
CS 224N Winter 2025 Assignment 4

Self-Attention, Transformers, and Pretraining

Note. Here are some things to keep in mind as you plan your time for this assignment.

• There are math questions again!

• The total amount of PyTorch code to write, and code complexity, of this assignment is lower than

Assignment 3. However, you’re also given less guidance or scaffolding in how to write the code.

• This assignment involves a pretraining step that takes approximately 1 hour to perform on GCP,

and you’ll have to do it twice. Colab set-up notebook has been provided similar to Assignment

4. The 1 hour timeline is an upper bound on the training time assuming older/slower GPU. On

faster GPUs, the pretraining can finish in around 30-40 minutes.

This assignment is an investigation into Transformer self-attention building blocks, and the effects of pre-

training. It covers mathematical properties of Transformers and self-attention through written questions.

Further, you’ll get experience with practical system-building through repurposing an existing codebase. The

assignment is split into a written (mathematical) part and a coding part, with its own written questions.

Here’s a quick summary:

1. Mathematical exploration: What kinds of operations can self-attention easily implement? Why

should we use fancier things like multi-headed self-attention? This section will use some mathematical

investigations to illuminate a few of the motivations of self-attention and Transformer networks. Note:

for all questions, you should justify your answer with mathematical reasoning when required.

2. Extending a research codebase: In this portion of the assignment, you’ll get some experience and

intuition for a cutting-edge research topic in NLP: teaching NLP models facts about the world through

pretraining, and accessing that knowledge through finetuning. You’ll train a Transformer model to

attempt to answer simple questions of the form “Where was person [x] born?” – without providing

any input text from which to draw the answer. You’ll find that models are able to learn some facts

about where people were born through pretraining, and access that information during fine-tuning to

answer the questions.

Then, you’ll take a harder look at the system you built, and reason about the implications and concerns

about relying on such implicit pretrained knowledge.

1

CS 224N Winter 2025 Assignment 4 Page 2 of 10

1. Attention Exploration (14 points)
Multi-head self-attention is the core modeling component of Transformers. In this question, we’ll get

some practice working with the self-attention equations, and motivate why multi-headed self-attention

can be preferable to single-headed self-attention.

Recall that attention can be viewed as an operation on a query vector q ∈ Rd, a set of value vectors

{v1, . . . , vn}, vi ∈ Rd, and a set of key vectors {k1, . . . , kn}, ki ∈ Rd, specified as follows:

c =

n∑
i=1

viαi (1)

αi =
exp(k⊤i q)∑n
j=1 exp(k

⊤
j q)

(2)

with alpha = {α1, . . . , αn} termed the “attention weights”. Observe that the output c ∈ Rd is an average

over the value vectors weighted with respect to α.

(a) (3 points) Copying in attention. One advantage of attention is that it’s particularly easy to

“copy” a value vector to the output c. In this problem, we’ll motivate why this is the case.

i. (2 points) The distribution α is typically relatively “diffuse”; the probability mass is spread out

between many different αi. However, this is not always the case. Describe (in one sentence)

under what conditions the categorical distribution α puts almost all of its weight on some αj ,

where j ∈ {1, . . . , n} (i.e. αj ≫
∑

i ̸=j αi). What must be true about the query q and/or the

keys {k1, . . . , kn}?
ii. (1 point) Under the conditions you gave in (i), describe the output c.

(b) (2 points) An average of two. Instead of focusing on just one vector vj , a Transformer model

might want to incorporate information from multiple source vectors.

Consider the case where we instead want to incorporate information from two vectors va and vb,

with corresponding key vectors ka and kb. Assume that (1) all key vectors are orthogonal, so

k⊤i kj = 0 for all i ̸= j; and (2) all key vectors have norm 1. Find an expression for a query vector

q such that c ≈ 1
2 (va + vb), and justify your answer.∗ (Recall what you learned in part (a).)

(c) (5 points) Drawbacks of single-headed attention: In the previous part, we saw how it was

possible for a single-headed attention to focus equally on two values. The same concept could easily

be extended to any subset of values. In this question we’ll see why it’s not a practical solution.

