
CS231A: Computer Vision, From 3D Perception to 3D Reconstruction and be-
yond Homework #1

(Spring 2024) Due: Friday, April 19

Please put together a PDF with your answers for each problem, and submit it to the appropriate
assignment on Gradescope. We recommend you to add these answers to the latex template files on
our website, but you can also create a PDF in any other way you prefer.

The assignment will require you to complete the provided python files and create a PDF for
written answers. The instructions are bolded for parts of the problem set you should respond to
with written answers. To create your PDF for the written answers, we recommend you add your
answers to the latex template files on our website, but you can also create a PDF in any other way
you prefer. To implement your code, make sure you modify the provided ”.py” files in the code
folder.

For the written report, in the case of problems that just involve implementing code, you will
only need to include the final output (where it is requested) and in some cases a brief description if
requested in the problem. There will be an additional coding assignment on Gradescope that has
an autograder that is there to help you double check your code. Make sure you use the provided
”.py” files to write your Python code. Submit to both the PDF and code assignment, as we will
be grading the PDF submissions and using the coding assignment to check your code if needed.

To test your code, you can choose to install the required packages and run the code yourself,
or you can upload the provided PSET1.ipynb file to Google Drive and complete the code with an
online interface. Here are instructions for the latter approach. In Google Drive, follow these steps:

a. Click the wheel in the top right corner and select Settings.

b. Click on the Manage Apps tab.

c. At the top, select Connect more apps which should bring up a GSuite Marketplace window.

d. Search for Colab then click Add.

e. Now, upload “PSET1.ipynb“, open it, and follow the instructions inside.

There will be two assignments to submit to on Gradescope: one for coding files and one for
written answers. The former will be graded by an autograder and the latter will be graded by us, so
you should submit to both. To submit the python files to the autograder, create a zip file containing
the ”.py” files and upload this zip file to the Gradescope assignment. On to the problems!

1 Projective Geometry Problems [20 points]

In this question, we will examine properties of projective transformations. We define a camera
coordinate system, which is only rotated and translated from a world coordinate system.

(a) Prove that parallel lines in the world reference system are still parallel in the camera reference
system. [4 points]

(b) Consider a unit square pqrs in the world reference system where p, q, r, and s are points. Will
the same square in the camera reference system always have unit area? Prove or provide a
counterexample. [4 points]

1

(c) Now let’s consider affine transformations, which are any transformations that preserve par-
allelism. Affine transformations include not only rotations and translations, but also scaling
and shearing. Given some vector p, an affine transformation is defined as

A(p) = Mp+ b

where M is an invertible matrix. Prove that under any affine transformation, the ratio of
parallel line segments is invariant, but the ratio of non-parallel line segments is not invariant.
[6 points]

(d) You have explored whether these three properties hold for affine transformations. Do these
properties hold under any projective transformation? Justify briefly in one or two sentences
(no proof needed). [6 points]

2 Affine Camera Calibration (35 points)

In this question, we will perform affine camera calibration using two different images of a calibration
grid. First, you will find correspondences between the corners of the calibration grids and the 3D
scene coordinates. Next, you will solve for the camera parameters.

It was shown in class that a perspective camera can be modeled using a 3 × 4 matrix:

x
y
w

 =

p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34



X
Y
Z
1

 (1)

which means that the image at point (X,Y, Z) in the scene has pixel coordinates (x/w, y/w). The
3 × 4 matrix can be factorized into intrinsic and extrinsic parameters.

An affine camera is a special case of this model in which rays joining a point in the scene to
its projection on the image plane are parallel. Examples of affine cameras include orthographic
projection and weakly perspective projection. An affine camera can be modeled as:

xy
1

 =

p11 p12 p13 p14
p21 p22 p23 p24
0 0 0 1



X
Y
Z
1

 (2)

which gives the relation between a scene point (X,Y, Z) and its image (x, y). The difference is that
the bottom row of the matrix is [0 0 0 1], so there are fewer parameters we need to calibrate.
More importantly, there is no division required (the homogeneous coordinate is 1) which means
this is a linear model. This makes the affine model much simpler to work with mathematically - at
the cost of losing some accuracy. The affine model is used as an approximation of the perspective
model when the loss of accuracy can be tolerated, or to reduce the number of parameters being
modeled. Calibration of an affine camera involves estimating the 8 unknown entries of the matrix
in Eq. 2 (This matrix can also be factorized into intrinsics and extrinsics, but that is outside the
scope of this homework). Factorization is accomplished by having the camera observe a calibration
pattern with easy-to-detect corners.

