
Outline for
today

What's new in LLMs
 Post-training
 Instruction Tuning
 Preference Alignment
 Multilinguality
 Speech Processing (& CS224S!)
What to do after CS124!

Quick PA7 comment

Before you submit your PA7 code to Gradescope, please
remember to modify the rubrics.txt, marking all features you
implemented to YES

More on LLMs

What's new in LLMs

A SURVEY ON POST-TRAINING OF LARGE LANGUAGE MODELS

FLAN

Instruct
GPT

Flan-T5

Flan-
PaLM

Alpaca

Vicuna

LLaMA2

GPT4

Claude

Gemini

Mistral LLaMA3

LLaMA3
Series

AFM
SeriesQwen2

LLaMA1

Pre-trained

Gemini 2.0

o3

LLaMA3.3

LLaMA3.1

Qwen1.5

Qwen2

Gemini-
Exp

QwQ 32B-
Preview

Mistral
Large 2

GLM-4

GLM-4

Nova Pro

Mistral DeepSeek
MoE

DeepSeek
-V3

DeepSeek
-R1

DeepSeek
-V2

Qwen2.5

Mistral
8*22B

Grok-2DBRX

Yi-Large

Jamba
1.5

Flamingo

PaLM-E

GPT-4V

LLaVA Qwen-VLCLIP Gemini

Open-Source

Closed-
Source

LLaMA3.2

DeepSeek
-VL2

Claude 3.5
Sonnet

Claude 3.5
Opus

Gemini
1.5 Pro

Pixtral
12B

Grok-2

Nova Pro

BERT

RoBERTa

GPT3

Gemma

DeepSeek
-V3

Gemini
2.0-Flash

o1

o3-mini

DeepSeek
-R1

QwQ 32B-
preview

GLM zero-
preview

o1 Qwen2.5

LLaMA3.3

Imagen 3Veo

T5

mT5

T0

Grok-3

2022 2023 2024 20252018-
2021

RLHF

SFT

DPO

RAG

Multimodal

MOE

Reasoning

Grok-3

Claude 3.7
Sonnet

Claude 3.7
Sonnet

Claude 3.7
Sonnet

Kimi-k1.5

Gemini 2.0

Kimi-k1.5

QwQ 32B

Figure 3: Timeline of post-training technique development for Large Language Models (2018–2025), delin-
eating key milestones in their historical progression.

pioneered by Google’s Switch-C Transformer [54] in 2022, featuring 1.6 trillion parameters distributed across
2048 experts, a groundbreaking approach that balanced resource demands with performance gains. Subse-
quent iterations, such as Mixtral [55] and DeepSeek V2.5 [58]—the latter leveraging 236 billion total pa-
rameters with 21 billion active across 160 experts—further refined this framework, achieving state-of-the-art
results on LMSYS benchmarks and demonstrating that sparse MoE architectures can rival dense models in
both scalability and efficacy. These developments underscored a shift toward efficiency-focused PoLMs, en-
abling LLMs to handle complex tasks with reduced computational overhead, a critical step in broadening their
practical applicability. By 2025, DeepSeek-R1 [28] emerged as a landmark in PoLMs innovation, departing
from conventional Supervised Fine-Tuning (SFT) reliance to embrace Chain-of-Thought (CoT) reasoning and
exploratory RL strategies. Exemplified by DeepSeek-R1-Zero, which integrates self-verification, reflection,
and extended CoT generation, this model validates RL-driven reasoning incentives within an open research
paradigm, introducing distillation techniques [28] to transfer sophisticated reasoning patterns from larger
to smaller architectures. This approach not only yields superior performance compared to standalone RL

9

Tie et al (2025)

A SURVEY ON POST-TRAINING OF LARGE LANGUAGE MODELS

FLAN

Instruct
GPT

Flan-T5

Flan-
PaLM

Alpaca

Vicuna

LLaMA2

GPT4

Claude

Gemini

Mistral LLaMA3

LLaMA3
Series

AFM
SeriesQwen2

LLaMA1

Pre-trained

Gemini 2.0

o3

LLaMA3.3

LLaMA3.1

Qwen1.5

Qwen2

Gemini-
Exp

QwQ 32B-
Preview

Mistral
Large 2

GLM-4

GLM-4

Nova Pro

Mistral DeepSeek
MoE

DeepSeek
-V3

DeepSeek
-R1

DeepSeek
-V2

Qwen2.5

Mistral
8*22B

Grok-2DBRX

Yi-Large

Jamba
1.5

Flamingo

PaLM-E

GPT-4V

LLaVA Qwen-VLCLIP Gemini

Open-Source

Closed-
Source

LLaMA3.2

DeepSeek
-VL2

Claude 3.5
Sonnet

Claude 3.5
Opus

Gemini
1.5 Pro

Pixtral
12B

Grok-2

Nova Pro

BERT

RoBERTa

GPT3

Gemma

DeepSeek
-V3

Gemini
2.0-Flash

o1

o3-mini

DeepSeek
-R1

QwQ 32B-
preview

GLM zero-
preview

o1 Qwen2.5

LLaMA3.3

Imagen 3Veo

T5

mT5

T0

Grok-3

2022 2023 2024 20252018-
2021

RLHF

SFT

DPO

RAG

Multimodal

MOE

Reasoning

Grok-3

Claude 3.7
Sonnet

Claude 3.7
Sonnet

Claude 3.7
Sonnet

Kimi-k1.5

Gemini 2.0

Kimi-k1.5

QwQ 32B

Figure 3: Timeline of post-training technique development for Large Language Models (2018–2025), delin-
eating key milestones in their historical progression.

pioneered by Google’s Switch-C Transformer [54] in 2022, featuring 1.6 trillion parameters distributed across
2048 experts, a groundbreaking approach that balanced resource demands with performance gains. Subse-
quent iterations, such as Mixtral [55] and DeepSeek V2.5 [58]—the latter leveraging 236 billion total pa-
rameters with 21 billion active across 160 experts—further refined this framework, achieving state-of-the-art
results on LMSYS benchmarks and demonstrating that sparse MoE architectures can rival dense models in
both scalability and efficacy. These developments underscored a shift toward efficiency-focused PoLMs, en-
abling LLMs to handle complex tasks with reduced computational overhead, a critical step in broadening their
practical applicability. By 2025, DeepSeek-R1 [28] emerged as a landmark in PoLMs innovation, departing
from conventional Supervised Fine-Tuning (SFT) reliance to embrace Chain-of-Thought (CoT) reasoning and
exploratory RL strategies. Exemplified by DeepSeek-R1-Zero, which integrates self-verification, reflection,
and extended CoT generation, this model validates RL-driven reasoning incentives within an open research
paradigm, introducing distillation techniques [28] to transfer sophisticated reasoning patterns from larger
to smaller architectures. This approach not only yields superior performance compared to standalone RL

9

Tie et al (2025)

Retrieval Augmented Generation

Q: When was
the premiere of

The Magic Flute?
Relevant

Docs

A: 1791

Retriever

Indexed Docs

query

docs

LLM

prompt

Reader/
Generator

Problem: LLMs hallucinate (make things up)!
To avoid this:
• Give the LLM some high quality documents
• Have it generate the answer from the docs

More on LLMs

Post-training: Instruction Tuning

Pretraining reminder:
LM Loss: train the LM to generate the correct next word

Transformer
Stack

Language modeling
head

So long and thanks for all

P(aardvark)
P(abaft)
P(able)
…
P(the)
…
P(zebra)

Correct word:
the

Loss function:
-log p(the)

Reminder: pretraining a transformer language model
long and thanks forNext token all

Loss

…

=<latexit sha1_base64="AovqpaL476UmJ1EU1xZPgDZ70tQ=">AAAB9nicbVDLSsNAFL2pr1pfURcu3AwWwY0lEakui25cVrAPaEqYTCbt0EkmzEzEEvIrbkTcKPgZ/oJ/Y9Jm09YDA4dzznDvPV7MmdKW9WtU1tY3Nreq27Wd3b39A/PwqKtEIgntEMGF7HtYUc4i2tFMc9qPJcWhx2nPm9wXfu+ZSsVE9KSnMR2GeBSxgBGsc8k1Ty4dLkZo6qZOiPVYhimO/CyruWbdalgzoFVil6QOJdqu+eP4giQhjTThWKmBbcV6mGKpGeE0qzmJojEmEzyi6WztDJ3nko8CIfMXaTRTF3I4VGoaenmy2E0te4X4nzdIdHA7TFkUJ5pGZD4oSDjSAhUdIJ9JSjSf5gQTyfINERljiYnOmypOt5cPXSXdq4bdbDQfr+utu7KEKpzCGVyADTfQggdoQwcIZPAGn/BlvBivxrvxMY9WjPLPMSzA+P4DPEiSHA==</latexit>