Consider a set of key vectors {k1, . . . , kn} that are now randomly sampled, ki ∼ N (µi,Σi), where

the means µi ∈ Rd are known to you, but the covariances Σi are unknown (unless specified otherwise

in the question). Further, assume that the means µi are all perpendicular; µ⊤
i µj = 0 if i ̸= j, and

unit norm, ∥µi∥ = 1.

i. (2 points) Assume that the covariance matrices are Σi = αI, ∀i ∈ {1, 2, . . . , n}, for vanishingly
small α. Design a query q in terms of the µi such that as before, c ≈ 1

2 (va + vb), and provide a

brief argument as to why it works.

ii. (3 points) Though single-headed attention is resistant to small perturbations in the keys, some

types of larger perturbations may pose a bigger issue. In some cases, one key vector ka may be

larger or smaller in norm than the others, while still pointing in the same direction as µa.
†

As an example, let us consider a covariance for item a as Σa = αI + 1
2 (µaµ

⊤
a) for vanishingly

small α (as shown in figure 1). This causes ka to point in roughly the same direction as µa,

but with large variances in magnitude. Further, let Σi = αI for all i ̸= a.

∗Hint: while the softmax function will never exactly average the two vectors, you can get close by using a large scalar

multiple in the expression.
†Unlike the original Transformer, some newer Transformer models apply layer normalization before attention. In these

pre-layernorm models, norms of keys cannot be too different which makes the situation in this question less likely to occur.

CS 224N Winter 2025 Assignment 4 Page 3 of 10

Figure 1: The vector µa (shown here in 2D as an example), with the range of

possible values of ka shown in red. As mentioned previously, ka points in roughly

the same direction as µa, but may have larger or smaller magnitude.

When you sample {k1, . . . , kn} multiple times, and use the q vector that you defined in part i.,

what do you expect the vector c will look like qualitatively for different samples? Think about

how it differs from part (i) and how c’s variance would be affected.

(d) (3 points) Benefits of multi-headed attention: Now we’ll see some of the power of multi-headed

attention. We’ll consider a simple version of multi-headed attention which is identical to single-

headed self-attention as we’ve presented it, except two query vectors (q1 and q2) are defined, which

leads to a pair of vectors (c1 and c2), each the output of single-headed attention given its respective

query vector. The final output of the multi-headed attention is their average, 1
2 (c1 + c2).

As in question 1(c), consider a set of key vectors {k1, . . . , kn} that are randomly sampled, ki ∼
N (µi,Σi), where the means µi are known to you, but the covariances Σi are unknown. Also as

before, assume that the means µi are mutually orthogonal; µ⊤
i µj = 0 if i ̸= j, and unit norm,

∥µi∥ = 1.

i. (1 point) Assume that the covariance matrices are Σi = αI, for vanishingly small α. Design

q1 and q2 in terms of µi such that c is approximately equal to 1
2 (va + vb). Note that q1 and q2

should have different expressions.

ii. (2 points) Assume that the covariance matrices are Σa = αI + 1
2 (µaµ

⊤
a) for vanishingly small

α, and Σi = αI for all i ̸= a. Take the query vectors q1 and q2 that you designed in part

i. What, qualitatively, do you expect the output c to look like across different samples of the

key vectors? Explain briefly in terms of variance in c1 and c2. You can ignore cases in which

k⊤a qi < 0.

(e) (1 point) Based on part (d), briefly summarize how multi-headed attention overcomes the draw-

backs of single-headed attention that you identified in part (c).

2. Position Embeddings Exploration (6 points)
Position embeddings are an important component of the Transformer architecture, allowing the model

to differentiate between tokens based on their position in the sequence. In this question, we’ll explore

the need for positional embeddings in Transformers and how they can be designed.

Recall that the crucial components of the Transformer architecture are the self-attention layer and the

feed-forward neural network layer. Given an input tensor X ∈ RT×d, where T is the sequence length

and d is the hidden dimension, the self-attention layer computes the following:

Q = XWQ, K = XWK , V = XWV

H = softmax

(
QK⊤
√
d

)
V

CS 224N Winter 2025 Assignment 4 Page 4 of 10

where WQ,WK ,WV ∈ Rd×d are weight matrices, and H ∈ RT×d is the output.

Next, the feed-forward layer applies the following transformation:

Z = ReLU(HW1 + 1 · b1)W2 + 1 · b2

where W1,W2 ∈ Rd×d and b1,b2 ∈ R1×d are weights and biases; 1 ∈ RT×1 is a vector of ones‡; and

Z ∈ RT×d is the final output.

(Note that we have omitted some details of the Transformer architecture for simplicity.)

(a) (4 points) Permuting the input.

i. (3 points) Suppose we permute the input sequence X such that the tokens are shuffled ran-

domly. This can be represented as multiplication by a permutation matrix P ∈ RT×T , i.e.

