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1 State estimation

Knowing the current state of the environment is crucial for artificial agents
to reliably perform real-time decision-making. In state estimation, we
aim to infer the latent state of the system at the current point in time by
continuously combining measurements from different sensor sources (multi-
modal perception).

We first examine discrete-time dynamical systems from a proba-
bilistic perspective. Figure 1 visualizes a partially observable Markov
decision process (POMDP) in form of a graphical model.

Figure 1: Graphical POMDP model.

The directed edges indicate conditional dependence relations. xt ∈ Rn is
the state at time t and it only depends on the previous state xt−1. zt ∈ Rk is
a sensor observation that depends on the state at time t. ut ∈ Rm represents
the control input applied at time t. For instance, the state of an artificial
agent situated in some environment could be position, orientation, linear and
angular velocity, or any combination of the above. Similarly, measurements
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derived from the state could be camera images or Lidar measurements of the
environment that depend on the robot position and movement.

The measurements and control inputs are known, but the hidden state
history x0:t is unknown. We assume that the system evolves in a stochastic
manner and that observations are stochastic. Therefore, we model the state
Xt and observations Zt as random variables that can take on xt and zt as
possible values. To simplify notation, we write p(Xt = xt) as p(xt) and
similarly for Zt.

The goal of a state estimator is to compute or approximate the posterior
probability distribution of the state xt given the available data (histories of
measurements and control inputs) and known models for state transitions
and observations. Specifically, we want to know the posterior distribution of
the state p(xt|z1:t, u1:t), which assigns a probability to every possible value
that the state can take on given the sequence of measurements and control
inputs. The posterior is also called the belief about the state’s value at time
t, represented by bel(t). The probabilistic formulation does not give an exact
value for the state, but enables us to quantify our uncertainty about what
the state may be.

By representing a dynamical system using the graphical model in Figure 1,
we assume that the state is complete. This assumptions leads to two key
properties. First, we assume that the system is Markovian, i.e. the current
state xt only depends on the previous state xt−1 and previous control input
ut−1, as opposed to the entire history z1:t−1. This can be expressed as

p(xt|x0:t−1, z1:t−1, u1:t) = p(xt|xt−1, ut) (1)

which is also called the transition model, representing how likely the system
transitions to state xt when currently in xt+1 and given control input ut.

Second, we assume that that current measurement zt only depends on
the current state xt, i.e. zt is conditionally independent of all previous states
x0:t−1, measurements z1:t−1 and control inputs u1:t. This can be expressed as

p(zt|x0:t, z1:t−1, u1:t) = p(zt|xt) (2)

This is also referred to as the measurement model, which represents how
likely a measurement zt is given the state xt.

2 Bayes filter

A recursive filter continuously ingests new measurements to estimate the
state posterior as illustrated in Figure (2). At each time step t, we compute
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our new posterior p(xt|z1:t, u0:t) using only our old posterior p(xt−1|z1:t−1, u0:t−1),
new control input ut−1 and new measurement zt. Thus, the complexity of a
recursive filter is constant with respect to time; it does not depend on the
size of the history and is suitable for real-time inference.

Figure 2: Diagram of a general recursive filter.

2.1 Conditional probability review

We can factorize a joint probability distribution as p(A,B) = p(A|B)p(B),
where A and B are random variables. If the joint distribution is conditioned
on another random variable C, we can just pass the conditioning along as
p(A,B|C) = p(A|B,C)p(B|C). We can marginalize a distribution as p(A) =∫
B
p(A,B)dB. Similar to before, we have p(A|C) =

∫
B
p(A,B|C)dB. We

can factorize a joint distribution in two separate ways, resulting in Bayes
rule, which is p(A|B)p(B) = p(B|A)p(A).