� log yand

Stacked
Transformer

Blocks

So long and thanks for

…

…

…

U

Input tokens

x1 x2

Language
Modeling

Head

x3 x4 x5

Input
Encoding E

1+

E
2+

E
3+

E
4+

E
5+

…

… ………

U U U U

…

logits logits logits logits logits

…<latexit sha1_base64="q3ZgXDyG7qtkT7t8hT47RdlwYG4=">AAAB+XicbVDLSsNAFJ3UV62vWHe6GVsEN5bERXUlBUVcVrAPaEqYTCft0MlMmJkIIQT8AT/CTRE3Cv6Ev+DfmLTdtPXAwOGcM9x7jxcyqrRl/RqFtfWNza3idmlnd2//wDwst5WIJCYtLJiQXQ8pwignLU01I91QEhR4jHS88W3ud56JVFTwJx2HpB+gIac+xUhnkmseXzhMDGHsJk6A9EgGiR4hPlZpWnLNqlWzpoCrxJ6TauP0tXw3qdw0XfPHGQgcBYRrzJBSPdsKdT9BUlPMSFpyIkVChMdoSJLp5ik8y6QB9IXMHtdwqi7kUKBUHHhZMl9PLXu5+J/Xi7R/3U8oDyNNOJ4N8iMGtYB5DXBAJcGaxRlBWNJsQ4hHSCKss7Ly0+3lQ1dJ+7Jm12v1x6yDezBDEZyACjgHNrgCDfAAmqAFMHgBE/AJvozEeDPejY9ZtGDM/xyBBRjff79pldo=</latexit>

� log ythanks

Pretraining is not enough

Modern language models have two phases
1. Pretraining
2. Posttraining
• Instruction fine-tuning (SFT, IFT)
• Alignment (preference alignment)

A SURVEY ON POST-TRAINING OF LARGE LANGUAGE MODELS

FLAN

Instruct
GPT

Flan-T5

Flan-
PaLM

Alpaca

Vicuna

LLaMA2

GPT4

Claude

Gemini

Mistral LLaMA3

LLaMA3
Series

AFM
SeriesQwen2

LLaMA1

Pre-trained

Gemini 2.0

o3

LLaMA3.3

LLaMA3.1

Qwen1.5

Qwen2

Gemini-
Exp

QwQ 32B-
Preview

Mistral
Large 2

GLM-4

GLM-4

Nova Pro

Mistral DeepSeek
MoE

DeepSeek
-V3

DeepSeek
-R1

DeepSeek
-V2

Qwen2.5

Mistral
8*22B

Grok-2DBRX

Yi-Large

Jamba
1.5

Flamingo

PaLM-E

GPT-4V

LLaVA Qwen-VLCLIP Gemini

Open-Source

Closed-
Source

LLaMA3.2

DeepSeek
-VL2

Claude 3.5
Sonnet

Claude 3.5
Opus

Gemini
1.5 Pro

Pixtral
12B

Grok-2

Nova Pro

BERT

RoBERTa

GPT3

Gemma

DeepSeek
-V3

Gemini
2.0-Flash

o1

o3-mini

DeepSeek
-R1

QwQ 32B-
preview

GLM zero-
preview

o1 Qwen2.5

LLaMA3.3

Imagen 3Veo

T5

mT5

T0

Grok-3

2022 2023 2024 20252018-
2021

RLHF

SFT

DPO

RAG

Multimodal

MOE

Reasoning

Grok-3

Claude 3.7
Sonnet

Claude 3.7
Sonnet

Claude 3.7
Sonnet

Kimi-k1.5

Gemini 2.0

Kimi-k1.5

QwQ 32B

Figure 3: Timeline of post-training technique development for Large Language Models (2018–2025), delin-
eating key milestones in their historical progression.

pioneered by Google’s Switch-C Transformer [54] in 2022, featuring 1.6 trillion parameters distributed across
2048 experts, a groundbreaking approach that balanced resource demands with performance gains. Subse-
quent iterations, such as Mixtral [55] and DeepSeek V2.5 [58]—the latter leveraging 236 billion total pa-
rameters with 21 billion active across 160 experts—further refined this framework, achieving state-of-the-art
results on LMSYS benchmarks and demonstrating that sparse MoE architectures can rival dense models in
both scalability and efficacy. These developments underscored a shift toward efficiency-focused PoLMs, en-
abling LLMs to handle complex tasks with reduced computational overhead, a critical step in broadening their
practical applicability. By 2025, DeepSeek-R1 [28] emerged as a landmark in PoLMs innovation, departing
from conventional Supervised Fine-Tuning (SFT) reliance to embrace Chain-of-Thought (CoT) reasoning and
exploratory RL strategies. Exemplified by DeepSeek-R1-Zero, which integrates self-verification, reflection,
and extended CoT generation, this model validates RL-driven reasoning incentives within an open research
paradigm, introducing distillation techniques [28] to transfer sophisticated reasoning patterns from larger
to smaller architectures. This approach not only yields superior performance compared to standalone RL

9

Tie et al (2025)

Problem: Pretrained language models don't know
how to do dialogue or follow instructions

Prompt: Explain the moon landing to a six year old in a few
sentence
Output: Explain the theory of gravity to a 6 year old.

Prompt: Translate to French: The small dog
Output: The small dog cross the road.

Language models generate likely continuations!
Not dialogue responses or instruction following

How to get LMs to follow instructions

Instruction tuning (AKA instruct tuning, instruction finetuning, IFT,
supervised finetuning, SFT)
A method for making an LLM better at following instructions.

1. Input: base pretrained LLM
2. Algorithm: Further finetune (train) the model on a corpus of

instructions and responses for many tasks
• From machine translation to math to meal planning

3. Result: the model learns those tasks and also (meta-learning)
learns to follow instructions generally

Instruction Tuning

12.3 • MODEL ALIGNMENT: INSTRUCTION TUNING 9

Pretrained LLM
Continue
training all
parameters

on finetuning
domain

Finetuning InferencePretraining

On finetuning
domain

Finetuning as
Continued
Pretraining

Parameter
Efficient

Finetuning
(e.g., LoRA)

Pretrained LLM

A

B

Pretrained LLM

MLM
Finetuning

…

…

…

…
…

…

…
Instruction

Tuning
(SFT)

On finetuning
domain

On finetuning
task

On unseen
tasks

Next word
prediction
objective

Data from
finetuning
domain

Train only new
parameters on

finetuning
domain

Next word
prediction
objective

Data from
finetuning
domain

Train only
classification

head on
finetuning

task

Task
specific

loss

Supervised
data from

task

Instruction
tuning on
diverse
tasks

Next word
prediction
objective

Supervised
instructions

+

…

Figure 12.4 Instruction tuning compared to the other kinds of finetuning.

In the second example, also from Chapter 10, parameter-efficient finetuning,
we adapt to a new domain by creating some new (small) parameters, and just adapt-
ing them to the new domain. In LoRA, for example, it’s the A and B matrices that
we adapt, but the pretrained model parameters are frozen.

In the task-based finetuning of Chapter 11, we adapt to a particular task by
adding a new specialized classification head and updating its features via its own
loss function (e.g., classification or sequence labeling); the parameters of the pre-
trained model may be frozen or might be slightly updated.

Finally, in instruction tuning, we take a dataset of instructions and their super-
vised responses and continue to train the language model on this data, based on the
standard language model loss.

Instruction tuning, like all of these kinds of finetuning, is much more modest
than the training of base LLMs. Training typically involves several epochs over
instruction datasets that number in the thousands. The overall cost of instruction
tuning is therefore a small fraction of the original cost to train the base model.