Xperm = PX. (See Wikipedia for a recap on permutation matrices.)

Show that the output Zperm for the permuted input Xperm will be Zperm = PZ.

You are given that for any permutation matrix P and any matrix A, the following hold:

softmax(PAP⊤) = P softmax(A) P⊤ and ReLU(PA) = P ReLU(A).

ii. (1 point) Think about the implications of the result you derived in part i. Explain why this

property of the Transformer model could be problematic when processing text.

(b) (2 points) Position embeddings are vectors that encode the position of each token in the se-

quence. They are added to the input word embeddings before feeding them into the Transformer.

One approach is to generate position embedding using a fixed function of the position and the

dimension of the embedding. If the input word embeddings are X ∈ RT×d, the position embeddings

Φ ∈ RT×d are generated as follows:

Φ(t,2i) = sin
(
t/100002i/d

)
Φ(t,2i+1) = cos

(
t/100002i/d

)
where t ∈ {0, 1, . . . T − 1} and i ∈ {0, 1, . . . d/2− 1}§.

Specifically, the position embeddings are added to the input word embeddings:

Xpos = X+Φ

i. (1 point) Do you think the position embeddings will help the issue you identified in part (a)?

If yes, explain how and if not, explain why not.

ii. (1 point) Can the position embeddings for two different tokens in the input sequence be the

same? If yes, provide an example. If not, explain why not.

3. Pretrained Transformer models and knowledge access (35 points)
You’ll train a Transformer to perform a task that involves accessing knowledge about the world —

knowledge which isn’t provided via the task’s training data (at least if you want to generalize outside

the training set). You’ll find that it more or less fails entirely at the task. You’ll then learn how to

pretrain that Transformer on Wikipedia text that contains world knowledge, and find that finetuning that

Transformer on the same knowledge-intensive task enables the model to access some of the knowledge

learned at pretraining time. You’ll find that this enables models to perform considerably above chance

on a held out development set.

The code you’re provided with is a fork of Andrej Karpathy’s minGPT. It’s nicer than most research code

in that it’s relatively simple and transparent. The “GPT” in minGPT refers to the Transformer language

model of OpenAI, originally described in this paper [1].

‡Outer product with 1 represents broadcasting operation and makes feed forward network notations mathematically sound.
§Here d is assumed even which is typically the case for most models.

https://en.wikipedia.org/wiki/Permutation_matrix
https://github.com/karpathy/minGPT
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf

CS 224N Winter 2025 Assignment 4 Page 5 of 10

As in previous assignments, you will want to develop on your machine locally, then run training on

GCP/Colab. You can use the same conda environment from previous assignments for local development,

and the same process for training on a GPU.¶

You’ll need around 3 hours for training, so budget your time accordingly! We have provided a sample

Colab with the the commands that require GPU training. Note that dataset multi-processing

can fail on local machines without GPU, so to debug locally, you might have to change

num workers to 0.

Your work with this codebase is as follows:

(a) (0 points) Check out the demo.

In the mingpt-demo/ folder is a Jupyter notebook play char.ipynb that trains and samples from a

Transformer language model. Take a look at it (locally on your computer) to get somewhat familiar

with how it defines and trains models. Some of the code you’re writing below will be inspired by

what you see in this notebook.

Note that you do not have to write any code, run the notebook or submit written answers for this

part.

(b) (0 points) Read through NameDataset in src/dataset.py, our dataset for reading name-

birthplace pairs.

The task we’ll be working on with our pretrained models is attempting to access the birth place of

a notable person, as written in their Wikipedia page. We’ll think of this as a particularly simple

form of question answering:

Q: Where was [person] born?

A: [place]

From now on, you’ll be working with the src/ folder. The code in mingpt-demo/ won’t be changed

or evaluated for this assignment. In dataset.py, you’ll find the the class NameDataset, which reads

a TSV (tab-separated values) file of name/place pairs and produces examples of the above form

that we can feed to our Transformer model.

To get a sense of the examples we’ll be working with, if you run the following code, it’ll load your

NameDataset on the training set birth places train.tsv and print out a few examples.

python src/dataset.py namedata

Note that you do not have to write any code or submit written answers for this part.

(c) (0 points) Implement finetuning (without pretraining).

Take a look at run.py. It has some skeleton code specifying flags you’ll eventually need to handle as

command line arguments. In particular, you might want to pretrain, finetune, or evaluate a model

with this code. For now, we’ll focus on the finetuning function, in the case without pretraining.

