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Lecture 5
Epipolar Geometry

e Why is stereo useful?

e Epipolar constraints

e Essential and fundamental matrix
e Estimating F

e Examples

Reading: [AZ] Chapter: 4 “Estimation — 2D perspective transformations
Chapter: 9 “Epipolar Geometry and the Fundamental Matrix Transformation”
Chapter: 11 “Computation of the Fundamental Matrix F”
[FP] Chapter: 7 “Stereopsis”
Chapter: 8 “Structure from Motion”
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Recovering structure from a single view

\\\\\ k
Scene C

O,,
Calibration rig Camera K
From calibration rig — location/pose of the rig, K

From points and lines at infinity

+ orthogonal lines and planes — structure of the scene, K

Knowledge about scene (point correspondences, geometry of lines & planes, etc...




Recovering structure from a single view
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Scene

Calibration rig Camera K

Why is it so difficult?

Intrinsic ambiguity of the mapping from 3D to image (2D)



Recovering structure from a single view

Intrinsic ambiguity of the mapping from 3D to image (2D)
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Two eyes help!




Two eyes help!

P=[x][

[Eq. 1]
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This is called triangulation




Triangulation

e Find P* that minimizes
d(p,M P*)+d(p',M'P*) I[Eq.2]




Multi (stereo)-view geometry

e Camera geometry: Given corresponding points
in two images, find camera matrices, position
and pose.

e Scene geometry: Find coordinates of 3D

point from its projection into 2 or multiple
Images.

 Correspondence: Given a point p in one image,
how can | find the corresponding point p* in
another one?



Epipolar geometry

e e
O, B L O,
 Epipolar Plane * Epipoles e, e’
e Baseline = intersections of baseline with image planes

. . = projections of the other camera center
 Epipolar Lines



Example of epipolar lines
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Example: Parallel image planes

* Baseline intersects the image plane at infinity
* Epipoles are at infinity
* Epipolar lines are parallel to v axis



Parallel Image Planes

Example




Example: Forward translation

* The epipoles have same position in both images
* Epipole called FOE (focus of expansion)



Eplpolar Constraint

- Two views of the same object
- Given a point on left image, how can | find the corresponding point on right image?




Epipolar geometry

Epipolar line 2
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Epipolar Constraint

P
O; q—/’ 0,
=K[ I 0 ]
MP-= Z-=p [Eq. 3] M'P-=
1




Epipolar Constraint l
P

o = O

R, T O,

K=K’ are known

= K[ I O ] (canonical cameras) M'= K'[ RT —RTT ]

M:[] O] [Eq. 5] M'=[ R" -R'T ] [Eq. 6]



Epipolar Constraint
\X/
=
p )i
O; R, T O,

p"-[Tx(Rp)|]=0—>p"-[T.] Rp'=0

[Eq. 8] [Eq. 9]




Cross product as matrix multiplication

z y X
axb=| a 0 —a.|b,|=[a]b
—-a, a, 0 b,
T T
a=|[a a, a,]




Epipolar Constraint
X
=

p )i
O; R, T O,

E . 8 ............................... [Eq. 9]
Eq. 8] E = Essential matrix

(Longuet-Higgins, 1981)



Epipolar Constraint

e e
O] e V 02
e | =E p’ is the epipolar line associated with p’

e |"=ETp isthe epipolar line associated with p
*Ee'=0 and ETe=0
e Eis 3x3 matrix; 5 DOF
 Eis singular (rank two)



Epipolar Constraint

P )i
O] W 02

M=K[I 0] M'=K'[ R —RTT]

/

p. = K™ p [Eq. 11] p.= K'"! P [Eq. 12]



Epipolar Constraint




O,

[Eq. 13]

F = Fundamental Matrix
(Faugeras and Luong, 1992)

Epipolar Constraint

p Fp'=0

)P<>
O,

F=K"-[r] RK"

[Eq. 14]



Epipolar Constraint

e e’ \
O] e V 02
e | =F p’ is the epipolar line associated with p’

e I'=FTp isthe epipolar line associated with p
e Fe'=0 and FTe=0
* Fis 3x3 matrix; 7 DOF
 Fis singular (rank two)



Why Fis useful2

- Suppose F is known
- No additional information about the scene and camera is given
- Given a point on left image, we can compute the corresponding epipolar line in the second imag




Why F is useful?

e F captures information about the epipolar geometry of
2 views + camera parameters

e MORE IMPORTANTLY: F gives constraints on how the
scene changes under view point transformation
(without reconstructing the scene!)