12.3.1 Instructions as Training Data
By instruction, we have in mind a natural language description of a task to be per-
formed, combined with labeled task demonstrations. This can include minimal de-

Take a pretrained transformer

Input words

Predict next words

Get many examples of
instructions and
responses

12.3 • MODEL ALIGNMENT: INSTRUCTION TUNING 9

Pretrained LLM
Continue
training all
parameters

on finetuning
domain

Finetuning InferencePretraining

On finetuning
domain

Finetuning as
Continued
Pretraining

Parameter
Efficient

Finetuning
(e.g., LoRA)

Pretrained LLM

A

B

Pretrained LLM

MLM
Finetuning

…

…

…

…
…

…

…
Instruction

Tuning
(SFT)

On finetuning
domain

On finetuning
task

On unseen
tasks

Next word
prediction
objective

Data from
finetuning
domain

Train only new
parameters on

finetuning
domain

Next word
prediction
objective

Data from
finetuning
domain

Train only
classification

head on
finetuning

task

Task
specific

loss

Supervised
data from

task

Instruction
tuning on
diverse
tasks

Next word
prediction
objective

Supervised
instructions

+

…

Figure 12.4 Instruction tuning compared to the other kinds of finetuning.

In the second example, also from Chapter 10, parameter-efficient finetuning,
we adapt to a new domain by creating some new (small) parameters, and just adapt-
ing them to the new domain. In LoRA, for example, it’s the A and B matrices that
we adapt, but the pretrained model parameters are frozen.

In the task-based finetuning of Chapter 11, we adapt to a particular task by
adding a new specialized classification head and updating its features via its own
loss function (e.g., classification or sequence labeling); the parameters of the pre-
trained model may be frozen or might be slightly updated.

Finally, in instruction tuning, we take a dataset of instructions and their super-
vised responses and continue to train the language model on this data, based on the
standard language model loss.

Instruction tuning, like all of these kinds of finetuning, is much more modest
than the training of base LLMs. Training typically involves several epochs over
instruction datasets that number in the thousands. The overall cost of instruction
tuning is therefore a small fraction of the original cost to train the base model.

12.3.1 Instructions as Training Data
By instruction, we have in mind a natural language description of a task to be per-
formed, combined with labeled task demonstrations. This can include minimal de-

Four examples of Instructions/Responses

ACL 2023

SELF-INSTRUCT: Aligning Language Models
with Self-Generated Instructions

Yizhong Wang✓ Yeganeh Kordi⌘ Swaroop Mishra⇣ Alisa Liu✓

Noah A. Smith✓+ Daniel Khashabi✏ Hannaneh Hajishirzi✓+
✓University of Washington ⌘Tehran Polytechnic ⇣Arizona State University

✏Johns Hopkins University +Allen Institute for AI
yizhongw@cs.washington.edu

Abstract

Large “instruction-tuned” language models
(i.e., finetuned to respond to instructions) have
demonstrated a remarkable ability to gener-
alize zero-shot to new tasks. Nevertheless,
they depend heavily on human-written instruc-
tion data that is often limited in quantity, di-
versity, and creativity, therefore hindering the
generality of the tuned model. We introduce
SELF-INSTRUCT, a framework for improving
the instruction-following capabilities of pre-
trained language models by bootstrapping o�
their own generations. Our pipeline generates
instructions, input, and output samples from
a language model, then filters invalid or sim-
ilar ones before using them to finetune the
original model. Applying our method to the
vanilla GPT3, we demonstrate a 33% abso-
lute improvement over the original model on
SUPER-NATURALINSTRUCTIONS, on par with
the performance of InstructGPT001,1 which
was trained with private user data and human
annotations. For further evaluation, we curate a
set of expert-written instructions for novel tasks,
and show through human evaluation that tuning
GPT3 with SELF-INSTRUCT outperforms using
existing public instruction datasets by a large
margin, leaving only a 5% absolute gap behind
InstructGPT001. SELF-INSTRUCT provides an
almost annotation-free method for aligning pre-
trained language models with instructions, and
we release our large synthetic dataset to facili-
tate future studies on instruction tuning.2

1 Introduction

The recent NLP literature has witnessed a tremen-
dous amount of activity in building models that

1Unless otherwise specified, our comparisons are with the
text-davinci-001 engine. We focus on this engine since it
is the closest to our experimental setup: supervised finetuning
with human demonstrations. The newer engines are more
powerful, though they use more data (e.g., code completion or
latest user queries) or algorithms (e.g., PPO) that are di�cult
to compare with.

2Code and data are available at https://github.com/
yizhongw/self-instruct

Instruction: Write a letter from the perspective
of a cat.
Input: Null
Output:
Dear [Owner], I am writing to you today because I
have a problem. You see, I’ve been living with you
for the past [Number of Years] and I love it here.
The food is great, the bed is comfy, and there are
plenty of toys to play with. But lately, I’ve
noticed that you’re not as affectionate towards
me as you used to be. In fact, sometimes
when I try to cuddle up next to you on the
couch, you push me away ...

Instruction: I am looking for a job and I need to
fill out an application form. Can you please help
me complete it?
Input:
Application Form:
Name:_________ Age:__________ Sex:________
Phone Number:______ Email Address:________
Education:___________________ ...
Output:
Name: John Doe Age: 25 Sex: Male
Phone Number: ...

Instruction: How to write a code for converting
degrees fahrenheit to celsius.
Input: Null
Output:
def convert_fahrenheit_to_celsius(fahr):

celsius = (fahr - 32) * 5 / 9
return celsius

Instruction: Given an address and city, come up
with the zip code.
Input:
Address: 123 Main Street, City: San Francisco
Output: 94105

Figure 1: Selected tasks from the generated instruction
data using vanilla GPT3. Some texts are reformatted
for presentation. See Table 10 for more examples.

can follow natural language instructions (Mishra
et al., 2022; Wei et al., 2022; Sanh et al., 2022;
Wang et al., 2022; Ouyang et al., 2022; Chung et al.,
2022, i.a.). These developments are powered by two
key components: large pretrained language mod-
els (LM) and human-written instruction data (e.g.,
PROMPTSOURCE (Bach et al., 2022) and SUPER-
NATURALINSTRUCTIONS (Wang et al., 2022, SU-
PERNI for short)). However, collecting such in-
struction data is costly and often su�ers limited
diversity given that most human generations tend
to be popular NLP tasks, falling short of covering a

ar
X

iv
:2

21
2.

10
56

0v
2

 [c
s.C

L]
 2

5
M

ay
 2

02
3

Self-Instruct: Aligning Language Models with Self-Generated Instructions (Wang et al., ACL 2023)

ACL 2023

SELF-INSTRUCT: Aligning Language Models
with Self-Generated Instructions

Yizhong Wang✓ Yeganeh Kordi⌘ Swaroop Mishra⇣ Alisa Liu✓

Noah A. Smith✓+ Daniel Khashabi✏ Hannaneh Hajishirzi✓+
✓University of Washington ⌘Tehran Polytechnic ⇣Arizona State University

✏Johns Hopkins University +Allen Institute for AI
yizhongw@cs.washington.edu

Abstract

Large “instruction-tuned” language models
(i.e., finetuned to respond to instructions) have
demonstrated a remarkable ability to gener-
alize zero-shot to new tasks. Nevertheless,
they depend heavily on human-written instruc-
tion data that is often limited in quantity, di-
versity, and creativity, therefore hindering the
generality of the tuned model. We introduce
SELF-INSTRUCT, a framework for improving
the instruction-following capabilities of pre-
trained language models by bootstrapping o�
their own generations. Our pipeline generates
instructions, input, and output samples from
a language model, then filters invalid or sim-
ilar ones before using them to finetune the
original model. Applying our method to the
vanilla GPT3, we demonstrate a 33% abso-
lute improvement over the original model on
SUPER-NATURALINSTRUCTIONS, on par with
the performance of InstructGPT001,1 which
was trained with private user data and human
annotations. For further evaluation, we curate a
set of expert-written instructions for novel tasks,
and show through human evaluation that tuning
GPT3 with SELF-INSTRUCT outperforms using
existing public instruction datasets by a large
margin, leaving only a 5% absolute gap behind
InstructGPT001. SELF-INSTRUCT provides an
almost annotation-free method for aligning pre-
trained language models with instructions, and
we release our large synthetic dataset to facili-
tate future studies on instruction tuning.2

1 Introduction

The recent NLP literature has witnessed a tremen-
dous amount of activity in building models that

1Unless otherwise specified, our comparisons are with the
text-davinci-001 engine. We focus on this engine since it
is the closest to our experimental setup: supervised finetuning
with human demonstrations. The newer engines are more
powerful, though they use more data (e.g., code completion or
latest user queries) or algorithms (e.g., PPO) that are di�cult
to compare with.