Taking inspiration from the training code in the play char.ipynb file, write code to finetune a

Transformer model on the name/birthplace dataset, via examples from the NameDataset class. For

now, implement the case without pretraining (i.e. create a model from scratch and train it on the

birthplace prediction task from part (b)). You’ll have to modify two sections, marked [part c] in

the code: one to initialize the model, and one to finetune it. Note that you only need to initialize the

model in the case labeled “vanilla” for now (later in section (g), we will explore a model variant).

Use the hyperparameters for the Trainer specified in the run.py code.

Also take a look at the evaluation code which has been implemented for you. It samples predictions

from the trained model and calls evaluate places() to get the total percentage of correct place

predictions. You will run this code in part (d) to evaluate your trained models.

¶See CS224n GCP Guide for a refresher on GCP.

https://docs.google.com/document/d/1FLx0CXIn-SoExxKM1efC-E-6iBjUR4uEnpGnfemMMR0

CS 224N Winter 2025 Assignment 4 Page 6 of 10

This is an intermediate step for later portions, including Part d, which contains commands you can

run to check your implementation. No written answer is required for this part.

Hint: Both run.py and play char.ipynb use minGPT so the code for this part will be similar to

the training code in play char.ipynb.

(d) (4 points) Make predictions (without pretraining).

Train your model on birth places train.tsv, and evaluate on birth dev.tsv. Specifically, you

should now be able to run the following three commands:

Train on the names dataset

python src/run.py finetune vanilla wiki.txt \

--writing_params_path vanilla.model.params \

--finetune_corpus_path birth_places_train.tsv

Evaluate on the dev set, writing out predictions

python src/run.py evaluate vanilla wiki.txt \

--reading_params_path vanilla.model.params \

--eval_corpus_path birth_dev.tsv \

--outputs_path vanilla.nopretrain.dev.predictions

Evaluate on the test set, writing out predictions

python src/run.py evaluate vanilla wiki.txt \

--reading_params_path vanilla.model.params \

--eval_corpus_path birth_test_inputs.tsv \

--outputs_path vanilla.nopretrain.test.predictions

Training will take less than 10 minutes (on GCP). Report your model’s accuracy on the dev set (as

printed by the second command above). Similar to assignment 3, we also have Tensorboard logging

in assignment 4 for debugging. It can be launched using tensorboard --logdir expt/. Don’t be

surprised if it is well below 10%; we will be digging into why in Part 4. As a reference point, we

want to also calculate the accuracy the model would have achieved if it had just predicted “London”

as the birth place for everyone in the dev set. Fill in london baseline.py to calculate the accuracy

of that approach and report your result in the file. You should be able to leverage existing code

such that the file is only a few lines long.

(e) (10 points) Define a span corruption function for pretraining.

In the file src/dataset.py, implement the getitem () function for the dataset class

CharCorruptionDataset. Follow the instructions provided in the comments in dataset.py. Span

corruption is explored in the T5 paper [2]. It randomly selects spans of text in a document and

replaces them with unique tokens (noising). Models take this noised text, and are required to output

a pattern of each unique sentinel followed by the tokens that were replaced by that sentinel in the

input. In this question, you’ll implement a simplification that only masks out a single sequence of

characters.

This question will be graded via autograder based on whether your span corruption function im-

plements some basic properties of our spec. We’ll instantiate the CharCorruptionDataset with our

own data, and draw examples from it.

To help you debug, if you run the following code, it’ll sample a few examples from your

CharCorruptionDataset on the pretraining dataset wiki.txt and print them out for you.

python src/dataset.py charcorruption

(f) (10 points) Pretrain, finetune, and make predictions. Budget about 1 hour for training.

