
CS231A: Computer Vision, From 3D Perception to 3D Reconstruction and be-
yond Homework #2

(Spring 2024) Due: Thursday, May 2

Name: Email:

0 Submission Guideline

Please put together a PDF with your answers for each problem, and submit it to the appropriate
assignment on Gradescope. We recommend you to add these answers to the latex template files on
our website, but you can also create a PDF in any other way you prefer.

The assignment will require you to complete the provided python files and create a PDF for
written answers. The instructions are bolded for parts of the problem set you should respond to
with written answers. To create your PDF for the written answers, we recommend you add your
answers to the latex template files on our website, but you can also create a PDF in any other way
you prefer. To implement your code, make sure you modify the provided ”.py” files in the code
folder.

For the written report, in the case of problems that just involve implementing code, you will
only need to include the final output (where it is requested) and in some cases a brief description if
requested in the problem. There will be an additional coding assignment on Gradescope that has
an autograder that is there to help you double check your code. Make sure you use the provided
”.py” files to write your Python code. Submit to both the PDF and code assignment, as we will
be grading the PDF submissions and using the coding assignment to check your code if needed.

To test your code, you can choose to install the required packages and run the code yourself,
or you can upload the provided PSET2.ipynb file to Google Drive and complete the code with an
online interface. Here are instructions for the latter approach. In Google Drive, follow these steps:

a. Click the wheel in the top right corner and select Settings.

b. Click on the Manage Apps tab.

c. At the top, select Connect more apps which should bring up a GSuite Marketplace window.

d. Search for Colab then click Add.

e. Now, upload “PSET2.ipynb“, open it, and follow the instructions inside.

There will be two assignments to submit to on Gradescope: one for coding files and one for
written answers. The former will be graded by an autograder and the latter will be graded by us, so
you should submit to both. To submit the python files to the autograder, create a zip file containing
the ”.py” files and upload this zip file to the Gradescope assignment. On to the problems!

1



1 Fundamental Matrix Estimation From Point Correspondences
(30 points)

.

Figure 1: Example illustration, with epipolar lines shown in both images (Images courtesy Forsyth
& Ponce)

This problem is concerned with the estimation of the fundamental matrix from point correspon-
dences. In this problem, you will implement both the linear least-squares version of the eight-point
algorithm and its normalized version to estimate the fundamental matrices. You will implement
the methods in p1.py and complete the following:

(a) Implement the linear least-squares eight point algorithm in lls eight point alg(). Re-
member to enforce the rank-two constraint for the fundamental matrix via singular value
decomposition. Include your resulting fundamental matrix and briefly describe
your implementation in your written report. [15 points code + 5 points written]

(b) [Programming Question] Implement the normalized eight point algorithm in
normalized eight point alg() and report the returned fundamental matrix. Remember to
enforce the rank-two constraint for the fundamental matrix via singular value decomposition.
[5 points]

(c) [Programming Question] After implementing methods to determine the Fundamental ma-
trix, we can now determine epipolar lines. Specifically to determine the accuracy of our Fun-
damental matrix, we will compute the average distance between a point and its corresponding
epipolar line in compute distance to epipolar lines(). [5 points]

2



2 Matching Homographies for Image Rectification (23 points)

Building off of the previous problem, this problem seeks to rectify a pair of images given a few
matching points. The main task in image rectification is generating two homographies H1, H2 that
transform the images in a way that the epipolar lines are parallel to the horizontal axis of the
image. You will implement the methods in p2.py as follows:

(a) [Programming Question] The first step in rectifying an image is to determine the epipoles.
Complete the function compute epipole(). Hint: Recall that F T e = 0, and how you can
use SVD to solve for e. [3 points]

(b) [Programming Question] Let’s solve for the homography H that maps an epipole e to a
point on the horizontal axis at infinity (f, 0, 0). This may at first look complicated, but it is
just a a sequence of several relatively simple steps. Complete the function compute H(). [5
points]

We have copied the relevant portions from the course notes below to make this straighforward:

As noted in the course notes, a good practice is to find a homography acts like a transformation
that translates and rotates points near the center of the image. First, define the translation
matrix that moves the center to (0, 0, 1) in homogeneous coordinates:

T =

1 0 −width
2

0 1 −height
2

0 0 1


Then, create a rotation martix to place the epipole on the horizontal axis at some point
(f, 0, 1). If the translated epipole Te is located at homogeneous coordinates (e1, e2, 1), then
the rotation applied is:

R =


α e1√

e21+e22
α e2√

e21+e22
0

−α e2√
e21+e22

α e1√
e21+e22

0

0 0 1


where α = 1 if e1 ≥ 0 and α = −1 otherwise.