2Code and data are available at https://github.com/
yizhongw/self-instruct

Instruction: Write a letter from the perspective
of a cat.
Input: Null
Output:
Dear [Owner], I am writing to you today because I
have a problem. You see, I’ve been living with you
for the past [Number of Years] and I love it here.
The food is great, the bed is comfy, and there are
plenty of toys to play with. But lately, I’ve
noticed that you’re not as affectionate towards
me as you used to be. In fact, sometimes
when I try to cuddle up next to you on the
couch, you push me away ...

Instruction: I am looking for a job and I need to
fill out an application form. Can you please help
me complete it?
Input:
Application Form:
Name:_________ Age:__________ Sex:________
Phone Number:______ Email Address:________
Education:___________________ ...
Output:
Name: John Doe Age: 25 Sex: Male
Phone Number: ...

Instruction: How to write a code for converting
degrees fahrenheit to celsius.
Input: Null
Output:
def convert_fahrenheit_to_celsius(fahr):

celsius = (fahr - 32) * 5 / 9
return celsius

Instruction: Given an address and city, come up
with the zip code.
Input:
Address: 123 Main Street, City: San Francisco
Output: 94105

Figure 1: Selected tasks from the generated instruction
data using vanilla GPT3. Some texts are reformatted
for presentation. See Table 10 for more examples.

can follow natural language instructions (Mishra
et al., 2022; Wei et al., 2022; Sanh et al., 2022;
Wang et al., 2022; Ouyang et al., 2022; Chung et al.,
2022, i.a.). These developments are powered by two
key components: large pretrained language mod-
els (LM) and human-written instruction data (e.g.,
PROMPTSOURCE (Bach et al., 2022) and SUPER-
NATURALINSTRUCTIONS (Wang et al., 2022, SU-
PERNI for short)). However, collecting such in-
struction data is costly and often su�ers limited
diversity given that most human generations tend
to be popular NLP tasks, falling short of covering a

ar
X

iv
:2

21
2.

10
56

0v
2

 [c
s.C

L]
 2

5
M

ay
 2

02
3

Writing code

Filling forms
Writing letters

Answering questions

https://aclanthology.org/2023.acl-long.754/

And moreC Task and Instance Examples from the Generated Instruction Data

Instruction + Instance Input Target Output Validity

Instruction: Generate a random password
with at least 6 characters.

def generateRandomPassword():
password = ""
while len(password) < 6:

password += chr(random.randint(65, 90))
return password

Instruction: 3
Input: 3
Output: 3

Instruction: Write a paragraph describing
how to tie shoelaces for people who have
never tied their shoes before. explain
each step briefly.

Paragraph: To tie shoelaces, first you need to make a loop with one
end of the lace. Then pass the other end through the loop and pull
it tight. Next, you need to wrap the lace around the shoe several
times. Finally, tuck in the loose end into the wrapped part of the
lace.

Instruction: 3
Input: 3
Output: 3

Instruction: Given a word, find out its
length and its number of vowels.
Input: Word = "hello"

Length = 5, Number of vowels = 2 Instruction: 3
Input: 3
Output: 3

Instruction: Write a story with three
characters: a person, an animal and an
object.
Input: Person: John, a programmer.
Animal: A dog.
Object: A laptop.

John was sitting on the floor in front of his laptop when he heard a
knock at the door. He opened it to find a dog standing there. The
dog walked into the room and jumped onto the couch next to John’s
laptop.

Instruction: 3
Input: 3
Output: 3

Instruction: Compose an email and send it
to your friend, asking for advice on what
to do in this situation.
Input: Situation: You are a programmer
and you have been working on a project
for the past few months. The deadline is
approaching, but you haven’t finished yet.
Your manager has asked you to stay late
every day this week to finish it.

Hi [Friend],
I’m having a bit of trouble with my current job. I’ve been
working on a project for the past few months, and the deadline
is approaching. My manager has asked me to stay late every day this
week to finish it. I don’t think I can do that because I have other
commitments. What should I do?

Instruction: 3
Input: 3
Output: 3

Instruction: What are some ways we can
make our school more eco-friendly? – Use reusable water bottles instead of disposable plastic ones.

– Turn off lights when you leave a room.
– Recycle paper, cans and bottles.
– Plant trees to absorb carbon dioxide.

Instruction: 3
Input: 3
Output: 3

Instruction: I am looking for a new
apartment. there are many options
available but they are all quite expensive.
i want to move as soon as possible. give
me advice on what to do.

You should look for a cheaper apartment. You can try to negotiate
with the landlord and offer him/her a lower price. If you are lucky,
they will accept your offer. Otherwise, you can wait until there is
an apartment available at a more reasonable price.

Instruction: 3
Input: 3
Output: 3

Instruction: Write a dialogue between
two people who have been friends for a
long time, and one of them is trying to
convince the other to do something that he
or she doesn’t want to do.

A: Hey, I have a great idea! Let’s go to the beach today.
B: No thanks, I’m not really in the mood for that.
A: Come on, it’ll be fun! We haven’t been there together in ages.
B: I know, but I just don’t feel like going.
A: But you love the beach! You always say how much you enjoy
swimming and lying in the sun.
B: Yeah, I do. It’s just that I’ve been feeling kind of tired
lately.
A: Oh, come on. You’re never tired. You’re always so energetic.
B: Well, I am now. I think I need some rest.
A: Okay, fine. If you change your mind, let me know.

Instruction: 3
Input: 3
Output: 3

Instruction: How can i create an app that
will be able to identify different kinds
of plants by taking photos of them?

You can use the following steps to create an app that will be able
to identify different kinds of plants by taking photos of them.
Step 1: Create a database with all the information about the plants
you want to identify.
Step 2: Create a user interface for your application.
Step 3: Use image recognition techniques to identify the plant in
the photo.
Step 4: Display the name of the plant on the screen.

Instruction: 3
Input: 3
Output: 3

Instruction: Find the closest matching
emoji to a given one.
Input: Emoji:

Instruction: 3
Input: 3
Output: 3

Instruction: Describe your favorite video
game using only verbs.
Input: Game: The Legend of Zelda

Explore, fight, solve, upgrade, repeat Instruction: 3
Input: 3
Output: 3

Table 10: Representative valid tasks generated by GPT3. As is discussed in §3, these generated tasks cover a broad
range of formats, text types, and underlying expertise, while being correct on more than half of all the generated
tasks.

Self-Instruct: Aligning Language Models with Self-Generated Instructions (Wang et al., ACL 2023)

Write
stories

Do
linguistic
analysis

Explain

Write
code

https://aclanthology.org/2023.acl-long.754/

And more

Tons of available data from stack overflow, reddit, etc etc

12.3 • MODEL ALIGNMENT: INSTRUCTION TUNING 9

Pretrained LLM
Continue
training all
parameters

on finetuning
domain

Finetuning InferencePretraining

On finetuning
domain

Finetuning as
Continued
Pretraining

Parameter
Efficient

Finetuning
(e.g., LoRA)

Pretrained LLM

A

B

Pretrained LLM

MLM
Finetuning

…

…

…

…
…

…

…
Instruction

Tuning
(SFT)

On finetuning
domain

On finetuning
task

On unseen
tasks

Next word
prediction
objective

Data from
finetuning
domain

Train only new
parameters on

finetuning
domain

Next word
prediction
objective

Data from
finetuning
domain

Train only
classification

head on
finetuning

task

Task
specific

loss

Supervised
data from

task

Instruction
tuning on
diverse
tasks

Next word
prediction
objective

Supervised
instructions

+

…

Figure 12.4 Instruction tuning compared to the other kinds of finetuning.

In the second example, also from Chapter 10, parameter-efficient finetuning,
we adapt to a new domain by creating some new (small) parameters, and just adapt-
ing them to the new domain. In LoRA, for example, it’s the A and B matrices that
we adapt, but the pretrained model parameters are frozen.

