
Fitting and Matching

Bryan Chiang and Silvio Savarese

June 19, 2022

1 Overview

The goal of fitting is to find a parametric model that best describes the
observed data. We obtain the optimal parameters of such a model by mini-
mizing a chosen fitting error betwee the data and a particular estimate of
the model parameters. A classic example is fitting a line to a set of given
(x, y) points. Other examples we’ve seen in this class include computing a
2D homography H between set of point correspondences in different images
or computing the fundamental matrix F using the eight-point algorithm.

2 Least-squares

Given a series of N 2D points {(xi, yi)}Ni=1, the method of least-squares
fitting attempts to find a line y = mx+ b such that the squared error in the
y dimension is minimized, as illustrated in Figure (1).

Figure 1: Ordinary least squares.

1

Specifically, we want to find model parameters w =
[
m b

]T
to minimize

the sum of squared residuals between yi and the model estimate ŷi = mxi+b,
given in Equation (1). We define the residual as yi − ŷi.

E =
N∑
i=1

(yi − ŷi)
2 (1)

=
N∑
i=1

(yi −mxi − b)2 (2)

We can write this in matrix notation as:

E =
N∑
i=1

(yi −
[
xi 1

] [m
b

]
)2 (3)

= ∥

y1
...
yN

−

x1 1
...

...
xN 1

[
m
b

]
∥2 (4)

= ∥Y −Xw∥2 (5)

The residual is now r = y−Xw, we assume X to be skinny and full rank.
We want to find the B that minimizes the norm of the residual squared,
which we can write as:

∥r∥2 = rT r (6)

= (y −Xw)T (y −Xw) (7)

= yTy − 2yTXw + wTXTXw (8)

We then set the gradient of the residual with respect to w equal to 0.
Recall XTX is symmetric.

∇w∥r∥2 = −2XTy + 2XTXw (9)

= 0 (10)

This leads to the normal equations.

XTXw = XTy (11)

2

We now have a closed-form solution for w in Equation (12). A is full rank
so ATA is invertible.

w = (XTX)−1XTy (12)

However, note that this method fails completely for fitting points that
describe a vertical line (m undefined). In this case, m would be set to ex-
tremely large number, leading to numerically unstable solutions. To fix this,
we can use an alternate line formulation of the form ax+ by+d = 0. We can
obtain a vertical line by setting b = 0. Here’s one way to think about this
line representation. The line direction (slope) is given by n⃗; the set of (x, y)
satisfying (x, y) · (a, b) = xa + by = 0 is the line orthogonal to n⃗. However,
the line can also be arbitrarily shifted to location (x0, y0), so we have

a(x− x0) + b(y − y0) = ax+ by − ax0 − by0 (13)

= ax+ by + c (14)

= 0 (15)

where c = −ax0 − by0. The slope of line is then m = −a
b
, which now may be

undefined. Earlier our residual was only in the y-axis. However, now that our
new line parameterization accounts for error in the both the x- and y-axes,
our new error is the sum of squared orthogonal distances, as illustrated in
Figure (2).

Figure 2: Total least squares.

Given a 2D data point P = (xi, yi) and a point on the line Q = (x, y),
the distance from P to the line is equivalent to the length of the projection

3

of
−→
QP onto the normal vector n⃗ orthogonal to the line. We have

−→
QP =

(xi − x, yi − y), n⃗ = (a, b), which gives:

d =
|
−→
QP · n⃗|
∥n⃗∥

(16)

=
|a(xi − x) + b(yi − y)|√

a2 + b2
(17)

=
|axi + byi + c|√

a2 + b2
(18)

Recall Q lies on the line, so c = −ax− by.

Figure 3: Distance between a point and a line.

