Minimum . . .
cdit Definition of Minimum Edit
Distance

Distance

How similar are two strings?

Spell correction
o The user typed “graffe”

Which is closest?
o graf

o graft

o grail

o giraffe

Which candidate would require the minimum number of letter
changes?

Similarity and Alignment in Computational Biology

We can compute similarity of two sequences of bases:

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

And we can compute an alighment between them:

-~AGGCTATCACCTGACCTCCAGGCCGA--TGCCC——-
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

l.e., given two sequences, align each letter to a letter or gap

Evaluating Automatic Speech Recognition (ASR) and
Machine Translation (MT)

* We want to know which hypothesis is closer to a "reference" transcript
* Measure edit distance (in words, or tokens) between hypotheses and referent
* The better hypothesis is closer (has a lower edit distance) to the referent

Reference Spokesman confirms senior government adviser was replaced

Hypothesisl Spokesman confirms the senior advliser was replaced
I D

Hypothesis2 Spokesman said the older adviser was fired

S I S D S

Edit Distance

The minimum edit distance between two strings

Is the minimum number of editing operations
o |nsertion
> Deletion
> Substitution

Needed to transform one into the other

Minimum Edit Distance

Two strings and their alighment:

Given two sequences, an alignment is a correspondence between
substrings of the two sequences, like the individual letters in this case

INTE«NTION

* EXECUTION

We can read off the edit distance from the alignment

INTE+«*xNTION

*rEXECUTION

d s s i s

If each operation has cost of 1
> Distance between these is 5

If substitutions cost 2 (a version of Levenshtein distance)
> Distance between them is 8

How to find the Min Edit Distance?

Searching for a path (a sequence of edits) from the
start string to the final string:

> Initial state: the word we’re transforming

o Operators: insert, delete, substitute

> @oal state: the word we’re trying to get to

o Path cost: what we want to minimize: the number of
edits intention

PR

Del Ins Sub

/ \ ~

ntention eintention entention

Minimum Edit as Search

But the space of all edit sequences is huge!
* We can’t afford to navigate naively

Luckily:
* Lots of distinct paths wind up at the same state.
* We don’t have to keep track of all of them
* Just the shortest path to each of those revisited states.
* We'll see a dynamic programming solution in the next lecture

Defining Min Edit Distance

For two strings
o X of length n
> Y of length m

We define D(i,j)
> the edit distance between X[1..i/] and Y[1../]
o i.e., the first i characters of X and the first j characters of Y

> The edit distance between X and Y is thus D(n,m)

Minimum . . .
cdit Definition of Minimum Edit
Distance

Distance

= funclion
& taneis

Sentences sowsmets

prota b|||tu Minimum Edit

i Jrafmmak 2 ==

g il =.

==0e] 5 2 Distance

mﬁ 2 m ase justg_ c'ﬂ_th{eet

o IZ ==-=-—-mturmat|un”“"

=1 ’”"’"ﬁTimtph%"' -
- ’Eﬂi&'{;&..ﬂ 2. 523 et Computing Minimum

wur =5 different==

LD ?;Erulé‘é‘"?&“n“f““ Edit Distance
“==|anguage st

2en equation

magugr “l.IthI1t mnmssmn

Foen om0
§ 52 MOl oin
’5 nhsewatluncp

ta'ms

Dan Jurafsky

Dynamic Programming for
Minimum Edit Distance

 Dynamic programming: A tabular computation of D(n,m)
* Solving problems by combining solutions to subproblemes.
* Bottom-up

 We compute D(i,j) for small i
 And compute larger D(i,j) based on previously computed smaller values
e j.e., compute D(i,j) foralli(O<i<n) andj(0<j<m)

Dan Jurafsky

Defining Min Edit Distance (Levenshtein)

e [|nitialization
D(1,0) = 1
D(0,J) = 3
 Recurrence Relation:
For each 1 = 1.M
J

For each = 1..N
(D(i-1,73) + 1
D(1,3)= min< D(1,3-1) + 1
D(i1-1,3-1) + 2; |I1f X(1) # Y (7])
- 0; [if x(i) = v(3)

e Termination:
D(N,M) 1s distance

Dan Jurafsky

HIO(FINIW|[IHA O[O

Dan Jurafsky

The Edit Distance Table

O

D(i-1,j) + 1

I D(i,j-1) + 1

D(i-1,j-1) +

2; if S¢(i) # S,(3)
0; if S;(i) = S,(3)

N
0
I
=
N
F
-
N
I
#

H IO/, INIWILAIUWO| N[00

Dan Jurafsky 'D(i'l,j) +1

' D(i,j) = min }D(ij-1) + 1
D(i-1,j-1) + | 2; if S4(i) # S,(j)
“ 0; if 5,(i) = S;0)

6
5
4
3
2
1
0
#

Dan Jurafsky

2
©
—
Q
O
o
(©
)
2
-
=
5
LL
Q
S
—

= funclion
& taneis

Sentences sowsmets

prota b|||tu Minimum Edit

i Jrafmmak 2 ==

g il =.