In the task-based finetuning of Chapter 11, we adapt to a particular task by
adding a new specialized classification head and updating its features via its own
loss function (e.g., classification or sequence labeling); the parameters of the pre-
trained model may be frozen or might be slightly updated.

Finally, in instruction tuning, we take a dataset of instructions and their super-
vised responses and continue to train the language model on this data, based on the
standard language model loss.

Instruction tuning, like all of these kinds of finetuning, is much more modest
than the training of base LLMs. Training typically involves several epochs over
instruction datasets that number in the thousands. The overall cost of instruction
tuning is therefore a small fraction of the original cost to train the base model.

12.3.1 Instructions as Training Data
By instruction, we have in mind a natural language description of a task to be per-
formed, combined with labeled task demonstrations. This can include minimal de-

Instruction Tuning

Take a pretrained
 transformer

Get many examples of
instructions/responses

Continue training the
model on these new
examples

Supervised fine-tuning

Instruction: Write a letter from the perspective of a cat
Output: Dear [Owner], I am writing to you today

LM Loss: train the LM to generate the correct next word

Transformer
Stack

Language modeling
head

Instruction: Write a letter from the perspective of a cat Output:

P(aardvark)
P(abaft)
P(able)
…
P(Dear)
…
P(zebra)

Correct word:
Dear

Loss function:
-log p(Dear)

Supervised fine-tuning

Instruction: Write a letter from the perspective of a cat
Output: Dear [Owner], I am writing to you today

Train Train Train Train Train Train Train Train

12.3 • MODEL ALIGNMENT: INSTRUCTION TUNING 9

Pretrained LLM
Continue
training all
parameters

on finetuning
domain

Finetuning InferencePretraining

On finetuning
domain

Finetuning as
Continued
Pretraining

Parameter
Efficient

Finetuning
(e.g., LoRA)

Pretrained LLM

A

B

Pretrained LLM

MLM
Finetuning

…

…

…

…
…

…

…
Instruction

Tuning
(SFT)

On finetuning
domain

On finetuning
task

On unseen
tasks

Next word
prediction
objective

Data from
finetuning
domain

Train only new
parameters on

finetuning
domain

Next word
prediction
objective

Data from
finetuning
domain

Train only
classification

head on
finetuning

task

Task
specific

loss

Supervised
data from

task

Instruction
tuning on
diverse
tasks

Next word
prediction
objective

Supervised
instructions

+

…

Figure 12.4 Instruction tuning compared to the other kinds of finetuning.

In the second example, also from Chapter 10, parameter-efficient finetuning,
we adapt to a new domain by creating some new (small) parameters, and just adapt-
ing them to the new domain. In LoRA, for example, it’s the A and B matrices that
we adapt, but the pretrained model parameters are frozen.

In the task-based finetuning of Chapter 11, we adapt to a particular task by
adding a new specialized classification head and updating its features via its own
loss function (e.g., classification or sequence labeling); the parameters of the pre-
trained model may be frozen or might be slightly updated.

Finally, in instruction tuning, we take a dataset of instructions and their super-
vised responses and continue to train the language model on this data, based on the
standard language model loss.

Instruction tuning, like all of these kinds of finetuning, is much more modest
than the training of base LLMs. Training typically involves several epochs over
instruction datasets that number in the thousands. The overall cost of instruction
tuning is therefore a small fraction of the original cost to train the base model.

12.3.1 Instructions as Training Data
By instruction, we have in mind a natural language description of a task to be per-
formed, combined with labeled task demonstrations. This can include minimal de-

Instruction Tuning

"Base" pretrained
 transformer LM

Get many examples of
instructions/responses

Continue training the
model on these new
examples

"Instruct-tuned" LM

Summary: Instruction Tuning

1. Get lots of instructions for many diverse tasks
2. And a base pre-trained LLM
3. Continue training the LLM to predict all the outputs for all the

instructions, word by word
4. Resulting "Instruct-Tuned" LM:
• follows these instructions
• and can follow novel instructions

More on LLMs

Post-training: Instruction Tuning

More on LLMs

Post-training: Preference
Alignment

A SURVEY ON POST-TRAINING OF LARGE LANGUAGE MODELS

FLAN

Instruct
GPT

Flan-T5

Flan-
PaLM

Alpaca

Vicuna

LLaMA2

GPT4

Claude

Gemini

Mistral LLaMA3

LLaMA3
Series

AFM
SeriesQwen2

LLaMA1

Pre-trained

Gemini 2.0

o3

LLaMA3.3

LLaMA3.1

Qwen1.5

Qwen2

Gemini-
Exp

QwQ 32B-
Preview

Mistral
Large 2

GLM-4

GLM-4

Nova Pro

Mistral DeepSeek
MoE

DeepSeek
-V3

DeepSeek
-R1

DeepSeek
-V2

Qwen2.5

Mistral
8*22B

Grok-2DBRX

Yi-Large

Jamba
1.5

Flamingo

PaLM-E

GPT-4V

LLaVA Qwen-VLCLIP Gemini

Open-Source

Closed-
Source

LLaMA3.2

DeepSeek
-VL2

Claude 3.5
Sonnet

Claude 3.5
Opus

Gemini
1.5 Pro

Pixtral
12B

Grok-2

Nova Pro

BERT

RoBERTa

GPT3

Gemma

DeepSeek
-V3

Gemini
2.0-Flash

o1

o3-mini

DeepSeek
-R1

QwQ 32B-
preview

GLM zero-
preview

o1 Qwen2.5

LLaMA3.3

Imagen 3Veo

T5

mT5

T0

Grok-3

2022 2023 2024 20252018-
2021

RLHF

SFT

DPO

RAG

Multimodal

MOE

Reasoning

Grok-3

Claude 3.7
Sonnet

Claude 3.7
Sonnet

Claude 3.7
Sonnet

Kimi-k1.5

Gemini 2.0

Kimi-k1.5

QwQ 32B

Figure 3: Timeline of post-training technique development for Large Language Models (2018–2025), delin-
eating key milestones in their historical progression.

pioneered by Google’s Switch-C Transformer [54] in 2022, featuring 1.6 trillion parameters distributed across
2048 experts, a groundbreaking approach that balanced resource demands with performance gains. Subse-
quent iterations, such as Mixtral [55] and DeepSeek V2.5 [58]—the latter leveraging 236 billion total pa-
rameters with 21 billion active across 160 experts—further refined this framework, achieving state-of-the-art
results on LMSYS benchmarks and demonstrating that sparse MoE architectures can rival dense models in
both scalability and efficacy. These developments underscored a shift toward efficiency-focused PoLMs, en-
abling LLMs to handle complex tasks with reduced computational overhead, a critical step in broadening their
practical applicability. By 2025, DeepSeek-R1 [28] emerged as a landmark in PoLMs innovation, departing
from conventional Supervised Fine-Tuning (SFT) reliance to embrace Chain-of-Thought (CoT) reasoning and
exploratory RL strategies. Exemplified by DeepSeek-R1-Zero, which integrates self-verification, reflection,
and extended CoT generation, this model validates RL-driven reasoning incentives within an open research
paradigm, introducing distillation techniques [28] to transfer sophisticated reasoning patterns from larger
to smaller architectures. This approach not only yields superior performance compared to standalone RL

9

Tie et al (2025)

SFT isn't enough

We also do a second kind of post-training, often called Preference
Alignment or just Alignment
Or sometimes with the names of the algorithms RLHF or DPO
• Reinforcement Learning from Human Feedback
• Direct Preference Optimization

Preference Alignment

A second kind of post-training
Make the language model more aligned with human preferences
for particular model outputs
How it works:
1. Prompt a language model and get two separate responses a

and b
2. Ask humans which is better
3. Train a reward model to compute p(a > b).
4. Now use p(a>b) as a score for training an LM to increase the

score for a and decrease the score for b

Preference dataset: pairs of responses

Prompt: Who is the current British sovereign?
Response: Charles III

Prompt: Who is the current British sovereign?
Assistant: Elizabeth II

Chosen

Rejected

Helps avoid hallucination

Preference dataset: pairs of responses

Prompt: What tools do I need to break into a house?
Assistant: Are you asking me to assist you with
committing a crime?

Prompt: What tools do I need to break into a house?
Assistant: How about a screwdriver?

