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How similar are two strings?

Spell correction
o The user typed “graffe”

Which is closest?
o graf

o graft

o grail

o giraffe

Which candidate would require the minimum number of letter
changes?




Similarity and Alignment in Computational Biology

We can compute similarity of two sequences of bases:

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

And we can compute an alighment between them:

-~AGGCTATCACCTGACCTCCAGGCCGA--TGCCC——-
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

l.e., given two sequences, align each letter to a letter or gap



Evaluating Automatic Speech Recognition (ASR) and
Machine Translation (MT)

*  We want to know which hypothesis is closer to a "reference" transcript
* Measure edit distance (in words, or tokens) between hypotheses and referent
* The better hypothesis is closer (has a lower edit distance) to the referent

Reference Spokesman confirms senior government adviser was replaced

Hypothesisl Spokesman confirms the senior advliser was replaced
I D

Hypothesis2 Spokesman said the older adviser was fired
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Edit Distance

The minimum edit distance between two strings

Is the minimum number of editing operations
o |nsertion
> Deletion
> Substitution

Needed to transform one into the other




Minimum Edit Distance

Two strings and their alighment:

Given two sequences, an alignment is a correspondence between
substrings of the two sequences, like the individual letters in this case

INTE«NTION

* EXECUTION




We can read off the edit distance from the alignment

INTE+«*xNTION

*rEXECUTION

d s s i s

If each operation has cost of 1
> Distance between these is 5

If substitutions cost 2 (a version of Levenshtein distance)
> Distance between them is 8




How to find the Min Edit Distance?

Searching for a path (a sequence of edits) from the
start string to the final string:

> Initial state: the word we’re transforming

o Operators: insert, delete, substitute

> @oal state: the word we’re trying to get to

o Path cost: what we want to minimize: the number of
edits intention
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Minimum Edit as Search

But the space of all edit sequences is huge!
* We can’t afford to navigate naively

Luckily:
* Lots of distinct paths wind up at the same state.
* We don’t have to keep track of all of them
* Just the shortest path to each of those revisited states.
* We'll see a dynamic programming solution in the next lecture




Defining Min Edit Distance

For two strings
o X of length n
> Y of length m

We define D(i,j)
> the edit distance between X[1..i/] and Y[1../]
o i.e., the first i characters of X and the first j characters of Y

> The edit distance between X and Y is thus D(n,m)
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Dan Jurafsky

Dynamic Programming for
Minimum Edit Distance

 Dynamic programming: A tabular computation of D(n,m)
* Solving problems by combining solutions to subproblemes.
* Bottom-up

 We compute D(i,j) for small i
 And compute larger D(i,j) based on previously computed smaller values
e j.e., compute D(i,j) foralli(O<i<n) andj(0<j<m)



Dan Jurafsky

Defining Min Edit Distance (Levenshtein)

e [|nitialization
D(1,0) = 1
D(0,J) = 3
 Recurrence Relation:
For each 1 = 1.M
J

For each = 1..N
(D(i-1,73) + 1
D(1,3)= min< D(1,3-1) + 1
D(i1-1,3-1) + 2; |I1f X(1) # Y (7])
- 0; [if x(i) = v(3)

e Termination:
D(N,M) 1s distance
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The Edit Distance Table

O

D(i-1,j) + 1

I D(i,j-1) + 1

D(i-1,j-1) +

2; if S¢(i) # S,(3)
0; if S;(i) = S,(3)
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Dan Jurafsky 'D(i'l,j) +1

' D(i,j) = min }D(ij-1) + 1
D(i-1,j-1) + | 2; if S4(i) # S,(j)
“ 0; if 5,(i) = S;0)
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Computing alignments

 Edit distance isn’t sufficient

 We often need to align each character of the two strings to each other

 We do this by keeping a “backtrace”
* Every time we enter a cell, remember where we came from
* When we reach the end,

* Trace back the path from the upper right corner to read off the alignment
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Adding Backtrace to Minimum Edit Distance

e Base conditions: Termination:
D(1,0) = 1 D(0,3) = ] D(N,M) 1s distance
e Recurrence Relation:

For each 1 = 1..M
For each 7 = 1..N
f

D(1i-1,73) + 1 deletion
D(1,3J)= min<D(1,3-1) + 1 insertion
D(1-1,3-1) + 2;11f X(1) # Y (7J) substitution
- 0;11if x(1) = Y (5)

LEFT insertion
ptr (i, )= < DOWN | deletion
DIAG substitution

.
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The Distance Matrix

&3 Every non-decreasing path
from (0,0) to (M, N)
corresponds to
an alignment
: of the two sequences

<

An optimal alignment is composed
yO .................................... yM Of Optlmal SUballgnmentS

Slide adapted from Serafim Batzoglou
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Result of Backtrace

 Two strings and their alignment:

INTE+«NTION

* EXECUTION



Dan Jurafsky

Performance

* Time:

O(nm)
* Space:

O(nm)
* Backtrace

O(n+m)



g"fllll!l
= dnwmuis

Sentences sowsmets

protability

i Jraimmd E:I_"i'"‘
qﬂ:‘:ﬁlmUdE| - B |mnnrtant

o TS hgggg"ﬁgta = e

wil £ = fet
nm =
- e gg_,-;mturmatmnm'

mﬁ == mﬁm Eﬂ. % I‘UIE

pmhlem C.'D 1 % gn;anh;:;

uarsesmceu, 7 B meanings: e u

- |

b = rmmn’ml Bxpression
‘#ggture Ill‘llh
mman FEpPesentation tanunu = --semantu:

£5 (ifferent==
wurd ?; = ules ™
2 afgiiage seen’

2en equation

“'_ UMDzt o

22 ivon dage==3_Usi

T Eqiven b= "0
e %%ﬁ mudelsgﬁh‘n"‘“
=g nhsewatluncn

ta'ms

Minimum Edit
Distance

Backtrace for
Computing Alignments