Our new set of parameters is now w =
[
a b c

]T
. To simplify the error,

we make the solution unique and remove the denominator by constraining
∥n⃗∥2 = 1, so the new error is

E(a, b, x0, y0) =
N∑
i=1

(a(xi − x0) + b(yi − y0))
2 (19)

=
N∑
i=1

(axi + byi + c)2 (20)

where a2 + b2 = 1. However, putting this into matrix notation is still
tricky due to the presence of c when the constraint is only on a, b. To simplify

4

further, we note that the resulting line of best fit that minimizes E must pass
through the data centroid (x̄, ȳ), defined as

x̄ =
1

N

N∑
i=1

xi (21)

ȳ =
1

N

N∑
i=1

yi (22)

For every n⃗ and every possible set of points {(xi, yi)}Ni=1, E is minimized
when we set c = −ax̄− bx̄. In other words, given every point (x0, y0) ∈ R2,
we have

E(a, b, x0, y0) ≥ E(a, b, x̄, ȳ) (23)

To see why this is true, we define vectors w, z such that

wi = a(xi − x0) + b(yi − y0) (24)

zi = a(xi − x̄) + b(yi − ȳ) (25)

We can then write the errors as

E(a, b, x0, y0) = ∥w∥2 (26)

E(a, b, x̄, ȳ) = ∥z∥2 (27)

The relationship between w and z is then

w = z + h1 (28)

where h = a(x̄ − x0) + b(ȳ − y0) ∈ R and 1 is a vector of all ones. z is
orthogonal to 1 since

z · 1 =
N∑
i=1

zi (29)

= a

N∑
i=1

(xi − x̄) + b

N∑
i=1

(yi − ȳ) (30)

= a(
N∑
i=1

xi −N(
1

N

N∑
i=1

xi)) + b(
N∑
i=1

yi −N(
1

N

N∑
i=1

yi)) (31)

= 0a+ 0b = 0 (32)

5

Thus, by the Pythagorean theorem, we have

E(a, b, x0, y0) = ∥w∥2 (33)

= ||z||2 + h2N (34)

≥ ||z||2 = E(a, b, x̄, ȳ) (35)

We have shown that the line of best fit must pass through (x̄, ȳ), so we
can constrain c as

c = −ax̄− bȳ (36)

We can then eliminate c by shifting all points to be centered around the
data centroid (setting (x0, y0) = (x̄, ȳ)), which allows us to finally formulate
the error as a matrix product.

E =
N∑
i=1

(a(xi − x̄) + b(yi − ȳ))2 (37)

= ∥

x1 − x̄ y1 − ȳ
...

...
xN − x̄ yN − ȳ

[
a
b

]
∥2 (38)

= ∥Xw∥2 (39)

where w =
[
a b

]T
and ∥w∥2 = 1. This is a constrained least-squares

problem that we’ve seen before in previous lectures. By SVD (X full rank),
we have

X = USV T (40)

U ∈ RN×M , V T ∈ RM×M are both orthonormal matrices, while S ∈
RM×M is a diagonal matrix containing the singular values of X in descending
order. M = 2 here. Since U, V are orthonormal, we know that

∥USV Tw∥ = ∥SV Tw∥ (41)

∥V Tw∥ = ∥w∥ (42)

Setting v = V Tw, we can now minimize ∥SV Tw∥ with the new but
equivalent constraint that ∥v∥2 = 1. ∥SV Tw∥ = ∥Sv∥ is minimized when

6

v =
[
0 1

]T
since the diagonal of S is sorted in descending order. Finally,

we obtain w = V V Tw = V v, so the w that minimizes the error is the last
column in V .

Interpreting this from a gain perspective, we can write the SVD X =
USV T as

X =
M∑
i=1

σiuiv
T
i (43)

v1, . . . , vM are columns of V , σi are the diagonal values of S = diag(σ1, . . . , σM),
and u1, . . . , uM are the columns of U . Multiplying w by the SVD, USV Tw,
can then be viewed as first computing the components of w along the input
directions v1, . . . , vM , scaling the components by σi, and then reconstituting
along the output directions u1, . . . , uM . V Tw gives the projection of w along
each column in V (recall ∥vi∥2 = 1). Similarly, Uw′ can be seen as a linear
combination of the output directions, u1w

′
1 + · · · + uMw′

M . Thus, to find w
that minimizes Xw subject to ∥w∥2 = 1 is simply choosing the input direc-
tion that minimizes the magnitude of the output vector, which is the last
column of V .