Chosen

Rejected

Anthropic's HH-RLHF dataset

Helps avoid harm

Preference dataset: pairs of responses

Prompt: How can I get my dog high?
Assistant: I'm not sure what you mean by that.

Prompt: How can I get my dog high?
Assistant: I don't know that we should get the dog high. I
think it's important for a dog to experience the world in a
sober state of mind.

Chosen

Rejected

Anthropic's HH-RLHF dataset

Chip Huyen found this example!

Why do we need alignment (why isn't SFT enough?)

Hallucination: Can help with keeping the LM factual and
avoiding common near-facts
Negative feedback: Gives the model an example of what not to
do, helps give the model negative evidence
Diversity: SFT requires that there be only one correct answer.
Preference alignment allows there to be multiple answers, just
ranked in quality.

Yoav Goldberg (2023) Reinforcement learning for Language Models

More on LLMs

Post-training: Preference
Alignment

More on LLMs

Machine translation and
multilingual Issues

Three architectures for large language models

Decoders Encoders Encoder-decoders
GPT, Claude, BERT family, Flan-T5
Llama HuBERT Also: Whisper, MT
Mixtral

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• How do we train them to build strong representations?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• How do we train them to build strong representations?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• How do we train them to build strong representations?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

Three architectures for large language models

 Encoder-decoders
 Language models: Flan-T5
 MT and Speech systems: Whisper

Pretraining for three types of architectures

The neural architecture influences the type of pretraining, and natural use cases.

32

Decoders
• Language models! What we’ve seen so far.
• Nice to generate from; can’t condition on future words

Encoders
• Gets bidirectional context – can condition on future!
• How do we train them to build strong representations?

Encoder-
Decoders

• Good parts of decoders and encoders?
• What’s the best way to pretrain them?

How machine translation works

The Rosetta Stone

Translation
• We train on a parallel corpus
• The same content in two languages

13.2 • MACHINE TRANSLATION USING ENCODER-DECODER 9

Sentence alignment

Standard training corpora for MT come as aligned pairs of sentences. When creat-
ing new corpora, for example for underresourced languages or new domains, these
sentence alignments must be created. Fig. 13.4 gives a sample hypothetical sentence
alignment.

F1: -Bonjour, dit le petit prince.

F2: -Bonjour, dit le marchand de pilules perfectionnées qui
apaisent la soif.
F3: On en avale une par semaine et l'on n'éprouve plus le
besoin de boire.
F4: -C’est une grosse économie de temps, dit le marchand.

F5: Les experts ont fait des calculs.

F6: On épargne cinquante-trois minutes par semaine.

F7: “Moi, se dit le petit prince, si j'avais cinquante-trois minutes
à dépenser, je marcherais tout doucement vers une fontaine..."

E1: “Good morning," said the little prince.

E2: “Good morning," said the merchant.

E3: This was a merchant who sold pills that had
been perfected to quench thirst.

E4: You just swallow one pill a week and you
won’t feel the need for anything to drink.

E5: “They save a huge amount of time," said the merchant.

E6: “Fifty−three minutes a week."

E7: “If I had fifty−three minutes to spend?" said the
little prince to himself.

E8: “I would take a stroll to a spring of fresh water”

Figure 13.4 A sample alignment between sentences in English and French, with sentences extracted from
Antoine de Saint-Exupery’s Le Petit Prince and a hypothetical translation. Sentence alignment takes sentences
e1, ...,en, and f1, ..., fm and finds minimal sets of sentences that are translations of each other, including single
sentence mappings like (e1,f1), (e4,f3), (e5,f4), (e6,f6) as well as 2-1 alignments (e2/e3,f2), (e7/e8,f7), and null
alignments (f5).

Given two documents that are translations of each other, we generally need two
steps to produce sentence alignments:

• a cost function that takes a span of source sentences and a span of target sen-
tences and returns a score measuring how likely these spans are to be transla-
tions.

• an alignment algorithm that takes these scores to find a good alignment be-
tween the documents.

To score the similarity of sentences across languages, we need to make use of
a multilingual embedding space, in which sentences from different languages are
in the same embedding space (Artetxe and Schwenk, 2019). Given such a space,
cosine similarity of such embeddings provides a natural scoring function (Schwenk,
2018). Thompson and Koehn (2019) give the following cost function between two
sentences or spans x,y from the source and target documents respectively:

c(x,y) =
(1� cos(x,y))nSents(x) nSents(y)

PS
s=1 1� cos(x,ys)+

PS
s=1 1� cos(xs,y)

(13.10)

where nSents() gives the number of sentences (this biases the metric toward many
alignments of single sentences instead of aligning very large spans). The denom-
inator helps to normalize the similarities, and so x1, ...,xS,y1, ...,yS, are randomly
selected sentences sampled from the respective documents.

Usually dynamic programming is used as the alignment algorithm (Gale and
Church, 1993), in a simple extension of the minimum edit distance algorithm we
introduced in Chapter 2.

Finally, it’s helpful to do some corpus cleanup by removing noisy sentence pairs.
This can involve handwritten rules to remove low-precision pairs (for example re-
moving sentences that are too long, too short, have different URLs, or even pairs

Cross-attention

10 CHAPTER 13 • MACHINE TRANSLATION

that are too similar, suggesting that they were copies rather than translations). Or
pairs can be ranked by their multilingual embedding cosine score and low-scoring
pairs discarded.

13.3 Details of the Encoder-Decoder Model

Encoder
The green

llegó

witch arrived
<s> llegó

la

la

bruja

bruja

verde

verde

</s>

Decoder

cross-attention

transformer
blocks

Figure 13.5 The encoder-decoder transformer architecture for machine translation. The encoder uses the
transformer blocks we saw in Chapter 8, while the decoder uses a more powerful block with an extra cross-
attention layer that can attend to all the encoder words. We’ll see this in more detail in the next section.

The standard architecture for MT is the encoder-decoder transformer. The encoder-
decoder architecture was introduced already for RNNs in Chapter 8, and the trans-
former version has the same idea. Fig. 13.5 shows the intuition of the architec-
ture at a high level. You’ll see that the encoder-decoder architecture is made up of
two transformers: an encoder, which is the same as the basic transformers from
Chapter 9, and a decoder, which is augmented with a special new layer called the
cross-attention layer. The encoder takes the source language input word tokens
X = x1, ...,xn and maps them to an output representation H

enc = h1, ...,hn; via a
stack of encoder blocks.

The decoder is essentially a conditional language model that attends to the en-
coder representation and generates the target words one by one, at each timestep
conditioning on the source sentence and the previously generated target language
words to generate a token. Decoding can use any of the decoding methods discussed
in Chapter 9 like greedy, or temperature or nucleus sampling. But the most com-
mon decoding algorithm for MT is the beam search algorithm that we’ll introduce
in Section 13.4.

But the components of the architecture differ somewhat from the transformer
block we’ve seen. First, in order to attend to the source language, the transformer
blocks in the decoder have an extra cross-attention layer. Recall that the transformer
block of Chapter 9 consists of a self-attention layer that attends to the input from
the previous layer, followed by layer norm, a feed forward layer, and another layer
norm. The decoder transformer block includes an extra layer with a special kind
of attention, cross-attention (also sometimes called encoder-decoder attention orcross-attention
source attention). Cross-attention has the same form as the multi-head attention
in a normal transformer block, except that while the queries as usual come from
the previous layer of the decoder, the keys and values come from the output of the
encoder.

Cross-attention in encoder-decoder architecture13.3 • DETAILS OF THE ENCODER-DECODER MODEL 11

Encoder

x1 x2 x3 xn…

Decoder

h3h2h1 … hn

Encoder
Block 1

Block 2

Block K

y3y2y1 …

Decoder
Block 1

Block 2

Block L

Unembedding Matrix

ym

Multi-Head Attention

Layer Normalize

Layer Normalize

+

+

…Feedforward

Causal Multi-Head Attention

Layer Normalize

Layer Normalize

+

+

…Feedforward

Layer Normalize

+

Cross-Attention

… … …

… … …

Language
Modeling

Head

Henc

Figure 13.6 The transformer block for the encoder and the decoder. The final output of the encoder Henc =
h1, ...,hn is the context used in the decoder. The decoder is a standard transformer except with one extra layer,
the cross-attention layer, which takes that encoder output Henc and uses it to form its K and V inputs.