2.2 Derivation

We now derive the Bayes filter, the simplest recursive filter. Our goal is
to derive a recursive expression for the state posterior that only depends
on previous posterior, the current measurement zt, control input ut, and
the transition and measurement models. The models are assumed to be
known and tractable to compute p(xt|xt−1, ut) and p(zt|xt). Bayes rule and
conditional independence of measurements gives us:
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p(xt|z1:t, u1:t) =
p(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)

p(zt|z1:t−1, u1:t)
(3)

=
p(zt|xt)p(xt|z1:t−1, u1:t)

p(zt|z1:t−1, u1:t)
(4)

We then simplify the two terms on the right hand side that still depend
on the entire history of observations. Let us first look at the denominator.
Marginalizing over xt and using the conditional independence of measure-
ments gives:

p(zt|z1:t−1, u1:t) =

∫
xt

p(zt, xt|z1:t−1, u1:t)dxt

=

∫
xt

p(zt|xt, z1:t−1, u1:t)p(xt|z1:t−1, u1:t)dxt

=

∫
xt

p(zt|xt)p(xt|z1:t−1, u1:t)dxt

Next, we can then simplify p(xt|z1:t−1, u1:t), which now appears twice in
Equation 4. Marginalizing over xt−1 and applying the Markov assumption
gives:

p(xt|z1:t−1, u1:t) =

∫
xt−1

p(xt, xt−1|z1:t−1, u1:t)dxt−1

=

∫
xt−1

p(xt|xt−1, z1:t−1, u1:t)p(xt−1|z1:t−1, u1:t)dxt−1

=

∫
xt−1

p(xt|xt−1, ut)p(xt−1|z1:t−1, u1:t)dxt−1

We can now put together the full form of the Bayes filter, illustrated in
Figures (3) and (4).
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Figure 3: Diagram of the Bayes filter.

Figure 4: Predict and update step equations in the Bayes filter.

There are two steps. In the prediction step, we use our transition model
p(xt|xt−1, ut) and previous posterior to predict the state posterior at the
current time step p(xt|z1:t−1, u1:t). The prediction is represented as b̂el(t− 1),
and it is our best guess for the distribution of xt without any new information.
When t = 1, the previous posterior does not exist yet, so we use a prior p(x0)
that represents our initial belief about how x is distributed at the start t = 0.
In the update step, we refine the predicted belief by incorporating the new
measurement zt. The measurement likelihood, p(zt|xt), indicates how
likely it would be to observe zt given the predicted xt. Thus, the numerator
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in the update step assigns a probability to a specified xt based on both 1) how
well xt explains our measurement zt and 2) how likely our dynamical system
transitions from the previous posterior estimate xt−1 to xt. The denominator
is simply a normalization constant to ensure that our updated posterior
distribution sums to 1. Once we predict and update our belief, we can repeat
the process at t+ 1 as long as we have a new measurement zt+1.

The Bayes filter is simple and generalizes to any probability distribution.
In practice, however, it is limited since it is often intractable to compute the
integral for the normalization constant. We need to know the entire prob-
ability distribution (e.g., in a tabular form for every value on the domain),
which is often only possible when dealing with discrete random variables or
when assuming a particular functional form of the posterior distribution, e.g.
Gaussian. Thus, it is more useful to think of the Bayes filter as a “proba-
bilistic template” that we can adapt to different sets of systems with specific
needs and assumptions.

2.3 Discrete Bayes filter

Let’s look at a practical implementation for the discrete case, where Xt and
Zt have a finite number of outcomes. AssumeXt is a discrete random variable
with N possible values; the domain of Xt is xt ∈ {1, 2, . . . , N}. Similarly,
Zt is a discrete random variable with M possible outcomes; the domain of
Zt is zt ∈ {1, 2, . . . ,M}. The predict and update equations for the discrete
Bayes filter are the same as in the continuous case, except the integrals are
replaced with summations.