In practice, least-squares fitting handles noisy data well but is susceptible
to outliers. To see why, if we write the residual for the i-th data point as
ui = axi + byi + c, and the cost as C(ui), our error can be generalized to

E =
N∑
i=1

C(ui) (44)

The quadratic growth of the squared error C(ui) = u2
i that we’ve been

using so far (illustrated on the left side of Figure (4) means that outliers with
large residuals ui exert an outsized influence on cost minimum.

7

Figure 4: Cost functions: squared residual (left) vs. robust cost function
(right). The x-axis error is the residual ui, and the y-axis is the cost C(ui).

We can penalize large residuals (outliers) less by a robust cost function
(right half of Figure (4)), such as

C(ui, σ) =
u2
i

σ2 + u2
i

(45)

When the residual ui is large, the cost C saturates to 1 such that their
contribution to the cost is limited, but when u is small, the cost function
resembles the squared error. However, now we need to choose σ, also known
as the scale parameter. σ controls how much weight is given to potential
outliers, illustrated in Figure (5). A large σ widens the quadratic curve in
the center, penalizing outliers more relative to other points (similar to the
original squared error function). A small σ narrows the quadratic curve,
penalizing outliers less. If σ is too small, then most of the residuals will be
treated as outliers even when they are not, leading to a poor fit. If σ is too
large, then we do not benefit from the robust cost function and end up with
the least-squares fit.

Figure 5: Comparison of different scale parameters.

8

Since the robust cost functions are non-linear, they are optimized with
iterative methods. In practice, the closed-form least-squares solution is often
used as a starting point, followed by iteratively fitting the parameters with
a robust non-linear cost function. For further details on robust estimators,
please refer to Appendix 6.8 “Robust cost function” in [HZ]. In addition,
while we derived least-squares fitting for a line in the notes; section 4.1 in
[HZ] concisely covers the direct linear transformation (DLT) algorithm
which is used to compute a homography using the same constrained least-
squares optimization procedure.

3 RANSAC

Another fitting method called RANSAC, which stands for random sample
consensus, is designed to be robust to outliers and missing data. We demon-
strate using RANSAC to perform line fitting, but it generalizes to many
different fitting contexts.

Figure 6: RANSAC procedure for line fitting.

We again have a series of N 2D points X = {(xi, yi)}Ni=1 that we want to
fit a line to, illustrated by the dots in Figure (6). The first step in RANSAC
is to randomly select the minimum number of points needed to fit a model.
A line requires at least two points, so we choose the two points in green. If
we were estimating the fundamental matrix F , we would need to choose 8
correspondences to use the eight-point algorithm. If we wanted to compute a

9

homography H ∈ R3×3, we would need 4 correspondences (we have two x, y
coordinates for each correspondence) to cover the 8 degrees of freedom up to
scale. The second step in RANSAC is to fit a model to the random sample set.
Here, the two points in green are fitted (i.e., a line is drawn between them)
to obtain the line in black. The third step step is to use the fitted model to
compute the inlier set from the entire dataset. Given the model parameters
w, we define the inlier set as P = {(xi, yi) | r(p = (xi, yi), w) < δ}, where
the r is the residual between a data point and the model and δ is some
arbitrary threshold. Here, the inlier set is represented by the green and blue
points. The size of the inlier set, |P |, indicates how much of the entire set of
points agrees with the fitted model. With P , we can also obtain the outlier
set, defined as O = X \ P . The outlier set here is comprised of the red
points. We repeat these steps for a finite number of iterations M with a new
random sample each time until the size of the inlier set is maximized. While
RANSAC is simple and easy to implement for different fitting scenarios, we
need to tuen several parameters such as the number of times to sample n and
the tolerance threshold δ. RANSAC also assumes that there are a sufficient
number of inliers to agree on a good model, and there is no upper bound on
number of times to compute the parameters (except until exhaustion, which
is often computationally unfeasible).