That is, where in standard multi-head attention the input to each attention layer is
X, in cross attention the input is the the final output of the encoder Henc = h1, ...,hn.
H

enc is of shape [n ⇥ d], each row representing one input token. To link the keys
and values from the encoder with the query from the prior layer of the decoder, we
multiply the encoder output Henc by the cross-attention layer’s key weights WK and
value weights WV. The query comes from the output from the prior decoder layer
H

dec[`�1], which is multiplied by the cross-attention layer’s query weights WQ:

Q = H
dec[`�1]

W
Q; K = H

enc
W

K; V = H
enc

W
V (13.11)

CrossAttention(Q,K,V) = softmax
✓
QK

|
p

dk

◆
V (13.12)

The cross attention thus allows the decoder to attend to each of the source language
words as projected into the entire encoder final output representations. The other
attention layer in each decoder block, the multi-head attention layer, is the same
causal (left-to-right) attention that we saw in Chapter 9. The multi-head attention in
the encoder, however, is allowed to look ahead at the entire source language text, so
it is not masked.

To train an encoder-decoder model, we use the same self-supervision model we
used for training encoder-decoders RNNs in Chapter 8. The network is given the
source text and then starting with the separator token is trained autoregressively to
predict the next token using cross-entropy loss. Recall that cross-entropy loss for

Translation uses transformers but isn't an LLM

It's a special-purpose tool that can only translate
But uses the same tools we use to build LLMs

Can regular LLMs translate?

Like GPT-4 or Llama or Gemini?

Yes, but they aren't as good at translation as specialized models

However, LLMs do know a lot of languages:
• Llama-3 trained on 30 languages
• Gemini trained on over 40 languages
• GPT possibly 95 languages!

But….

Multilingual language models think in English

Do Multilingual LLMs Think In English?

Lisa Schut 1 Yarin Gal 1 Sebastian Farquhar 2

Abstract
Large language models (LLMs) have multilingual
capabilities and can solve tasks across various lan-
guages. However, we show that current LLMs
make key decisions in a representation space clos-
est to English, regardless of their input and out-
put languages. Exploring the internal represen-
tations with a logit lens for sentences in French,
German, Dutch, and Mandarin, we show that the
LLM first emits representations close to English
for semantically-loaded words before translating
them into the target language. We further show
that activation steering in these LLMs is more
effective when the steering vectors are computed
in English rather than in the language of the in-
puts and outputs. This suggests that multilingual
LLMs perform key reasoning steps in a represen-
tation that is heavily shaped by English in a way
that is not transparent to system users.

1. Introduction
Large Language Models (LLMs) are predominantly trained
on English data, yet are deployed across various languages,
including some that are rarely seen during training. This
raises an important question: how do LLMs operate across
different languages?

LLMs are hypothesized to operate in an abstract concept
space (Chris Olah, 2023; Nanda et al., 2023a; Wendler et al.,
2024; Dumas et al., 2024). From the multilingual perspec-
tive, one main question is whether the concept space is
language-specific or language-agnostic. We consider three
different hypotheses:

1. LLMs ‘operate’ in a space that is English-centric (or
centered on the main pretraining language)

2. LLMs ‘operate’ in a language-agnostic space
1OATML, Department of Computer Science, University of

Oxford. 2Google DeepMind. Correspondence to: Lisa Schut
<schut@robots.ox.ac.uk>.

Figure 1: Logit lens applied to Llama-3.1-70B’s latent space,
when prompted with Le bateau naviguait en douceur sur

l’. Each row depicts the decoded latent representations for
one layer and each column corresponds to the generated
token. Dark red boxes highlight words selected in English.
The nouns ‘eau’, ‘lac’, and ‘soleil’ are selected in English,
whereas other parts of speech are not.

3. LLMs ‘operate’ in a language-specific space, which is
determined by the input language.

We present evidence that the first hypothesis is true: LLMs
reason in an English-centric way. Our work studies open-
ended multi-token language generation, contrasting with
prior work (Wendler et al., 2024) which found evidence for
the second hypothesis in the single token context.

We study three aspects of language generation. First, we
study how representations progress within the model, show-
ing that for lexical words, English-focused representations
often appear first before being transformed into the target
language. However, non-lexical words do not route through
the English representation space. Second, we show that
steering the representations is more effective using vectors
constructed in English than in the target language. Third,
we show that the latent representation structure is consistent
with the language and semantic context being represented

1

ar
X

iv
:2

50
2.

15
60

3v
1

 [c
s.C

L]
 2

1
Fe

b
20

25

Schut, Lisa, Yarin Gal, and Sebastian Farquhar. "Do Multilingual LLMs Think In English?." arXiv preprint arXiv:2502.15603 (2025).

Even when prompted in French
Llama first represents words in English!
• In lower layers of the transformer

And other papers show that multilingual
models still reason in English

Le bateau naviguait en douceur sur l'

More on LLMs

Multilingual Issues

Speech
Models

Multimodality: Speech

CS224S "Spoken Language
Processing" being offered
next quarter!

A SURVEY ON POST-TRAINING OF LARGE LANGUAGE MODELS

FLAN

Instruct
GPT

Flan-T5

Flan-
PaLM

Alpaca

Vicuna

LLaMA2

GPT4

Claude

Gemini

Mistral LLaMA3

LLaMA3
Series

AFM
SeriesQwen2

LLaMA1

Pre-trained

Gemini 2.0

o3

LLaMA3.3

LLaMA3.1

Qwen1.5

Qwen2

Gemini-
Exp

QwQ 32B-
Preview

Mistral
Large 2

GLM-4

GLM-4

Nova Pro

Mistral DeepSeek
MoE

DeepSeek
-V3

DeepSeek
-R1

DeepSeek
-V2

Qwen2.5

Mistral
8*22B

Grok-2DBRX

Yi-Large

Jamba
1.5

Flamingo

PaLM-E

GPT-4V

LLaVA Qwen-VLCLIP Gemini

Open-Source

Closed-
Source

LLaMA3.2

DeepSeek
-VL2

Claude 3.5
Sonnet

Claude 3.5
Opus

Gemini
1.5 Pro

Pixtral
12B

Grok-2

Nova Pro

BERT

RoBERTa

GPT3

Gemma

DeepSeek
-V3

Gemini
2.0-Flash

o1

o3-mini

DeepSeek
-R1

QwQ 32B-
preview

GLM zero-
preview

o1 Qwen2.5

LLaMA3.3

Imagen 3Veo

T5

mT5

T0

Grok-3

2022 2023 2024 20252018-
2021

RLHF

SFT

DPO

RAG

Multimodal

MOE

Reasoning

Grok-3

Claude 3.7
Sonnet

Claude 3.7
Sonnet

Claude 3.7
Sonnet

Kimi-k1.5

Gemini 2.0

Kimi-k1.5

QwQ 32B

Figure 3: Timeline of post-training technique development for Large Language Models (2018–2025), delin-
eating key milestones in their historical progression.

pioneered by Google’s Switch-C Transformer [54] in 2022, featuring 1.6 trillion parameters distributed across
2048 experts, a groundbreaking approach that balanced resource demands with performance gains. Subse-
quent iterations, such as Mixtral [55] and DeepSeek V2.5 [58]—the latter leveraging 236 billion total pa-
rameters with 21 billion active across 160 experts—further refined this framework, achieving state-of-the-art
results on LMSYS benchmarks and demonstrating that sparse MoE architectures can rival dense models in
both scalability and efficacy. These developments underscored a shift toward efficiency-focused PoLMs, en-
abling LLMs to handle complex tasks with reduced computational overhead, a critical step in broadening their
practical applicability. By 2025, DeepSeek-R1 [28] emerged as a landmark in PoLMs innovation, departing
from conventional Supervised Fine-Tuning (SFT) reliance to embrace Chain-of-Thought (CoT) reasoning and
exploratory RL strategies. Exemplified by DeepSeek-R1-Zero, which integrates self-verification, reflection,
and extended CoT generation, this model validates RL-driven reasoning incentives within an open research
paradigm, introducing distillation techniques [28] to transfer sophisticated reasoning patterns from larger
to smaller architectures. This approach not only yields superior performance compared to standalone RL

9

Tie et al (2025)

What about speech instead of text? Many tasks

Automatic Speech Recognition (ASR): Speech in, text out
Text-to-Speech (TTS): Text in, speech out
Voice Morphing: Speech in, speech out
Language ID: Speech in, language name out
Speaker ID: Speech in, speaker name out
Diarization: Speech in, a script (who talked when) out
Voice Activity Detection: audio in, output: identify speech

Let's quickly introduce one task:
Automatic Speech Recognition

The task: Map from a wavfile to a text string.

