
CS231A: Computer Vision, From 3D Perception to 3D Reconstruction and be-
yond Homework #4

(Spring 2024) Due: Saturday, June 6

Overview

This PSET will involve concepts from lectures 12, 13, 14, and 15. It will involve optical and scene
flow, Kalman Filters with monocular and stereo vision, and a learned observation model. Although
there are 4 problems so this PSET may look daunting, it is mostly instructions, and most of the
problems require comparatively little work. You will need to use Colab only for Q1 (extra credit),
and it is recommended for Q2-4.

Submitting

Please put together a PDF with your answers for each problem, and submit it to the appropriate
assignment on Gradescope. We recommend you to add these answers to the latex template files on
our website, but you can also create a PDF in any other way you prefer.

The assignment will require you to complete the provided python files and create a PDF for
written answers. The instructions are bolded for parts of the problem set you should respond to
with written answers. To create your PDF for the written answers, we recommend you add your
answers to the latex template files on our website, but you can also create a PDF in any other way
you prefer. To implement your code, make sure you modify the provided ”.py” files in the code
folder.

For the written report, in the case of problems that just involve implementing code, you will
only need to include the final output (where it is requested) and in some cases a brief description if
requested in the problem. There will be an additional coding assignment on Gradescope that has
an autograder that is there to help you double check your code. Make sure you use the provided
”.py” files to write your Python code. Submit to both the PDF and code assignment, as we will
be grading the PDF submissions and using the coding assignment to check your code if needed.

For submitting to the autograder, just create a zip file containing all the files in the ’code’ folder.
Makes sure to add your finished code to the ’.py’ files after your code works in colab.

1 Extra Credit - Unsupervised Monocular Depth Estimation (25
points)

In this problem, we will take a step further to train monocular depth estimation networks without
ground-truth training data. Although neural networks best train with large-scale training data, it is
often challenging to collect ground-truth data for every domain of problem. For example, Microsoft
Kinect, one of the most popular depth camera, uses infrared camera that does not work outdoors,
and training monocular depth estimation networks for outdoor scenes can be more challenging.

We instead will utilize the knowledge we learned about stereo computer vision in this course
to train monocular depth estimation networks without ground-truth data. In this problem, we
will train a network to predict disparity. As shown in Figure 1, disparity(d) is simply inverse

1



Figure 1

proportional to depth(z), which still serves our purpose. Given a pair of left and right view of
rectified images as inputs, we can synthesize right image by shifting left image toward right by the
disparity and vice versa. We will utilize this trait to synthesize both left and right images and
enforce them to look similar to the original left and right images.

left image

Network left disparity

right disparity

right image
Synthesized 
right image

Image similarity loss

Image similarity loss

Synthesized 
left disparity

Synthesized 
right disparity

Synthesized 
left image

disparity similarity loss

disparity similarity loss

Figure 2

Figure 2 is a summary of how unsupervised monocular depth estimation works. This method is
derived from the paper ”Unsupervised Monocular Depth Estimation with Left-Right Consistency”.
The networks take left view of the stereo image imgl as input and outputs two disparity maps displ
(the disparity map of the left view that maps the right image to the left) and dispr (the disparity
map of the right view that maps the left image to the right). Although the network only takes
left image as an input, we train the network to predict disparity of both left and right sides. This
design allows us to make monocular depth prediction possible (i.e. does not take stereo images as
input) and enforce cycle consistency between the left and right view of the stereo images.

Then, assuming that the input images are rectified, we can generate left and right images
from the predicted disparities. To be more concrete, using the left disparity displ, we synthe-
size left image and disparity as following: img′l = generate image left(imgr, displ) and disp′l =
generate image left(dispr, displ). Similarly, using the right disparity dispr, we synthesize right im-
age and disparity as following: img′r = generate image right(imgl, dispr) and
disp′r = generate image right(displ, dispr). We will ask you to implement generate img left and

2



Figure 3: Input and output (left/right disparity) of trained monocular depth estimation networks.

generate image right in this pset.
In order to predict a reasonable disparity that can shift left image to right and vice versa, we com-

pare the synthesized image with real image: Limg = comparei(img′l, imgl)+ comparei(img′r, imgr).
For completeness, comparei is L1 and SSIM.

In order to enforces cycle consistency between the left and right disparities, we compare the syn-
thesized disparity with predicted disparity: Ldisp = compared(disp

′
l, displ)+compare(disp′r, dispr).