Equation (5) is the belief vector representing the entire state posterior
distribution at time t.

bel(t) =


p(Xt = 1|z1:t, u1:t)
p(Xt = 2|z1:t, u1:t)

...
p(Xt = N |z1:t, u1:t)

 (5)

The predict step can then be implemented as a matrix multiplication:

b̂el(t− 1) = T (ut)bel(t− 1) (6)

=


p(Xt = 1|z1:t−1, u1:t)
p(Xt = 2|z1:t−1, u1:t)

...
p(Xt = N |z1:t−1, u1:t)

 (7)
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with T (ut) representing the transition probabilities:

T (ut) =

 p(Xt = 1|Xt−1 = 1, ut) . . . p(Xt = 1|Xt−1 = N, ut)
...

. . .
...

p(Xt = N |Xt−1 = 1, ut) . . . p(Xt = N |Xt−1 = N, ut)

 . (8)

Similarly, the update step can be implemented as a matrix multiplication:

bel(t) =
M(zt)b̂el(t− 1)

1T (M(zt)b̂el(t− 1))
(9)

where M represents the measurement model probabilities:

M(zt) =

 p(Zt = 1|Xt = 1) . . . p(Zt = 1|Xt = N)
...

. . .
...

p(Zt = M |Xt = 1) . . . p(Zt = M |Xt = N)

 (10)

In the denominator of Equation 5, 1T is a vector where each entry is 1 and
is used to sum the unnormalized probabilities.

We can also apply this approach to continuous random variables by split-
ting up the infinitely large state space into a finite number of regions with a
single probability value representing the cumulative posterior. Discretizing
a continuous state space results in the histogram filter.

3 Kalman filter

Earlier, we saw the state transition model p(xt|xt−1, ut) and measurement
model p(zt|xt) represented as probability distributions. This is the Bayesian
perspective. The transition and measurement models can also be viewed
from a dynamical systems perspective where Equation (11) represent the
dynamics model and Equation (12) the measurement model.

xt = f(xt−1, ut) + wt−1 (11)

zt = h(xt) + vt (12)

f(·) is the dynamics of the system that encapsulates how the state
evolves over time from xt to xt+1. Similarly, h(·) is a function that maps the
state xt to the corresponding observation. wt and vt are the process noise
(random disturbances in the system) and measurement noise (within the
sensor), respectively, that arise naturally in dynamical systems. We assume
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that the dynamics and measurement model as well as the noise statistics
Dw, Dv (such that w ∼ Dw, v ∼ Dv) are known. The dynamical system
equations are consistent with the graphical model in Figure 1 and our as-
sumption that the state is complete: xt only depends on xt−1 and ut, and zt
only depends on xt.

3.1 Gaussian distributions

If X ∈ RN is a random vector sampled from a multivariate Gaussian dis-
tribution (also known as a normal distribution), we say that X ∼ N (µ,Σ),
where µ ∈ RN is the mean vector and Σ ∈ RN×N is the positive semi-
definite covariance matrix (analogous to the variance in the univariate
case). The corresponding probability density function (PDF) is:

p(X) = p(µ,Σ) =
1√

(2πN |Σ|
exp(−1

2
(x− µ)TΣ−1(x− µ)) (13)

Figure (5) illustrates both the physical shape of the distribution and level
sets, where the probability is constant along each ellipse.

Figure 5: The multivariate Gaussian shape on the left [2], and the contour
ellipses on the right.

We see that Σ indicates the ”spread” of the distribution in each direction;
the eigenvectors of Σ are the axis directions and the scaling is based on the
eigenvalues. Large eigenvalues indicate a high degree of uncertainty in the di-
rection of the corresponding eigenvector, and vice versa for small eigenvalues.
Not only does the covariance matrix represent the distribution confidence,
it also indirectly captures the correlation between different components of
the state, which is useful for estimation. For more details on multivariate
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Gaussians, please refer to the CS 229 notes [2, 1] and Berkeley CS 189 notes
[3].

