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Abstract

Image classi�cation has been an important subject
in computer vision. The recent kaggle challenge pro-
vides an interesting dataset of galaxy images. The
goal is to build a predictive algorithm to extract in-
dicators for the galaxy morphologies as viewed in
human eyes. This provides a chance to test how
state-of-the-art computer vision and machine learn-
ing methods can be applied to understand a dataset
quite distinct from the well-tested scene/face/object
detection benchmarks in computer vision research.
We developed a pipeline combining multiple com-
puter vision feature detectors and machine learning
regression, and experimented the performance using
cross validation technique. Our results suggest that
features describing the global shape of the galaxy
gives better result then local interesting point detec-
tor, and that deep learning is a promising technique
for the challenge.

1 Introduction

The shape (or morphology) of a galaxy provides pow-
erful information on the physics of galaxy formation.
As the number and sizes of the telescopes increase,
the amount of available images of galaxy has quickly
exceeded the level analyzable by one single scien-
tist. To tackle this challenge, the physicists have
created the Galaxy Zoo project (http://www.galaxy-
zoo.org/), where galaxy images are classi�ed by
multiple online players through crowd sourcing [9].
With the large amount of galaxy images with hu-
man classi�cations from the project, it is now pos-
sible to create a prediction algorithm that automat-

ically classify the galaxy morphology using state-of-
the-art computer vision and machine learning tech-
niques. The Galaxy Zoo challenge is a recent kag-
gle competition (http://www.kaggle.com/c/galaxy-
zoo-the-galaxy-challenge) where online data scien-
tists attempt to create the best algorithm to con-
�dently classify the shape of the galaxy, based on
available data from Galaxy Zoo containing more than
60,000 human-classi�ed galaxy images as training set.
Equal amount of image classi�cations are held se-
cret as the test data. This challenge provides a
great opportunity to test the current image classi�ca-
tion approaches and to build an application that will
have important impact on advancement of physics
research.

2 Related Works

Image classi�cation has been a critical subject in
computer vision and has been widely studied. Multi-
ple algorithms have been developed to classify popu-
lar public image datasets including the MNIST digit
dataset, CIFAR tiny image dataset, Caltech 101
dataset, and ImageNet, which is the largest image
classi�cation dataset to date, including more than 14
million images. Various algorithms have been demon-
strated to be successful in these classi�cation tasks,
for example Size Invariant Feature Transform (SIFT),
shape context, Histogram of Gradients, deep convo-
lutional neural network, etc. However, these image
datasets and algorithms are targeted at the classi-
�cation of natural scenes and objects, which is dis-
tinct from the galaxy images we are focusing here.
A recent work in astronomical physics gives promis-
ing results (90% accuracy) in distinguishing between
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smooth galaxies and spiral galaxies using shape-based
features and arti�cial neural network. In this chal-
lenge, we will look at more complicated features, be-
yond just the spiral-ness of the galaxies, and test
the performance of state-of-the-art computer vision
methods on the galaxy dataset.

3 Methods

3.1 The Galaxy Zoo Dataset

The Galaxy Zoo dataset is provided by the kaggle
challenge. 61,578 galaxy images with human classi-
�cations are given as the training data, and 79,975
galaxy images, whose classi�cations are held secret,
are used as the test set to evaluate the performance
of the algorithm. Each galaxy image is an RGB im-
age of the 424× 424 pixels, with the target galaxy at
the center of the image.

For each galaxy image, a complex, decision-
tree-based questionnaire is asked to multiple users
through the Galaxy Zoo crowd sourcing project (Fig.
1). These questions guide the player to describe the
shape of the galaxy from a global view (e.g. smooth
vs. spiral, top view vs. edge view) to �ner features
(e.g. round vs. elliptical, number of spiral arms).
Brie�y, the users are asked to answer 11 possible
multiple-choice questions with 37 possible responses
in total. For each response, the percentage of users
selecting it is reported as the target value for the pre-
diction challenge. The goal of the kaggle challenge is
to develop a con�dent prediction algorithm to predict
the probability that a user selects a response, based
solely on the given galaxy image.

To evaluate the performance of the algorithm, the
root mean squared error (RMSE) across all 37 re-
sponses is computed as the single statistic for evalu-
ating the algorithm:

RMSE =
√

1
N

∑N
i=1(pi − ai)2

Here N is the number of galaxies times the total
number of responses, pi is the predicted value by the
algorithm, and ai is the actual value.