Now fill in the pretrain portion of run.py, which will pretrain a model on the span corruption task.

https://arxiv.org/pdf/1910.10683.pdf

CS 224N Winter 2025 Assignment 4 Page 7 of 10

Additionally, modify your finetune portion to handle finetuning in the case with pretraining. In

particular, if a path to a pretrained model is provided in the bash command, load this model before

finetuning it on the birthplace prediction task. Pretrain your model on wiki.txt (which should

take approximately 40-60 minutes), finetune it on NameDataset and evaluate it. Specifically, you

should be able to run the following four commands:

Pretrain the model

python src/run.py pretrain vanilla wiki.txt \

--writing_params_path vanilla.pretrain.params

Finetune the model

python src/run.py finetune vanilla wiki.txt \

--reading_params_path vanilla.pretrain.params \

--writing_params_path vanilla.finetune.params \

--finetune_corpus_path birth_places_train.tsv

Evaluate on the dev set; write to disk

python src/run.py evaluate vanilla wiki.txt \

--reading_params_path vanilla.finetune.params \

--eval_corpus_path birth_dev.tsv \

--outputs_path vanilla.pretrain.dev.predictions

Evaluate on the test set; write to disk

python src/run.py evaluate vanilla wiki.txt \

--reading_params_path vanilla.finetune.params \

--eval_corpus_path birth_test_inputs.tsv \

--outputs_path vanilla.pretrain.test.predictions

We expect the dev accuracy will be at least 15%, and will expect a similar accuracy on the held

out test set.

(g) (11 points) Write and try out a different kind of position embeddings (Budget about 1

hour for training)

In the previous part, you used the vanilla Transformer model, which used learned positional embed-

dings. In the written part, you also learned about the sinusoidal positional embeddings used in the

original Transformer paper. In this part, you’ll implement a different kind of positional embedding,

called RoPE (Rotary Positional Embedding) [3].

RoPE is a fixed positional embedding that is designed to encode relative position rather than

absolute position. The issue with absolute positions is that if the transformer won’t perform well

on context lengths (e.g. 1000) much larger than it was trained on (e.g. 128), because the distribution

of the position embeddings will be very different from the ones it was trained on. Relative position

embeddings like RoPE alleviate this issue.

Given a feature vector with two features x
(1)
t and x

(2)
t at position t in the sequence, the RoPE

positional embedding is defined as:

RoPE(x
(1)
t , x

(2)
t , t) =

(
cos tθ − sin tθ

sin tθ cos tθ

)(
x
(1)
t

x
(2)
t

)

where θ is a fixed angle. For two features, the RoPE operation corresponds to a 2D rotation of the

features by an angle tθ. Note that the angle is a function of the position t.

CS 224N Winter 2025 Assignment 4 Page 8 of 10

For a d dimensional feature, RoPE is applied to each pair of features with an angle θi defined as

θi = 10000−2(i−1)/d, i ∈ {1, 2, . . . , d/2}.

cos tθ1 − sin tθ1 0 0 · · · 0 0

sin tθ1 cos tθ1 0 0 · · · 0 0

0 0 cos tθ2 − sin tθ2 · · · 0 0

0 0 sin tθ2 cos tθ2 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · cos tθd/2 − sin tθd/2
0 0 0 0 · · · sin tθd/2 cos tθd/2

x
(1)
t

x
(2)
t

x
(3)
t

x
(4)
t
...

x
(d−1)
t

x
(d)
t

(3)

Finally, instead of adding the positional embeddings to the input embeddings, RoPE is applied to

the key and query vectors for each head in the attention block for all the Transformer layers.

i. (2 points) Using the rotation interpretation, RoPE operation can be viewed as rotation of the

complex number x
(1)
t + ix

(2)
t by an angle tθ. Recall that this corresponds to multiplication by

eitθ = cos tθ + i sin tθ.

For higher dimensional feature vectors, this interpretation allows us to compute Equation 3 more

efficiently. Specifically, we can rewrite the RoPE operation as an element-wise multiplication

(denoted by ⊙) of two vectors as follows:

cos tθ1 + i sin tθ1
cos tθ2 + i sin tθ2

...

cos tθd/2 + i sin tθd/2

⊙

x
(1)
t + ix

(2)
t

x
(3)
t + ix

(4)
t

...

x
(d−1)
t + ix

(d)
t

 (4)

Show that the elements of the vector in Equation 3 can be obtained from Equation 4. Note

that some additional operations like reshaping are necessary to make the two expressions equal

but you do not need to provide a detailed derivation for full points.

ii. (1 point) Relative Embeddings. Now we will show that the dot product of the RoPE em-

beddings of two vectors at positions t1 and t2 depends on the relative position t1 − t2 only.

For simiplicity, we will assume two dimensional feature vectors (eg. [a, b]) and work with their

complex number representations (eg. a+ ib).

Show that ⟨RoPE(z1, t1),RoPE(z2, t2)⟩ = ⟨RoPE(z1, t1 − t2),RoPE(z2, 0)⟩ where ⟨·, ·⟩ denotes
the dot product and RoPE(z, t) is the RoPE embedding of vector z at position t.