==0e] 5 2 Distance

mﬁ 2 m ase justg_ c'ﬂ_th{eet

o IZ ==-=-—-mturmat|un”“"

=1 ’”"’"ﬁTimtph%"' -
- ’Eﬂi&'{;&..ﬂ 2. 523 et Computing Minimum

wur =5 different==

LD ?;Erulé‘é‘"?&“n“f““ Edit Distance
“==|anguage st

2en equation

magugr “l.IthI1t mnmssmn

Foen om0
§ 52 MOl oin
’5 nhsewatluncp

ta'ms

g"fllll!l
= dnwmuis

Sentences sowsmets

protability

i Jraimmd E:I_"i'"‘
qﬂ:‘:ﬁlmUdE| - B |mnnrtant

o TS hgggg"ﬁgta = e

wil £ = fet
nm =
- e gg_,-;mturmatmnm'

mﬁ == mﬁm Eﬂ. % I‘UIE

pmhlem C.'D 1 % gn;anh;:;

uarsesmceu, 7 B meanings: e u

- |

b = rmmn’ml Bxpression
‘#ggture Ill‘llh
mman FEpPesentation tanunu = --semantu:

£5 (ifferent==
wurd ?; = ules ™
2 afgiiage seen’

2en equation

“'_ UMDzt o

22 ivon dage==3_Usi

T Eqiven b= "0
e %%ﬁ mudelsgﬁh‘n"‘“
=g nhsewatluncn

ta'ms

Minimum Edit
Distance

Backtrace for
Computing Alignments

Dan Jurafsky

Computing alignments

 Edit distance isn’t sufficient

 We often need to align each character of the two strings to each other

 We do this by keeping a “backtrace”
* Every time we enter a cell, remember where we came from
* When we reach the end,

* Trace back the path from the upper right corner to read off the alignment

Dan Jurafsky 'D(i'l,j) +1

' D(i,j) = min }D(ij-1) + 1
D(i-1,j-1) + | 2; if S4(i) # S,(j)
“ 0; if 5,(i) = S;0)

6
5
4
3
2
1
0
#

Dan Jurafsky

n O/ 18| /=9 /=10 /=11 12| | 11| |10 19
o 8 V7| /=8| /=19~ 10 11| |10 19 —9
i 7 Lo/ =T /=8| /=9 10] |9 =910
t 6 1S5 /=16 /T /18| /|9 —9| <10} 11
n 5 V4| /<5 /—16| <7 /=19~ 10/ 11|71 10
e 41 3| <4 —T| < 8| /=910 |9
t 3|/ 4 SO ST =8 T — 8| /=19 |8
n 2 S 4| =S| 6] =T | 8 V7| /=18 /T
i S 2 =3 =LA LS L6 =L T /6 —7| <8
1 2 3 4 5 6 7 8 9
¢ X ¢ C u t i 0 n

Dan Jurafsky

Adding Backtrace to Minimum Edit Distance

e Base conditions: Termination:
D(1,0) = 1 D(0,3) =] D(N,M) 1s distance
e Recurrence Relation:

For each 1 = 1..M
For each 7 = 1..N
f

D(1i-1,73) + 1 deletion
D(1,3J)= min<D(1,3-1) + 1 insertion
D(1-1,3-1) + 2;11f X(1) # Y (7J) substitution
- 0;11if x(1) = Y (5)

LEFT insertion
ptr (i,)= < DOWN | deletion
DIAG substitution

.

Dan Jurafsky

The Distance Matrix

&3 Every non-decreasing path
from (0,0) to (M, N)
corresponds to
an alignment
: of the two sequences

<

An optimal alignment is composed
yO yM Of Optlmal SUballgnmentS

Slide adapted from Serafim Batzoglou

Dan Jurafsky

Result of Backtrace

 Two strings and their alignment:

INTE+«NTION

* EXECUTION

Dan Jurafsky

Performance

* Time:

O(nm)
* Space:

O(nm)
* Backtrace

O(n+m)

g"fllll!l
= dnwmuis

Sentences sowsmets

protability

i Jraimmd E:I_"i'"‘
qﬂ:‘:ﬁlmUdE| - B |mnnrtant

o TS hgggg"ﬁgta = e

wil £ = fet
nm =
- e gg_,-;mturmatmnm'

mﬁ == mﬁm Eﬂ. % I‘UIE

pmhlem C.'D 1 % gn;anh;:;

uarsesmceu, 7 B meanings: e u

- |

b = rmmn’ml Bxpression
‘#ggture Ill‘llh
mman FEpPesentation tanunu = --semantu:

£5 (ifferent==
wurd ?; = ules ™
2 afgiiage seen’

2en equation

“'_ UMDzt o

22 ivon dage==3_Usi

T Eqiven b= "0
e %%ﬁ mudelsgﬁh‘n"‘“
=g nhsewatluncn

ta'ms

Minimum Edit
Distance

Backtrace for
Computing Alignments