Now we just need to get (f, 0, 1) to (f, 0, 0), which we can do with the following matrix:

G =

 1 0 0
0 1 0
− 1

f 0 1


Finally, you can compute the output to compute H() as follows:

H2 = T−1GRT

We don’t require you to explain it, but it should be relatively easy to understand why the
above matrices do what we want them to.

(c) [Programming Question] Now for the trickier bit - finding a matching pair of homographies
H1 and H2 by implementing compute matching homographies(). [10 points]

Once again, we include the relevant portions of the course notes below:

3



Begin by using compute H() to solve for H2, so we now just need to find an H1 to match
this H2. To do this, we find an H1 that minimizes the sum of square distances between the
corresponding points of the images

argmin
H1

∑
i

∥H1pi −H2p
′
i∥2

Although the derivation1 is outside the scope of this class, we know that H1 is of the form:

H1 = HAH2M

where F = [e]×M and

HA =

a1 a2 a3
0 1 0
0 0 1


with (a1, a2, a3) composing the elements of a certain vector a that will be computed later.

First, as explained in the course notes to solve for M we need to implement the following:

M = [e]×F + evT

Where vT =
[
1 1 1

]
. Recall that [e]× is the cross-product matrix of e.

To finally solve for H1, we need to compute the a values of HA. Again as explained in the
course notes, we can do this by solving a least-squares problem Wa = b for a where

W =

x̂1 ŷ1 1
...

x̂n ŷn 1

 b =

x̂
′
1
...
x̂′n

 (1)

After computing a, we can compute HA and finally H1. Thus, we generated the homographies
H1, H2 to rectify any image pair given a few correspondences.

(d) Include the pair of rectified image in your written report. Briefly comment on why rectification
makes it easier to find corresponding points in the two images. [5 points]

1If you are interested in the details, please see Chapter 11 of Hartley & Zisserman’s textbook Multiple View
Geometry

4



3 The Factorization Method (15 points)

In this question, you will explore the factorization method, initially presented by Tomasi and
Kanade, for solving the affine structure from motion problem. You will implement the methods in
p2.py and complete the following:

(a) Implement the factorization method as described in lecture and in the course notes. Complete
the function factorization method(). Briefly describe your implementation in your written
report. [8 points code + 2 points written]

(b) Run the provided code that plots the resulting 3D points. Compare your result to the ground
truth provided. The results should look identical, except for a scaling and rotation. Explain
why this occurs. [5 points]

(c) Optional: Report the 4 singular values from the SVD decomposition. Why are there 4
non-zero singular values? How many non-zero singular values would you expect to get in the
idealized version of the method, and why? [0 points]

(d) Optional: The next part of the code will now only load a subset of the original correspon-
dences. Compare your new results to the ground truth, and explain why they no longer appear
as similar (if you rotate the reconstruction, you can see the points are not quite right). [0
points]

(e) Optional: Report the new singular values, and compare them to the singular values that
you found previously. Explain any major changes. [0 points]

5



4 Triangulation in Structure From Motion (32 points)

Figure 2: The set of images used in this structure from motion reconstruction.

Structure from motion is inspired by our ability to learn about the 3D structure in the surround-
ing environment by moving through it. Given a sequence of images, we are able to simultaneously
estimate both the 3D structure and the path the camera took. In this problem, you will implement
significant parts of a structure from motion framework, estimating both R and T of the cameras,
as well as generating the locations of points in 3D space. Recall that in the previous problem we
triangulated points assuming affine transformations. However, in the actual structure from motion
problem, we assume projective transformations. By doing this problem, you will learn how to solve
this type of triangulation. In Course Notes 4, we go into further detail about this process. You will
implement the methods in p4.py and complete the following:

(a) [Programming Question] Given correspondences between pairs of images, we compute the
respective Fundamental and Essential matrices. Given the Essential matrix, we must now
compute the R and T between the two cameras. However, recall that there are four possible
R, T pairings. In this part, we seek to find these four possible pairings, which we will later
be able to decide between. In the course notes, we explain in detail the following process:

1. To compute R: Given the singular value decomposition E = UDV T , we can rewrite
E = MQ where M = UZUT and Q = UWV T or UW TV T , where

Z =

 0 1 0
−1 0 0
0 0 0

 and W =

0 −1 0
1 0 0
0 0 1


Note that this factorization of E only guarantees that Q is orthogonal. To find a rotation,
we simply compute R = (detQ)Q.