For completeness, compared is L1.
Please fill in the missing parts of the code in p1/problems.py as outlined below. For running

the code, you’ll have to install PyTorch and torchvision, and then you can test it out by running
it locally ‘python problems.py‘. Alternatively, you can use the iPython notebook ‘PSET4.ipynb‘
with Google Colab as for the rest of the problems. If you want to train the network yourself, you
may follow the instruction . We will not ask you to train the model for this question however since
it is too computation-intensive.

a. Before we get started, we would like you to implement a data augmentation function for
stereo images that randomly flips the given image horizontally. In neural networks, data
augmentation takes a crucial role in better generalization of the problem. One of the most
common data augmentation when using 2D images as input is to randomly flip the image
horizontally. One interesting difference in our problem setup is that we take a pair of rectified
stereo images as input. In order to maintain the stereo relationship after the horizontal flip,
it requires a special attention. Please fill in the code to implement the data augmentation
function. In your report include the images generated by this part of the code (no
need to include the input images). [5 points for included plots]

b. Can you think of any other techniques discussed previously in the course that we
can use to apply data augmentation for this task? [5 points for write-up]

c. Implement a function bilinear sampler which shifts the given horizontally given the disparity.
The core idea of unsupervised monocular depth estimation is that we can generate left image
from right and vice versa by sampling rectified images horizontally using the disparity. We
will ask you to implement a function that simply samples image with horizontal displacement
as given by the input disparity. In your report include the images generated by this
part of the code (no need to include the input images). [5 points for images]

d. Implement functions generate image right and generate image left which generates right view
of the image from left image using the disparity and vice versa. This will be a simple one-liner
that applies bilinear sampler. In your report include the images generated by this
part of the code (no need to include the input images). [5 points for images]

e. In Figure 3, we visualize output of the networks trained with the losses you have implemented.
You may notice that there are some boundary artifacts on the left side of the left disparity
and right side of the right disparity. Briefly explain why these artifacts may exist. [5
points]

3



2 Extended Kalman Filter with a Nonlinear Observation Model
(30 points)

Consider the scenario depicted in Figure 4 where a robot tries to catch a fly that it tracks visually
with its cameras. To catch the fly, the robot needs to estimate the 3D position pt ∈ R3 and linear

Figure 4

velocity ξt ∈ R3 of the fly with respect to its camera coordinate system. The fly is moving randomly
in a way that can be modelled by a discrete time double integrator:

pt+1 = pt +∆tξt (1a)

ξt+1 = 0.8ξt +∆tat (1b)

where the constant velocity value describes the average velocity value over ∆t and is just an
approximation of the true process. Variations in the fly’s linear velocity are caused by random,
immeasurable accelerations at. As the accelerations are not measurable, we treat it as the pro-
cess noise, w = ∆tat, and we model it as a realization of a normally-distributed white-noise
random vector with zero mean and covariance Q: w ∼ N(0, Q). The covariance is given by
Q = diag(0.05, 0.05, 0.05)

The vision system of the robot consists of (unfortunately) only one camera. With the camera,
the robot can observe the fly and receive noisy measurements z ∈ R2 which are the pixel coordinates
(u, v) of the projection of the fly onto the image. We model this projection mapping of the fly’s 3D
location to pixels as the observation model h:

zt = h(xt) + vt (1c)

where x = (p, ξ)T and v is a realization of the normally-distributed, white-noise observation
noise vector: v ∼ N(0, R). The covariance of the measurement noise is assumed constant and of
value, R = diag(5, 5).

We assume a known 3x3 camera intrinsic matrix:

K =

 500 0 320 0
0 500 240 0
0 0 1 0

 (1d)

a. Let ∆t = 0.1s. Find the system matrix A for the process model, and implement the noise co-
variance functions (Implement your answer in the system matrix, process noise covariance,
and observation noise covariance functions in p2.py). [5 points]

4



b. Define the observation model h in terms of the camera parameters (Implement your answer
in the observation function in p2.py). [5 points for code]

c. Initially, the fly is sitting on the fingertip of the robot when it is noticing it for the first
time. Therefore, the robot knows the fly’s initial position from forward kinematics to be
at p0 = (0.5, 0, 5.0)T (resting velocity). Simulate in Python the 3D trajectory that the fly
takes as well as the measurement process. This requires generating random acceleration noise
and observation noise. Simulate for 100 time steps. Attach a plot of the generated
trajectories and the corresponding measurements. [5 points for plot]

d. Find the Jacobian H of the observation model with respect to the fly’s state x. (Implement
your answer of H in function observation state jacobian in p2.py.)[5 points for code]

e. Now let us run an Extended Kalman Filter to estimate the position and velocity of the fly
relative to the camera. You can assume the aforementioned initial position and the following
initial error covariance matrix: P0 = diag(0.1, 0.1, 0.1). The measurements can be found
in data/Q2E measurement.npy. Plot the mean and error ellipse of the predicted
measurements over the true measurements. Plot the means and error ellipsoids
of the estimated positions over the true trajectory of the fly. The true states are
in data/Q2E state.npy [5 points for plots]

f. Discuss the difference in magnitude of uncertainty in the different dimensions of
the state. [5 points for write-up]

3 From Monocular to Stereo Vision (30 points)

Now let us assume that our robot got an upgrade: Someone installed a stereo camera and calibrated
it. Let us assume that this stereo camera is perfectly manufactured, i.e., the two cameras are
perfectly parallel with a baseline of b = 0.2. The camera intrinsics are the same as before in
Question 1.