(Hint: Dot product of vectors represented as complex numbers is given by ⟨z1, z2⟩ = Re(z1z2).

For a complex number z = a+ ib (a, b ∈ R), Re(z) = a indicates the real component of z and

z̄ = a− ib is the complex conjugate of z.)

iii. (8 points) In the provided code, RoPE is implemented using the functions precompute rotary emb

and apply rotary emb in src/attention.py. You need to implement these functions and the

parts of code marked [part g] in src/attention.py and src/run.py to use RoPE in the model.

Train a model with RoPE on the span corruption task and finetune it on the birthplace pre-

diction task. Specifically, you should be able to run the following four commands:

Pretrain the model

python src/run.py pretrain rope wiki.txt \

--writing_params_path rope.pretrain.params

Finetune the model

CS 224N Winter 2025 Assignment 4 Page 9 of 10

python src/run.py finetune rope wiki.txt \

--reading_params_path rope.pretrain.params \

--writing_params_path rope.finetune.params \

--finetune_corpus_path birth_places_train.tsv

Evaluate on the dev set; write to disk

python src/run.py evaluate rope wiki.txt \

--reading_params_path rope.finetune.params \

--eval_corpus_path birth_dev.tsv \

--outputs_path rope.pretrain.dev.predictions

Evaluate on the test set; write to disk

python src/run.py evaluate rope wiki.txt \

--reading_params_path rope.finetune.params \

--eval_corpus_path birth_test_inputs.tsv \

--outputs_path rope.pretrain.test.predictions

We’ll score your model as to whether it gets at least 30% accuracy on the test set, which has

answers held out.

4. Considerations in pretrained knowledge (5 points)
Please type the answers to these written questions (to make TA lives easier).

(a) (1 point) Succinctly explain why the pretrained (vanilla) model was able to achieve an accuracy of

above 10%, whereas the non-pretrained model was not.

(b) (2 points) Take a look at some of the correct predictions of the pretrain+finetuned vanilla model, as

well as some of the errors. We think you’ll find that it’s impossible to tell, just looking at the output,

whether the model retrieved the correct birth place, or made up an incorrect birth place. Consider

the implications of this for user-facing systems that involve pretrained NLP components. Come up

with two distinct reasons why this model behavior (i.e. unable to tell whether it’s retrieved or

made up) may cause concern for such applications, and an example for each reason.

(c) (2 points) If your model didn’t see a person’s name at pretraining time, and that person was not

seen at fine-tuning time either, it is not possible for it to have “learned” where they lived. Yet, your

model will produce something as a predicted birth place for that person’s name if asked. Concisely

describe a strategy your model might take for predicting a birth place for that person’s name, and

one reason why this should cause concern for the use of such applications.

(While 4b discussed the problems that could arise from made up predictions, 4c asks for a mechanism

the model could be using for generating birth places of people not seen at fine-tuning time and why

such a mechanism could be problematic.)

Submission Instructions
You will submit this assignment on GradeScope as two submissions – one for Assignment 4 [coding] and

another for Assignment 4 [written]:

1. Verify that the following files exist at these specified paths within your assignment directory:

• The no-pretraining model and predictions: vanilla.model.params, vanilla.nopretrain.dev.predictions,

vanilla.nopretrain.test.predictions

• The London baseline accuracy: london baseline accuracy.txt

• The pretrain-finetune model and predictions: vanilla.finetune.params, vanilla.pretrain.dev.predictions,

vanilla.pretrain.test.predictions

CS 224N Winter 2025 Assignment 4 Page 10 of 10

• The RoPE model and predictions: rope.finetune.params, rope.pretrain.dev.predictions,

rope.pretrain.test.predictions

2. Run collect submission.sh (on Linux/Mac) or collect submission.bat (on Windows) to produce

your assignment4.zip file.

3. Upload your assignment4.zip file to GradeScope to Assignment 4 [coding].

4. Check that the public autograder tests passed correctly.

5. Upload your written solutions, for questions 1, parts of 2, and 3, to GradeScope to Assignment 4

[written]. Tag it properly!

References

[1] Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. Improving language understand-

ing with unsupervised learning. Technical report, OpenAI (2018).

[2] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,

and Liu, P. J. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal

of Machine Learning Research 21, 140 (2020), 1–67.

[3] Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y. Roformer: Enhanced transformer with

rotary position embedding. Neurocomputing 568 (2024), 127063.

