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to Recognition

Gaussian Splatting for Novel View Synthesis
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Mildenhall et al. ECCV 2020. https://www.matthewtancik.com/nerf 

https://www.matthewtancik.com/nerf
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Rendering (Graphics): Given 3D Scene + Camera 
parameters, yield images

3D Scene Camera Poses Images

Render

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Inverse Graphics: Given Images, Infer Camera 
Poses & 3D Scene!

3D Scene Camera PosesImages

Reconstruct

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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3D Scene

How to get camera poses?

Camera PosesImages

Reconstruct

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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3D Scene

Can assume we know the camera poses.

Camera PosesImages

Reconstruct

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Differentiable Rendering

Scene 
Representation Renderer

Rendered Images

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Differentiable Rendering

Scene 
Representation Renderer

GT ImagesRendered Images

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Differentiable Rendering

Optimization via SGD

Scene 
Representation

Differentiable 
Renderer

GT ImagesRendered Images

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Differentiable Rendering

Given an observable variable (pixel colors), we will build a differentiable forward model that 
we then use to estimate unobserved (latent) variables (geometry, appearance)!

Scene 
Representation

GT ImagesRendered Images

Differentiable 
Renderer

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Ways to Render

11

Surface rendering Volume rendering

2-Jun-24
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pixel color at 
coordinates D

Volume rendering equation

densityradiance

transparency
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Represent a scene as a continuous 5D 
function

2-Jun-2413

No need to instantiate Volume representation



Lecture 17Silvio Savarese & Jeannette Bohg 

Generate views with traditional 
volume rendering

2-Jun-2414

Mildenhall et al. ECCV 2020. https://www.matthewtancik.com/nerf 

https://www.matthewtancik.com/nerf
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From Presentation by Matthew Tancik: Neural Radiance Fields for View Synthesis. 2020.

t = point along ray
C = Color of Pixel
c = color of point

Transparency

Function of segment length 𝛿𝑡! and volume density 𝜎
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Loss function

2-Jun-2416

From Presentation by Matthew Tancik: Neural Radiance Fields for View Synthesis. 2020.
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Training network to reproduce all 
input view of the scene

2-Jun-2417

From Presentation by Matthew Tancik: Neural Radiance Fields for View Synthesis. 2020.
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Mildenhall et al. ECCV 2020. https://www.matthewtancik.com/nerf 

https://www.matthewtancik.com/nerf
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Vision-Only Navigation

MPC controller
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With Replanning Open LoopMPC controller
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MPC controller
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Plenoxels: Radiance Fields …
[Yu et al. 2022]
Direct Voxel Grid Optimization 
[Sun et al. 2021]Voxel Grid

Point Cloud + MLP

Voxel Grid + Hashmap + MLP

InstantNGP: Instant Neural …
[Müller et al. 2022]

PointNeRF: Point-based Neural …
[Xu et al. 2022]

Tensor Factorization / Triplane + MLP

Efficient Geometry-aware 3D…
[Chan et al. 2022]
TensorRF: Tensor Radiance Fields
[Chen & Xu et al. 2022]

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Hybrid Multi-Scale Grid, 
HashMap, Neural Field

Neural Field

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Neural Radiance Field: Parameterize Radiance Field 
densely, at every point in space

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Mean

Key Idea: Parameterize Radiance Field sparsely, 
only where density is nonzero

3D Gaussian Blobs 
floating in Space

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Key Idea: Parameterize Radiance Field sparsely, 
only where density is nonzero

3D Gaussian Blobs 
floating in Space

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann



Lecture 17Silvio Savarese & Jeannette Bohg 

𝜎 = 0

Key Idea: Parameterize Radiance Field sparsely, 
only where density is nonzero

3D Gaussian Blobs 
floating in Space

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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𝜎 = 0 𝜎 = 0.5

Key Idea: Parameterize Radiance Field sparsely, 
only where density is nonzero

𝑅𝐺𝐵 =

3D Gaussian Blobs 
floating in Space

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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𝜎 = 0 𝜎 = 0.5

𝜎 = 1

𝑅𝐺𝐵 =

𝑅𝐺𝐵 =

Key Idea: Parameterize Radiance Field sparsely, 
only where density is nonzero

3D Gaussian Blobs 
floating in Space

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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𝜎 = 0 𝜎 = 0.5

𝜎 = 1

𝑅𝐺𝐵 =

𝑅𝐺𝐵 =

How to Render?
3D Gaussian Blobs 
floating in Space

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Same Volume Rendering Integral!