Now the robot receives as measurement z a pair of pixel coordinates in the left image (uL, vL)
and right image (uR, vR) of the camera. Since our camera system is perfectly parallel, we will
assume a measurement vector z = (uL, vL, dL) where dL is the disparity between the projection
of the fly on the left and right image. We define the disparity to be positive. The fly’s states are
represented in the left camera’s coordinate system.

a. Find the observation model h in terms of the camera parameters (Implement your answer in
function observation in p3.py). [5 points for code]

b. Find the Jacobian H of the observation model with respect to the fly’s state x. (Implement
H in function observation state jacobian in p3.py) [5 points for code]

c. What is the new observation noise covariance matrix R? Assume the noise on (uL, vL), and
(uR, vR) to be independent and to have the same distribution as the observation noise given in
Question 1, respectively. (Implement R in function observation noise covariance in p3.py).
[5 points for write-up]

d. Now let us run an Extended Kalman Filter to estimate the position and velocity of the fly
relative to the left camera. You can assume the same initial position and the initial error
covariance matrix as in the previous questions. Plot the means and error ellipses of the
predicted measurements over the true measurement trajectory in both the left
and right images. The measurements can be found in data/Q3D measurement.npy. Plot
the means and error ellipsoids of the estimated positions over the true trajectory of the fly.
The true states are in data/Q3D state.npy Include these plots here.[5 points for images]

5



e. In this Question, we are defining z = (uL, vL, dL)T . Alternatively, we could reconstruct the 3D
position p of the fly from its left and right projection (uL, vL, uR, vR) through triangulation
and use z = (x, y, z)T directly. Discuss the pros and cons of using (uL, vL, dL) over
(x, y, z)! [5 points for write-up]

RF

CF

WF

O
C

Figure 5

4 Linear Kalman Filter with a Learned Inverse Observation Model
(20 points)

Now the robot is trying to catch a ball. So far, we assumed that there was some vision module
that would detect the object in the image and thereby provide a noisy observation. In this part of
the assignment, let us learn such a detector from annotated training data and treat the resulting
detector as a sensor.

If we assume the same process as in the first task, but we have a measurement model that
observes directly noisy 3D locations of the ball, we end up with a linear model whose state can be
estimated with a Kalman filter. Note that since you are modifying code from previous parts and
are implementing your own outlier detection for part C, there is no autograder for this problem -
we will be grading based on your plots.

a. In the folder data/Q4A data you will find a training set of 1000 images in the subfolder
training set and the file Q4A positions train.npy that contains the ground truth 3D
position of the red ball in the image. We have provided you with the notebook LearnedOb-
servationModel.ipynb that can be used to train a noisy observation model. As in PSET 3,
use this notebook with Google Colab to do this – note that you’ll need to upload the data
directory onto a location of your choosing in Drive first. Alternatively, if you have an M1+
-chip Mac, you can use the commented line device = torch.device(’mps’) to run locally
by uncommenting it (optional). Report the training and test set mean squared error
in your write-up. [5 points]

b. In the folder data/Q4B data you will find a set of 1000 images that show a new trajectory
of the red ball. Run your linear Kalman Filter using this sequence of images as input,
where your learned model provides the noisy measurements (the logic for this is provided
in PSET4.ipynb). Now you can work on using the model by completing p4.py. Tune a
constant measurement noise covariance appropriately, assuming it is a zero mean Gaussian
and the covariance matrix is a diagonal matrix. Plot the resulting estimated trajectory from
the images, along with the detections and the ground truth trajectory (the logic for this is
provided in the starter code). [5 points for plots]

6



c. Because the images are quite noisy and the red ball may be partially or completely occluded,
your detector is likely to produce some false detections. In the folder data/Q4D data you will
find a set of 1000 images that show a trajectory of the red ball where some images are blank
(as if the ball is occluded by a white object). Discuss what happens if you do not reject these
outliers but instead use them to update the state estimate. Like in the previous question,
run your linear Kalman Filter using the sequence of images as input that are corrupted by
occlusions (this is also provided in the notebook LearnedObservationModel.ipynb). Plot
the resulting estimated trajectory of the ball over the ground truth trajectory.
Also plot the 3-D trajectory in 2-D (x vs. z) and (y vs. z) to better visualize
what happens to your filter. [5 points]

d. Design an outlier detector and use the data from data/Q4D data. Provide the same plots
as in part c with filter outliers=True. Explain how you implemented your outlier
detector and add your code to the report. Hint: Your observation model predicts
where your measurement is expected to occur and its uncertainty. [5 points]

7


	Extra Credit - Unsupervised Monocular Depth Estimation (25 points)
	Extended Kalman Filter with a Nonlinear Observation Model (30 points)
	From Monocular to Stereo Vision (30 points)
	Linear Kalman Filter with a Learned Inverse Observation Model (20 points)