2. To compute T : Given that E = UΣV T , T is simply either u3 or −u3, where u3 is the
third column vector of U .

Implement this in the function estimate initial RT(). We provide the correct R, T , which
should be contained in your computed four pairs of R, T . [5 points]

(b) [Programming Question] In order to distinguish the correct R, T pair, we must first know
how to find the 3D point given matching correspondences in different images. The course
notes explain in detail how to compute a linear estimate (DLT) of this 3D point:

1. For each image i, we have pi = MiP , where P is the 3D point, pi is the homogenous
image coordinate of that point, and Mi is the projective camera matrix.

6



2. Formulate matrix

A =


p1,1m

3⊤
1 −m1⊤

1

p1,2m
3⊤
1 −m2⊤

1
...

pn,1m
3⊤
n −m1⊤

n

pn,2m
3⊤
n −m2⊤

n


where pi,1 and pi,2 are the xy coordinates in image i and mk⊤

i is the k-th row of Mi.

3. The 3D point can be solved for by using the singular value decomposition.

Implement the linear estimate of this 3D point in linear estimate 3d point(). [5 points]

(c) [Programming Question] However, we can do better than linear estimates, but usually
this falls under some iterative nonlinear optimization. To do this kind of optimization, we
need some residual. A simple one is the reprojection error of the correspondences, which is
computed as follows:
For each image i, given camera matrix Mi, the 3D point P , we compute y = MiP , and find
the image coordinates

p′i =
1

y3

[
y1
y2

]
Given the ground truth image coordinates pi, the reprojection error ei for image i is

ei = p′i − pi

The Jacobian is written as follows:

J =


∂e1
∂P1

∂e1
∂P2

∂e1
∂P3

...
...

...
∂em
∂P1

∂em
∂P2

∂em
∂P3


Recall that each ei is a vector of length two, so the whole Jacobian is a 2K× 3 matrix, where
K is the number of cameras. Fill in the methods reprojection error() and jacobian(),
which computes the reprojection error and Jacobian for a 3D point and its list of images.
Like before, we print out a way to verify that your code is working. [5 points]

(d) [Programming Question] Implement the Gauss-Newton algorithm, which finds an approx-
imation to the 3D point that minimizes this reprojection error. Recall that this algorithm
needs a good initialization, which we have from our linear estimate in part (b). Also recall
that the Gauss-Newton algorithm is not guaranteed to converge, so, in this implementation,
you should update the estimate of the point P̂ for 10 iterations (for this problem, you do not
have to worry about convergence criteria for early termination):

P̂ = P̂ − (JTJ)−1JT e

where J and e are the Jacobian and error computed from the previous part. Implement the
Gauss-Newton algorithm to find an improved estimate of the 3D point in the
nonlinear estimate 3d point() function. Like before, we print out a way to verify that
your code is working. [6 points]

(e) [Programming Question] Now finally, go back and distinguish the correct R, T pair from
part (a) by implementing the method estimate RT from E(). You will do so by:

7



1. First, compute the location of the 3D point of each pair of correspondences given each
R, T pair

2. Given each R, T you will have to find the 3D point’s location in that R, T frame. The cor-
rect R, T pair is the one for which the most 3D points have positive depth (z-coordinate)
with respect to both camera frames. When testing depth for the second camera, we must
transform our computed point (which is the frame of the first camera) to the frame of
the second camera.

[6 points]

(f) Congratulations! You have implemented a significant portion of a structure from motion
pipeline. Your code is able to compute the rotation and translations between different cam-
eras, which provides the motion of the camera. Additionally, you have implemented a robust
method to triangulate 3D points, which enable us to reconstruct the structure of the scene. In
order to run the full structure from motion pipeline, please change the variable run pipeline

at the top of the main function to True. Hopefully, you can see a point cloud that looks like
the frontal part of the statue in the above sequence of images.

Submit the final plot of the reconstructed statue. Now what if we wanted to
reconstruct a larger scene, such as a house? Comment on why that may be
harder than reconstructing the statue.[5 points]

Note: Since the class is using Python, the structure from motion framework we use is not
the most efficient implementation. It will be common that generating the final plot may
take a few minutes to complete. Furthermore, Matplotlib was not built to be efficient for 3D
rendering. Although it’s nice to wiggle the point cloud to see the 3D structure, you may find
that the GUI is laggy. If we used better options that incorporate OpenGL (see Glumpy), the
visualization would be more responsive. However, for the sake of the class, we will only use
the numpy-related libraries.

8


	Submission Guideline
	Fundamental Matrix Estimation From Point Correspondences (30 points)
	Matching Homographies for Image Rectification (23 points)
	The Factorization Method (15 points)
	Triangulation in Structure From Motion (32 points)