The Kalman filter is the adaptation of the Bayes filter to linear-
Gaussian systems. As the name implies, linear-Gaussian systems make
two key assumptions. First, we assume that all random variables involved
(e.g. state, measurements, posteriors, noise) are multivariate Gaussians. Sec-
ond, we assume that all variables are linear in their parent variables; f(·) and
h(·) are linear (in the form y = Ax). Equations (14) and (15) illustrate the
linear-Gaussian system model.

xt = Atxt−1 +Btut + wt (14)

zt = Ctxt + vt (15)

We assume the process noise and measurement noise are Gaussian white
noise with zero mean, that is wt ∼ N (0, Qt) and vt ∼ N (0, Rt), and for
times t, τ such that t ̸= τ , Cov(wt, wτ ) = 0 and Cov(vt, vτ ) = 0. Our initial
condition, or the prior, is represented as x0 ∼ N (µ0|0,Σ0|0). We further
assume that Cov(x0, vt) = 0,Cov(x0, wt) = 0 for all t, and Cov(wt, vτ ) = 0
for all t, τ .

While the Kalman filter is limited to linear-Gaussian systems, it enables
us to efficiently deal with continuous random variables and vectors (infinitely
many outcomes). This is because as long as we have µ and Σ, we have the
entire probability distribution. Thus, instead of predicting and updating the
entire distribution p(x) (for all possible x) as we did for the Bayes filter, we
simply need to predict and update our mean vector and covariance matrix at
each time step, which we can do with closed-form equations. Here, we only
lay the Kalman filter equations and interpret them to explain the underly-
ing intuition. There are numerous derivations online from the probabilistic
perspective by applying the expectation definitions for mean and covariance,
or from a optimization perspective as the best linear unbiased estimator in
terms of mean-squared error.

Similar to the Bayes filter, the Kalman filter consists of a predict and
update step.

In the predict step, we compute the mean and covariance of the predicted
posterior p(xt|z1:t−1, u1:t) ∼ N (µt|t−1,Σt|t−1) from our previous posterior and
knowledge of the system’s process model:

µt|t−1 = Atµt−1|t−1 +Btut (16)

Σt|t−1 = At−1Σt−1|t−1A
T
t−1 +Qt−1 (17)
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The previous posterior is p(xt−1|z1:t−1, u1:t−1) ∼ N (µt−1|t−1,Σt−1|t−1). To
predict the mean µt|t−1, we plug µt−1|t−1 into Equation 14 to get Equation 16.
The noise term wt in Equation 14 has zero mean so it does not affect µt|t−1.
To derive the covariance prediction in Equation 17, we first make use of the
fact that given a random variable x with covariance Σ, Cov(Ax) = AΣAT .
Then, to account for any possible disturbances as the system evolves over
time, we add in the covariance Q of the process noise. Since all covariance
matrices are positive definite, this summation leads to larger predicted co-
variance values representing increased uncertainty. Because we are making a
prediction about the state at time t with data only up to t− 1, we are now
less confident about the state distribution.

In the update step, we refine the predicted mean and covariance with the
new measurement zt. The mean and covariance update equations are:

µt|t = µt|t−1 +Kt(zt − Ctµt|t−1) (18)

Σt|t = Σt|t−1 −KtCtΣt|t−1 (19)

Kt = Σt|t−1C
T
t (CtΣt|t−1C

T
t +Rt)

−1 (20)

We can see that the update step is trickier than the predict step from the
equations alone. Starting with the mean update, zt is our sensor measure-
ment and Ctµt|t−1 is our predicted measurement (if the state was what we
predicted, this is the measurement we would have). Thus, the measurement
residual, zt − Ctµt|t−1, also known as the innovation, represents how much
our predicted measurement differs from the actual observation we obtained
through sensors. The mean update therefore attempts to refine and recon-
cile our predicted mean µt|t−1 with this measurement residual. This is done
through the Kalman Gain Kt, which can be viewed as a ”weighting factor”
that informs us of how much we need to revise our estimate. Let’s rewrite
Kt as:

Kt = C−1
t

CtΣt|t−1C
T
t

CtΣt|t−1C
T
t +Rt

(21)

Let us analyze the fraction on the right hand side for two extreme cases.
First, the case that Rt approaches zero in the limit means that we believe
there is little measurement noise. The fraction approaches 1 and K is simply
C−1

t , and therefore µt|t = C−1
t zt. No noise means we are confident that our

measurement zt is highly accurate, and we can simply invert our measurement
model to obtain the true state. Furthermore, the covariance is updated to
be Kt = Σt|t−1 − Σt|t−1 = 0, indicating our high confidence about the value
of the state. The second case is that Σt approaches zero in the limit, which
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means that there is little process noise. The fraction approaches 0, K = 0,
the updated mean is µt|t = µt|t−1 and the updated covariance is Σt|t = Σt|t−1.
This means that because there are no disturbances in the system, the process
model alone is sufficient to propagate the state across time so we do not
need to incorporate the measurement at all (assuming we initialize the filter
with a good prior). In practice, neither of these two cases ever occur; the
filter attempts to update the mean and covariance to use both the actual
measurement and the predicted measurement, as illustrated in Figure (6) for
the case of a 2D state.

Figure 6: Kalman filter update from the distributions perspective.

The axes in Figure 6 are the components of the state; we are looking at the
distributions from top-down. The ellipse in orange represents the distribution
for our predicted measurement, given byN (Ctµt|t−1, CtΣt|t−1C

T
t ). The ellipse

in blue represents the distribution for the actual measurement, given by
N (zt, Rt). The Kalman filter multiplies both of these distributions to find
the overlapping region under which xt is likely for both distributions (recall
p(x1, x2) = p(x1)p(x2). This turns out to be our updated distribution, which
is another Gaussian represented by the green ellipse, given by N (µt|t,Σt|t).
Since we’re taking the overlap, notice how the updated distribution is smaller
compared to the two parent distributions. While the predict step increases
the covariance (uncertainty), the update step uses the new measurement zt
to reduce the covariance. Thus, the covariance alternates between increasing
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and decreasing after the predict and update step. Overall, the covariance
decreases until it converges.

4 Extended Kalman filter (EKF)

We mentioned earlier the Kalman filter holds for linear-Gaussian systems.
Linear process and measurement models ensure that the predicted and up-
dated distributions are also Gaussian.

Figure 7: Pushing a Gaussian distribution through a linear mapping [4].

Figure (7) shows how applying a linear mapping to a random variable
x still results in a Gaussian distribution after the transformation. On the
other hand, Figure (8) shows how applying a non-linear mapping results in
a non-Gaussian distribution and the previous predict and update equations
cannot be applied anymore.
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Figure 8: Pushing a Gaussian distribution through a non-linear mapping.

The extended Kalman filter handles non-linear dynamics and mea-
surement functions by linearizing them about the input at each time t.

We do this with a first-order Taylor series expansion around f(µt−1|t−1, ut)
and g(µt|t−1).

The predict step then becomes:

µt|t−1 = f(µt−1|t−1, ut) (22)

Σt|t−1 = At−1Σt−1|t−1A
T
t−1 +Qt−1 (23)

The update step becomes:

µt|t = µt|t−1 +Kt(zt − g(µt|t−1)) (24)

Σt|t = Σt|t−1 −KtCtΣt|t−1 (25)

Kt = Σt|t−1C
T
t (CtΣt|t−1C

T
t +Rt)

−1 (26)

At and Ct are the Jacobians of the nonlinear dynamics and measurement
model with respect to x:

At(µt−1|t−1, ut) =
∂f(xt, ut)

∂xt

|xt=µt−1|t−1
(27)

Ct(µt|t−1, ut) =
∂g(xt, ut)

∂xt

|xt=µt|t−1
(28)
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