments 
section of this report, it became very clear that the project would be limited to feature extraction 
and matching. 

3.1	
  Overview	
  of	
  the	
  Technical	
  Implementation	
  
The general approach taken for feature extraction and matching was to  

1. Load and preprocess images in order to minimize the effects of noise and exposure 
settings 

2. Identify SURF features in the image 



3. Perform a first pass feature matching 
4. Utilize RANSAC and Fundamental Matrix estimation to refine matches 
5. Perform image rectification to evaluate the sufficiency of the matches 

While a more robust approach would certainly be to perform the full auto-calibration and 
compare results to a ground truth estimate, it quickly became evident that the algorithm was not 
performing well enough to justify this extended implementation.   

3.2	
  Technical	
  Implementation	
  Details	
  

Image	
  Collection	
  
Three images of a simulated treatment setup were acquired using a machine vision camera 
(Basler Inc.) equipped with a 50mm f/1.4 lens (Pentax).  The camera is equipped with a high 
speed 1” class CMOS sensor that has a resolution of 2048 x 2048 pixels.  The images were 
captured using the Pylon Viewer software provided with the camera (Basler Inc.).  The images 
used for the project are shown in Figure 1. 

   

  



  
Figure 1. Images acquired for the project. 

Initial	
  Evaluation	
  Algorithm	
  Development	
  
The first step taken in the project was to manually identify several correspondences across the 
acquired images and compute the fundamental matrix and epipolar lines.  By looking at the 
distance between the points and the epipolar lines, as well as observing the convergence of the 
calculated epipolar lines would offer us a quick check of how well later correspondences were 
performing.  We also implemented an affine structure from motion calculation using the 
factorization method presented by Tomasi and Kanade as it was our intent to utilize this later as a 
method to get a first of the camera matrices. 

Current	
  Implementation	
  
The following breaks down the method currently implemented in the project code.  The images 
are loaded and have the histograms equalized.  This increased the contrast of the images and 
improves feature extraction.  Next the images undergo a median filter to minimize noise.  There 
is a clear tradeoff between the minimization of noise the blurring of useful features in the image. 

Next SURF features are extracted from the image.  These features are then matched using a 
nearest neighbor algorithm that includes the nearest match ratio as a filtering parameter.  At this 
point we estimate the fundamental matrix and utilize RANSAC to eliminate outlier matches 
across the two images. 

Once the fundamental matrix has been calculated we can use it to perform an estimated 
rectification of the images.  We can then plot the correspondences and evaluate the performance 
of the algorithm by looking at the rectification and parallelism of the plotted correspondences. 

Once the images are rectified we search for additional correspondences using a semi-local block 
matching algorithm.  The results are displayed as a disparity map.  This offers a quick 
assessment of how well the algorithm can subsequently identify additional matches. 

Experimental	
  Implementations	
  
In order to increase the number of high quality matches passed to the RANSAC algorithm we 
implemented a stepped thresholding algorithm.  Essentially the images would be each be 
converted to binary images with all pixels above a certain value being converted to white and all 



those below converted to black.  We then extract features from these binary images (we tried 
SURF features and various corner extractors).  This process is repeated for several different 
threshold values and all of the points are passed to the matching algorithm. 

Another method that was implemented was an iterative approach to finding matches.  The 
current implementation above was essentially repeated using the disparity matches map matches 
as the input instead of the nearest neighbor SURF feature matches. 

4.	
  Experiments	
  
Figure 2 shows the results of the initially implemented “quick-check” algorithm using the 
manually identified correspondences.  Figure 3 is a simple representation of the calculated affine 
structure from motion 3D reconstruction of the images.  At this point in the process things 
looked fairly promising.  The epi-polar lines in Figure 2 appear quite reasonable and the 3D 
reconstruction, though rough appears true to life.  Average distances between points and epipolar 
lines were approximately 4 pixels. 

 
Figure 2. Correspondences and epipolar lines. 

	
  
Figure 3. 3D points reconstructed from correspondences. 

Figure 4 is an image of the initial SURF feature correspondences identified by the nearest 
neighbor search on the same images that the manual correspondences were extracted from.  



Figure 5 is a rectified view of the images showing the remaining correspondences after 
performing RANSAC.  It is fairly clear from these images that the number of surviving 
correspondences is too low.  It should also be noted that even at this highly selective level it is 
not uncommon to see a spurious match.  When one does occur, the outlier unacceptably skews 
the calculated rectification.  Also, the fundamental matrix obtained by this method differed 
significantly  (both in numbers and sign) from the one obtained with the initial test algorithm. 

Figure 6 is an image of the initial SURF feature correspondences for an image that contains 
calibration grids.  Figure 7 is a rectified version of the images similar to that shown in Figure 5.  
It is fairly clear that the changes to the scene, as well as a smaller baseline for the cameras, 
dramatically increases the ability of the system to identify correspondences.  

 
Figure 4. Initial nearest neighbor matches. 



 
Figure 5.  Estimated rectification and correspondences. 

 
Figure 6. Initial nearest neighbor matches. 



 
Figure 7. Rectified images with correspondences identified.  These images are consistent with rectified images produced by the 
Camera Calibration Toolbox for Matlab. 

It was found that a window size of 2 was optimal for the median filter.  Window sizes larger than 
this dramatically decreased the identification of SURF features.  The thresholding method did 
not yield a significant increase in the number of matches.  The iterative approach was extremely 
time consuming, but also did not yield a significant (if any) improvement in performance. 

Further experiments were performed to establish a baseline calibration for the images seen on the 
second row of Figure 1.  Using the Camera Calibration Toolbox for Matlab, the checkerboard 
patterns were manually identified and a calibration was performed.  The results were reasonable 
but included uncertainties of greater than 10% for each parameter.  This clearly indicates a need 
for further work improving either image acquisition or preprocessing. 

Also of note is that the affine structure from motion estimation consistently fails when applied to 
the correspondences identified with this method.  The results behave as if all of the 
correspondences lie on a single plane (only two “large” singular values are produced).  While we 
have been unable to determine whether this is a result of insufficient feature matching or a bug in 
the SFM code, it is clear that this portion of the code will need additional attention if it is to be 
used in further development. 

5.	
  Conclusions	
  
It is perhaps a minor understatement to say that the most prominent conclusion of this project is 
that it proved to be far more difficult than originally anticipated.  Initial experiments seemed to 
indicate that the method would perform well.  However when an attempt was made to automate 
the process of identifying correspondences, as was done in the initial experiments, it became 



quite clear that a great deal of additional attention needed to be focused on this portion of the 
process.  

While some progress has been made, we have yet to find a robust means of consistently 
identifying correspondences in an entirely unmodified scene.  Hence, for us, the biggest 
takeaway is that it is unfortunately necessary for us to increase the contrast of our scenes such 
that an algorithm can perform the identification (the alternative of course is to perform this 
manually as we did in the initial experiments).  We also plan on performing additional 
experiments to determine the range of baseline distances we can tolerate and which ones would 
be optimal. 

Going forward we plan on continuing to develop this project.  We may continue to experiment 
with additional preprocessing methods and finish implementing a full auto-calibration method.  
One potential method we may harness going forward is to carefully calibrate the camera in 
another setting using a checkerboard pattern in order to obtain a good estimate of the camera 
intrinsic parameters, and then utilize this to aid us in our auto-calibration routine.  One 
foreseeable challenge with this method is that changes in the focus of the camera lens cause 
changes in the intrinsic parameters.  We may consider calibrating the camera at different focus 
settings or simply lock the focus, calibrate the camera and adjust its location in the room to 
obtain the focus we need. 
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