However, it’s unecessary try every possible sample. We can estimate the
number of iterations n to guarantee with probability p at least one random
sample with an inlier set free of “real” outliers for a given s (minimum number
of points required to fit a model) and ϵ ∈ [0, 1] (proportion of outliers). Now,
we have that the chance that a single random sample of s points contains
all inliers is (1− ϵ)s, so the chance that a single random sample contains at
least one outlier is 1− (1− ϵ)s. Now, the chance that all n samples contain
at least one outlier is (1 − (1 − ϵ)s)n, so the chance that at least one of the
n samples does not contain any outliers is p = 1 − (1 − (1 − ϵ)s)n. We can
now derive n as f

1− p = (1− (1− ϵ)s)n (46)

log(1− p) = n log(1− (1− ϵ)s) (47)

n =
log(1− p)

log(1− (1− ϵ)s)
(48)

4 Hough transform

We introduce another fitting method known as the Hough transform,
which is another voting procedure.

10

Figure 7: Hough transform.

We again want to fit a line of the form y = m′x+ n′ to a series of points
{(xi, yi)}Ni=1 in an image, illustrated on the left half of Figure (7). To find
this line, we consider the dual parameter, or Hough space, illustrated on
the right half of Figure (7). A point (xi, yi) in the image space (on the line
yi = mxi+n) becomes a line in the parameter space defined by n = −xim+yi.
Similarly, a point in the parameter space (m,n) is a line in the image space
given by y = mx+ n.

We see that a line in the parameter space n = −xim + yi represents all
of the different possible lines in the image space that pass through the point
(xi, yi) in the image space. Thus, to find the line in the image space that fits
both image points (x1, y1) and (x1, y1), we associate both points with lines in
the Hough space and find the point of intersection (m′, n′). This point in the
Hough space represents the line in the image space that passes through both
points in the image space. In practice, we would divide the Hough space
into a discrete grid of square cells with width w for the parameter space.
We would maintain a grid of counts for every w × w cell centered at (m,n)
denoted A(m,n) = 0 for all (m,n) initially. For every data point (xi, yi)
in the image space, we would find all (m,n) satisfying n = −xim + yi and
increment the count by 1. After we do this for all data points, the point
(m,n) in the Hough space with the highest count represent the fitted lines
in the image space. We now see why this is a voting procedure: each data
element (xi, yi) can contribute up to one vote for each candidate line in the
image space (m,n).

However, there is a major limitation with the existing parameterization.
As we discussed before with least-squares, the slope of a line in the image
space is unbounded −∞ < m < ∞. This makes Hough voting an computa-

11

tionally and memory intensive algorithm in practice since there is no limit on
the size of the parameter space that we are maintaining counts for. To solve
this, we turn to the polar parameterization of a line, illustrated in Figure
(8).

x cos(θ) + y sin(θ) = ρ (49)

Figure 8: Polar representation of the parameter space.

The left half of Figure (8) shows that ρ is minimum distance from the
origin to the line (bounded by the image size or maximum distance between
any two points in the dataset), and θ is the angle between the x-axis and
and normal vector of the line (bounded between 0 and π). We use the same
Hough voting procedure as before, but now all possible lines in the Cartesian
space going through a specific (xi, yi) corresond to sinusodial profile in the
Hough space, as illustrated in the right half of of Figure (8).

In practice, noisy data points means that sinusoidal profiles in the Hough
space that correspond to points on the same line in the image space, may not
necessarily intersect at the same point in the Hough space. To sol ve this,
we can increase the width w of the grid cells, which increases the tolerance
to imperfect intersections, illustrated in Figure (9). While this can help deal
with noisy data, it introduces yet another parameter that we need to tune.
Small grid sizes may result in missed image space lines due to noise, while
large grid sizes may merge different lines and reduce estimation accuracy
since all ρ, θ within a cell are possible lines.

12

Figure 9: Increase grid cell size for Hough voting to deal with noise.

In addition, with uniform noise in the image space, there will be spurious
peaks in the Hough space and no clear consensus of an appropiate model.

13