Scene Coordinate System

The calibration pattern used is shown in Figure 1, which has a 6 × 6 grid of squares. Each
square is 50mm× 50mm. The separation between adjacent squares is 30mm, so the entire grid is

2

(a) Image formation in an affine camera. Points are projected via parallel rays onto the
image plane

(b) Image of calibration grid at Z=0 (c) Image of calibration grid at Z=150

Figure 1: Affine camera: image formation and calibration images.

450mm× 450mm. For calibration, images of the pattern at two different positions were captured.
These images are shown in Fig. 1 and can be downloaded from the course website. For the second
image, the calibration pattern has been moved back (along its normal) from the rest position by
150mm.

We will choose the origin of our 3D coordinate system to be the top left corner of the calibration
pattern in the rest position. The X-axis runs left to right parallel to the rows of squares. The
Y -axis runs top to bottom parallel to the columns of squares. We will work in units of millimeters.
All the square corners from the first position corresponds to Z = 0. The second position of the
calibration grid corresponds to Z = 150. The top left corner in the first image has 3D scene
coordinates (0, 0, 0) and the bottom right corner in the second image has 3D scene coordinates
(450, 450, 150). This scene coordinate system is labeled in Fig. 1.

(a) Given correspondences for the calibrating grid, solve for the camera parameters using Eq.
2. Note that each measurement (xi, yi) ↔ (Xi, Yi, Zi) yields two linear equations for the
8 unknown camera parameters. Given N corner measurements, we have 2N equations
and 8 unknowns. Using the given corner correspondences as inputs, complete the method
compute camera matrix(). You will construct a linear system of equations and solve for the
camera parameters to minimize the least-squares error. After doing so, you will return the
3× 4 affine camera matrix composed of these computed camera parameters. In your written
report, submit your code as well as the camera matrix that you compute. [15 points]

3

(b) After finding the calibrated camera matrix, you will compute the RMS error between the given
N image corner coordinates and N corresponding calculated corner locations in rms error().
Recall that

RMStotal =
√∑

((x− x′)2 + (y − y′)2)/N

Please submit your code and the RMS error for the camera matrix that you found in part
(a). [15 points]

(c) Could you calibrate the matrix with only one checkerboard image? Explain briefly in one or
two sentences. [5 points]

3 Single View Geometry (45 points)

(a) Image 1 (1.jpg) with marked pixels (b) Image 2 (2.jpg) with marked pixels

Figure 2: Marked pixels in images taken from different viewpoints.

In this question, we will estimate camera parameters from a single view and leverage the pro-
jective nature of cameras to find both the camera center and focal length from vanishing points
present in the scene above.

(a) In Figure 2, we have identified a set of pixels to compute vanishing points in each image.
Please complete compute vanishing point(), which takes in these two pairs of points on
parallel lines to find the vanishing point. You can assume that the camera has zero skew and
square pixels, with no distortion. [5 points]

(b) Using three vanishing points, we can compute the intrinsic camera matrix used to take the
image. Do so in compute K from vanishing points(). [10 points]

(c) Is it possible to compute the camera intrinsic matrix for any set of vanishing points? Similarly,
is three vanishing points the minimum required to compute the intrinsic camera matrix?
Justify your answer. [5 points]

(d) The method used to obtain vanishing points is approximate and prone to noise. Discuss
approaches to refine this process. [5 points]

(e) This process gives the camera internal matrix under the specified constraints. For the re-
mainder of the computations, use the following internal camera matrix:

4

K =

2448 0 1253
0 2438 986
0 0 1


Identify a sufficient set of vanishing lines on the ground plane and the plane on which the
letter A exists, written on the side of the cardboard box, (plane-A). Use these vanishing
lines to verify numerically that the ground plane is orthogonal to the plane-A. Fill out the
method compute angle between planes() and submit your code and the computed angle.
[10 points]

(f) Assume the camera rotates but no translation takes place. Assume the internal camera
parameters remain unchanged. An Image 2 of the same scene is taken. Use vanishing points
to estimate the rotation matrix between when the camera took Image 1 and Image 2. Fill
out the method compute rotation matrix between cameras() and submit your code and
your results. [10 points]

5

	Projective Geometry Problems [20 points]
	Affine Camera Calibration (35 points)
	Single View Geometry (45 points)