3.2 Overall Pipeline

To solve the prediction challenge, we developed an
algorithm pipeline consists of 3 parts: feature ex-
traction, machine learning regression, and probabil-
ity normalization. First, a feature vector that is
extracted from each galaxy image to represent the
characteristics of the image. Here we tested vari-
ous feature extraction methods widely used in com-
puter vision, and also developed a few new data-
speci�c feature extraction schemes. These meth-
ods include image color, PCA (Principle Component
Analysis), SIFT (Scale-Invariant Feature Transform),
HOG (Histogram of Oriented Gradients), etc. The
feature vectors from di�erent extraction schemes are
concatenated into one single vector for each image. I
then applied supervised machine learning regression
methods to predict the probability of each response.
Here we tested the simplest linear regression method,
the Ridge regression (a regularized linear regression
method), and random forest regression. Finally, to
ensure the predictions from the regression obeys the
probability constraints, i.e. the probability should be
a real number between 0 and 1, and the probability
for each question should sum to 1, I further normal-
ized the prediction. The details of each step of the
pipeline are discussed below.

3.3 Feature Extraction

3.3.1 Galaxy Center Color

As suggested by previous physics researches, the color
of the galaxy provide critical information on its for-
mation history, and therefore is a useful feature cor-
related with the galaxy morphology [1]. By visual
inspection of the data, we found that most of the
galaxies have uniform colors. Therefore we just used
the RGB values of the pixel at galaxy center to repre-
sent the color of the entire galaxy. Since our galaxies
have been centered in the image, we can simply use
of color of the center pixel of each image as the fea-
ture. This feature is the only feature involving colors.
All the following feature extraction scheme is based
on the gray-scale images converted from the original
RGB images.
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Figure 1: Galaxy Zoo Decision Tree [1]
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Figure 2: Top components for PCA on galaxy images.

3.3.2 PCA

Principle Component Analysis (PCA) is an useful
technique in reducing the dimension of the raw fea-
ture vector. In terms of computer vision, PCA is used
to extract the most important image components in
face recognition, know as the Eigenface method [8].
Similarly here we applied PCA to the galaxy im-
ages to extract the top eigen vectors representing
the galaxy, reducing dimension of the original image
(424×424 = 179776 per image) to a 1D vector of 300
components (Fig. 2). These 1D vectors are used as
the feature for the classi�cation task.

3.3.3 SIFT

SIFT is a popular computer vision feature detector
for local features in the image, widely used in object
recognition [5]. In the standard implementation used
by OpenCV, the SIFT detector returns interesting
points in the image represented by 128-component
vectors (Fig. 3B). We applied k-means clustering to
reduce the feature codebook to the size of 1000, then
used bag-of-word model to build a histogram feature
for each image.

Figure 3: Illustration of di�erent feature extraction
scheme. A. Original image; B. SIFT; C. HOG; D.
Local binary pattern; E. Polar edge histogram.
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3.3.4 HOG

HOG is another commonly used computer vision fea-
ture detector [3]. The main idea behind the HOG
detector is to use the gradient histogram of small
patches of the original image to describe the shape
of the object (Fig. 3C). For the HOG feature, we ap-
plied PCA to reduce the original histogram feature to
300 components, then used it as the feature vector.

3.3.5 Local Binary Patterns

Local binary pattern provides an easy way to describe
the local texture of an image [6]. This feature looks
at the nearest-neighbor pixels of each pixel and check
if the neighbor pixel is larger than the current one
(binary). These binary values for all neighbors are
concatenated to describe the texture. A bag of words
model built from the resulted texture maps can be
used to generate the feature vector. (Fig. 3D).

3.3.6 Fourier Transform

Because the galaxy images are centered and take
mostly round shape, it is interesting to test if top
components from a Fourier transform may lead to
useful descriptions of the images. Indeed by observ-
ing the transformed images, only the �rst few (top
corner) Fourier components give signi�cant signals.
Therefore here we use X components as the feature
vector.

3.3.7 Image Moments

Image moments are weighted averages of the pixel
intensities, and they described the global shape of an
image, such as the area, centroid and orientation [4].
The image moment is most useful for a binary image
after segmentation. Here we simply segmented the
images using their original pixel value, by setting all
pixels higher then the threshold to 1 and others to 0.
Image moments are the computed on the binarized
images as the feature vector.

3.3.8 Polar Edge Histogram

Base on similar idea as the shape context feature [2],
here I created a polar edge feature to better describe
the shape of the galaxy images. The images are �rst
processed with canny edge detector to �nd the edge
pixels. After that, a polar histogram, centered at the
image center (which is the galaxy center) is created
to count the number of edge pixels in each bin (Fig.
3E). This polar histogram is then used as the feature
vector. The main distinction to the shape context
is that here we only build one histogram per image,
instead building histograms for all edge pixels.

3.3.9 Pretrained Neural Network (Overfeat)

Recently deep convolutional neural network has
proven to be successful in image classi�cation con-
tests. Since it is time and resource consuming to train
a su�ciently deep neural network, here we just used a
deep network trained on the ImageNet dataset. This
implementation, called Overfeat [7], has been demon-
strated to perform well in previous ImageNet chal-
lenge. The 4096 features generated by the second-to-
last layer of Overfeat network are used for our Galaxy
Zoo challenge.