e Powerful tool in:
e 3D reconstruction
e Multi-view object/scene matching



Estimating F

The Eight-Point Algorithm

(Longuet-Higgins, 1981)
(Hartley, 1995)
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Estimating F

[Eq.13] p' Fp'=0 wm

(F, F, F;
(U,V,l) P;l P;Z }723
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Let’s take 8 corresponding points
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Estimating F
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e Rank 8 = A non-zero solution exists (unique)

e IfN>8 —> Lsqg. solution by SVDI —> ﬁ

It =1



F satfisfies: p' Fp' =0
and estimated F may have full rank (detl(\F) #0)

But remember: fundamental matrix is Rank?2

A\

Find F that minimizes || — F|| = ()

Frobenius norm (*)

Subject to det(F)=0

SVD (again!) can be used to solve this problem

(*) Sq. root of the sum of squares of all entries



Find F that minimizes

Subject to det(F)=0

= ()

Frobenius norm (*)

T
I

[HZ] pag 281, chapter 11, “Computation of F”

VT

Where:

s, 00
ur 0 s, O

0 0 s,

VT = SVD(F)



Data courtesy of R. Mohr and B. Boufama.



Mean errors:
10.0pixel
?.1pixel




Problems with the 8-Point Algorithm

L lution
WE=0, 5o
F
f]| =1
- Recall the structure of W:

- do we see any potential
(numerical) issue?




Problems with the 8-Point Algorithm

Wi =0

F
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e Highly un-balanced (not well conditioned)
e Values of W must have similar magnitude

HZ pag 108

e This creates problems during the SVD decomposition



Normalization

IDEA: Transform image coordinates such that the matrix
W becomes better conditioned (pre-conditioning)

For each image, apply a transformation T (translation
and scaling) acting on image coordinates such that:

 Origin = centroid of image points
* Mean square distance of the image
points from origin is ~2 pixels



Example of normalization

Coordinate system of the image
after applying T

Coordinate system of the
image before applying T

* Origin = centroid of image points
* Mean square distance of the image points from origin is ~2 pixels



Normalization
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The Normalized Eight-Point Algorithm

0. Compute T and T’ for image 1 and 2, respectively

1. Normalize coordinates in images 1 and 2:

9, =Tp, 4=Tp

2. Use the eight-point algorithm to compute F from the
corresponding points . and q; .

1. Enforce the rank-2 constraint: — Fq such that:
q' F,q'=0

2. De-normalize Fq: F = TTFq T' \ det( F,)=0




Without normalization

With normalization

Mean errors:
10.0pixel
?.1pixel

Mean errors:
1.0pixel
0.9pixel



The Fundamental Matrix Song




Next lecture:
Stereo systems

Silvio Savarese & Jeanette Bohg Lecture 5 - 25-Jan-23






Example: Parallel image planes

P

K;=K5 = known

x parallel to O,0,

E=¢

e | ———-0¢€

Hint :
R=1

O,

T=(T, 0, 0)



Essential matrix for parallel images

E=|T | R

0 -7, T, 0 0 O

T 0 -T. |R=| 0 0 -T
T T 0 O 7 O

Y X i

[Eq. 20]
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Example: Parallel image planes

P
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What are the 00 0 U 0 .
directions of [=Ep'=| 0O 0 -T v |=| =T horizontal!
epipolar lines? 07T 0 1 Ty




Example: Parallel image planes

P

—— _ P __ | ___oé€

How are p + '
and p’ p Ep =(

related?



Example: Parallel image planes

P

—— _ P __ | ___oé€

ﬁv:v,

How are p 0 0 0]« 0
and P, >(u y 1) 0O 0 -T|V =O:>(u v 1) T |=0=>Tv="1
related? 07T 0 ™




Example: Parallel image planes

P
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III

Rectification: making two images “paralle

Why it is useful2 + Epipolar constraint — v = v’
» New views can be synthesized by linear interpolation



Application: view morphing

S. M. Seitz and C. R. Dyer, Proc. SIGGRAPH 96, 1996, 21-30




Rectification













From its reflection!







Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017

Rectifi-
cation

Network
(Fig. 2)

Encoder-
Decoder
Network

(Fig. 3)

View
Morphing
Network
(Fig. 6)
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Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017




Deep view morphing

D. Ji, J. Kwon, M. McFarland, S. Savarese, CVPR 2017