Camera

“Far Plane”

“Near Plane”

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Camera

“Far Plane”

“Near Plane”

Still sampling lots of 
empty space… 

Same Volume Rendering Integral!

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Camera

“Far Plane”

“Near Plane”

Same Volume Rendering Integral!

Stupid: we already 
know where the 
density will be 
nonzero!

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Camera

Gaussians are closed under affine 
transforms, integration

3D Covariance!

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Camera

Gaussians are closed under affine 
transforms, integration

3D Covariance!
Affine mapping Φ = 𝐌𝐱+𝐩 of coordinates 
(such as cam2world matrix!):

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Camera

Gaussians are closed under affine 
transforms, integration

3D Covariance!

Integrate along axis:

Affine mapping Φ = 𝐌𝐱+𝐩 of coordinates  
(such as cam2world matrix!):

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Throwback: The Kalman Filter Algorithm

2-Jun-2440

Predict Step
Update Step
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Camera

Instead: Rasterization

Pixel

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Camera

Instead: Rasterization

Pixel

“Pixel Frustum”

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Camera

“Cull” Gaussians with less than 99% 
confidence relative to view frustum

Pixel

“Pixel Frustum”

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Camera

Step 1: Transform Gaussians into 
Camera Coordinates

Cam2world is affine mapping 𝜙(𝑥) = 𝐖𝐱+𝐩:

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Camera

Step 1: Transform Gaussians into 
Camera Coordinates

Cam2world is affine mapping 𝜙(𝑥) = 𝐖𝐱+𝐩:

Projection 𝐦(𝑢) is not an affine mapping :/

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Camera

Step 1: Transform Gaussians into 
Camera Coordinates

Cam2world is affine mapping 𝜙(𝑥) = 𝐖𝐱+𝐩:

Projection 𝐦(𝑢) is not an affine mapping :/

But can approximate with first-order Taylor 
Expansion as:

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Propagating a Gaussian through a 
Linear Model

2-Jun-2447
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Propagating a Gaussian through a 
Non-Linear Model

2-Jun-2448
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Linearizing the Non-Linear Model

2-Jun-2449
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Throwback: The Extended Kalman 
Filter Algorithm

2-Jun-2450

Predict

Update
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Camera

Step 1: Transform Gaussians into 
Camera Coordinates

Cam2world is affine mapping 𝜙(𝑥) = 𝐖𝐱+𝐩:

Projection 𝐦(𝑢) is not an affine mapping :/

But can approximate with first-order Taylor 
Expansion as:

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Step 1: Transform Gaussians into 
Camera Coordinates

But can approximate with first-order Taylor 
Expansion as:

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Step 1: Transform Gaussians into 
Camera Coordinates

But can approximate with first-order Taylor 
Expansion as:

Projected, 2D Gaussians are then:

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Step 1: Transform Gaussians into 
Camera Coordinates

But can approximate with first-order Taylor 
Expansion as:

Projected, 2D Gaussians are then:

Finally, can integrate along rays:

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Can compute volume rendering integral without 
ever sampling a single 3D point in space!

Camera

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Camera

Projected 3D Gaussian makes 2D 
Gaussian!

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Any problems for inverse graphics, 
though…?

Camera

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Problem: Local minima…

Camera

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Fix 1: Start from SFM point cloud.

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Fix 2: Heuristic pruning and spawning
operations

Slide adopted from 6.S980 – ML for Inverse Graphics – Vincent Sitzmann
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Next lecture: 
Guest Lecture by Adam Harley on Visual 
Tracking 

CS231A
Computer Vision:
From 3D Reconstruction 
to Recognition