3.4 Machine Learning Regression

To predict the probability of each response, which is
a real number ranging from 0 to 1, we applied stan-
dard regression techniques in machine learning. The
simplest algorithm we used is the least-square lin-
ear regression. In addition, we also tested the Ridge
regression method, which is a linear regression algo-
rithm with regularization of the L2 norm of the pa-
rameters to prevent over�tting, and the Random For-
est, a popular ensemble machine learning technique
for classi�cation and regression. For linear regression
and Ridge regression we also tested if the introduc-
ing nonlinearity by expanding the feature vector with
quadratic feature improves the performance.

3.5 Normalization of Prediction

Because we applied normal regression algorithm to
our problem, there is no guarantee on whether the
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Used Feature(s) Cross-validated RMSE

Center Color 0.160
PCA 0.152
SIFT 0.163
HOG 0.141

Local Binary Pattern 0.155
Fourier Transform 0.150
Image Moments 0.140
Polar Histogram 0.147

Overfeat 0.126
All 0.122

All + Quadratic 0.119
All + Quadratic (Ridge) 0.113
All (Random Forest) 0.122

Table 1: The RMSEs of di�erent features and feature
combinations. Unless speci�ed, the ML algorithm is
linear regression. �Quadratic� stands for including
quadratic features in the feature vectors.

predicted values are between 0 and 1, or whether the
predicted probability will sum to 1. To ensure the
predictions satisfy the constraints to be proper prob-
abilities, we �rst assign all negative predictions to
be 0 and all predictions larger than 1 to be 1. Then
we performed probability normalization to ensure the
probabilities for each question sums to 1.

3.6 Cross Validation

To test the performance of our algorithm before sub-
mitting to kaggle, we randomly split our training data
into the actual training set and the cross validation
set. Here 30% of the training data are set aside as
the cross validation set. The RMSE computed using
the cross validation data is used to evaluate the algo-
rithm performance. Once the cross validation gives
reasonable results, we perform prediction on the test
set provided by kaggle and submit to their website to
get the true test RMSE of our pipeline.

4 Experimental Results

The RMSEs obtained by di�erent methods computed
via cross validation are summarized in Table 1. For
single features (except the Overfeat) with linear re-
gression, the most powerful ones are the HOG feature
and the image moment feature, which gives informa-
tion on the shape of the galaxy. SIFT, a good detec-
tor for interesting points, turned out to provide least
discrimination power. Indeed the interesting points
detected by SIFT in the galaxy image (Fig. 3B) are
not particularly special when examined by visual in-
spection. The Overfeat feature, although trained on
a di�erent dataset focused on natural scenes and ob-
jects, gives a low RMSE by itself, demonstrating the
power of the deep learning technique. By concate-
nating all the features, we can further improve the
performance of the algorithm. The RMSE can get
even lower by including quadratic features into our
pipeline. However, expanding the feature set can lead
to over�tting, which can be resolved using Ridge, a
regularized regression. This combination of all fea-
tures, quadratic feature expansion and Ridge regres-
sion gave the best result, an RMSE of 0.113. Alter-
native ML techniques such as Random Forest does
not lead to better results.

After the cross validation performed on the train-
ing set, we applied the same pipeline to generate pre-
dictions for the test set provided by kaggle. The re-
sult of our best algorithm (all + quadratic + ridge)
is shown in Fig 4. The kaggle evaluated RMSE score
is 0.112, similar to the 0.113 RMSE obtained by our
cross validation scheme. The rank of the algorithm
is 38 out of 228 teams. Although our rank is rea-
sonable, we noticed the gap between our result and
the top player is quite large. From our exploration on
the pretrained neural network, it is likely that the top
players have applied deep learning technique speci�-
cally trained on the target dataset for this challenge.
Due to the time limitation of the class I am unable
to implement and test deep learning technique by the
time the report is due; however since the challenge is
ended at 4/2, I will continue to work on deep learning
to see if that will give a better result.
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Figure 4: The kaggle results.

5 Conclusion

In this project, we combined multiple popular com-
puter vision techniques for image classi�cation and
interesting point detection to a kaggle challenge on
understanding the morphology of galaxies based on
their images. We created a pipeline of computer-
vision-based feature extraction and machine learning
regression to address the challenge, and obtained a
good rank in the current leader board. Our results
suggest that features that describe the global shape of
the galaxies tend to lead to better discrimination then
local interesting point detection algorithms. In addi-
tion, our test on pretrained neural network reveals
the deep learning techniqe might be the ultimate so-
lution to this challenge within current computational
power. We will continue to test if a properly built
deep network trained on the target dataset will lead
to even better results than our current algorithm.
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