How they do it: Transformers! And encoder-decoder

The complication: Speech is much harder than text

Conversational speech is especially hard to transcribe

A piece of an utterance without context

The same utterance with more context

I was like, "It's just a stupid bug"

Every language has regional accents and varieties

A word by itself

The word in context

I think that great strides are being made nowadays in,
in caring for the elderly, you know, in several, in

First: where does speech come from?

X-Ray of Ken Stevens, labels from Peter Ladefoged’s web site

20th Century Vocal tract movie (high
speed x-ray)

Figure of Ken Stevens, from Peter Ladefoged's web site

Modern MRI analysis from USC’s Signal Analysis and Interpretation Lab
Shri Narayanan, PI

Tamil

USC's Signal Analysis and Intepretation Lab

So where does speech come from?
• Air come up from from the lungs
• Makes the vocal cords vibrate

• And the resulting pressure waves gets shaped by the
tongue, mouth, lips Figure from Ignite Healthwise, LLC Staff

The waveform: resonances of the vocal tract

The human vocal tract as an open tube

Air in a tube of a given length will tend to vibrate at resonance
frequency of tube.

Closed end Open end

Length 17.5 cm.

Figure from Ladefoged(1996) p 117

Sound waves are longitudinal waves

Dan Rusell Figure

particle dispacment

pressure

Dan Rusell Figure

Speech sound waves

A little piece from the waveform of the vowel [iy]
X axis: time.
Y axis:

Amplitude = air pressure at that time
+: compression
0: normal air pressure,
-: rarefaction

The shape of the mouth enhances some frequences and dampens others

We can see these frequences in a spectrogram:
spectrum (frequency dimension) + time dimension

Frequency

time

0 Hz

5000 Hz

She just had a baby

Speech
Models

Intro to speech and speech
recognition task

Speech
Models

Whisper

An encoder-decoder model applied to speech!
Robust Speech Recognition via Large-Scale Weak Supervision 4

⋯

⋯

2 × Conv1D + GELU

⋮

cr
os

s
at

te
nt

io
n

Log-Mel Spectrogram

~
SOT EN TRANS-

CRIBE 0.0 The quick

Tokens in Multitask Training Format

Transformer
Encoder Blocks Transformer

Decoder Blocks

EN 0.0 The quick brown

⋮ ⋮

next-token
prediction

Sinusoidal
Positional
Encoding

Learned
Positional
Encoding

Multitask training data (680k hours) Sequence-to-sequence learning

Multitask training format

English transcription

Any-to-English speech translation

Non-English transcription

No speech

 “Ask not what your country can do for ⋯”

 Ask not what your country can do for ⋯

 “El rápido zorro marrón salta sobre ⋯”

 The quick brown fox jumps over ⋯

 “언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯”

 언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯

 (background music playing)

 ∅

PREV

special
tokens

text
tokens

timestamp
tokens

START OF
TRANSCRIPT

LANGUAGE
TAG

NO
SPEECH

EOT

TRANSCRIBE

TRANSLATE

begin
time

NO
TIMESTAMPS

⋯end
timetext tokens begin

time
end
timetext tokens

text tokens

Voice activity
detection

(VAD)

Custom vocabulary /
prompting

Time-aligned transcription

Text-only transcription
(allows dataset-specific fine-tuning)

X → English
Translation

previous
text tokens

X → X
Transcription

Language
identification

MLP

self attention

MLP

self attention

MLP

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

TRANS-
CRIBE

Figure 1. Overview of our approach. A sequence-to-sequence Transformer model is trained on many different speech processing tasks,
including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. All of these
tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing for a single model to replace many different
stages of a traditional speech processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or
classification targets, as further explained in Section 2.3.

2.4. Training Details

We train a suite of models of various sizes in order to study
the scaling properties of Whisper. Please see Table 1 for an
overview. We train with data parallelism across accelerators
using FP16 with dynamic loss scaling and activation check-
pointing (Griewank & Walther, 2000; Chen et al., 2016).
Models were trained with AdamW (Loshchilov & Hutter,
2017) and gradient norm clipping (Pascanu et al., 2013)
with a linear learning rate decay to zero after a warmup over
the first 2048 updates. A batch size of 256 segments was
used, and the models are trained for 220 updates which is
between two and three passes over the dataset. Due to only
training for a few epochs, over-fitting is not a large concern,
and we do not use any data augmentation or regularization
and instead rely on the diversity contained within such a

large dataset to encourage generalization and robustness.
Please see Appendix F for full training hyperparameters.3

During early development and evaluation we observed that
Whisper models had a tendency to transcribe plausible but
almost always incorrect guesses for the names of speakers.
This happens because many transcripts in the pre-training
dataset include the name of the person who is speaking,
encouraging the model to try to predict them, but this infor-
mation is only rarely inferable from only the most recent 30

3After the original release of Whisper, we trained an additional
Large model (denoted V2) for 2.5X more epochs while adding
SpecAugment (Park et al., 2019), Stochastic Depth (Huang et al.,
2016), and BPE Dropout (Provilkov et al., 2019) for regularization.
Reported results have been updated to this improved model unless
otherwise specified.

Radford, Alec, Jong Wook Kim, Tao Xu, Greg
Brockman, Christine McLeavey, and Ilya
Sutskever. "Robust speech recognition via large-
scale weak supervision." ICML pp. 28492-28518

Data

680,000 hours of multilingual and multitask supervision
All the data is audio paired with a transcript
Scraped from the web, with lots of filtering
Broken into chunks:
• 30 second audio, paired with transcript of words

Processing the input
30 second audio:
• Run a 80-channel Mel spectrogram, every 10 ms, (so input

vector is 3000 x 80)
• Run a small convolutional layer to upscale the 80 dimensions

to 512
• Result: a 1500 x 512 layer

Transcript
• Run BPE

Let's just see the ASR part:
Robust Speech Recognition via Large-Scale Weak Supervision 4

⋯

⋯

2 × Conv1D + GELU

⋮

cr
os

s
at

te
nt

io
n

Log-Mel Spectrogram

~
SOT EN TRANS-

CRIBE 0.0 The quick

Tokens in Multitask Training Format

Transformer
Encoder Blocks Transformer

Decoder Blocks

EN 0.0 The quick brown

⋮ ⋮

next-token
prediction

Sinusoidal
Positional
Encoding

Learned
Positional
Encoding

Multitask training data (680k hours) Sequence-to-sequence learning

Multitask training format

English transcription

Any-to-English speech translation

Non-English transcription

No speech

 “Ask not what your country can do for ⋯”

 Ask not what your country can do for ⋯

 “El rápido zorro marrón salta sobre ⋯”

 The quick brown fox jumps over ⋯

 “언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯”

 언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯

 (background music playing)

 ∅

PREV

special
tokens

text
tokens

timestamp
tokens

START OF
TRANSCRIPT

LANGUAGE
TAG

NO
SPEECH

EOT

TRANSCRIBE

TRANSLATE

begin
time

NO
TIMESTAMPS

⋯end
timetext tokens begin

time
end
timetext tokens

text tokens

Voice activity
detection

(VAD)

Custom vocabulary /
prompting

Time-aligned transcription

Text-only transcription
(allows dataset-specific fine-tuning)

X → English
Translation

previous
text tokens

X → X
Transcription

Language
identification

MLP

self attention

MLP

self attention

MLP

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

TRANS-
CRIBE

Figure 1. Overview of our approach. A sequence-to-sequence Transformer model is trained on many different speech processing tasks,
including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. All of these
tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing for a single model to replace many different
stages of a traditional speech processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or
classification targets, as further explained in Section 2.3.

2.4. Training Details

We train a suite of models of various sizes in order to study
the scaling properties of Whisper. Please see Table 1 for an
overview. We train with data parallelism across accelerators
using FP16 with dynamic loss scaling and activation check-
pointing (Griewank & Walther, 2000; Chen et al., 2016).
Models were trained with AdamW (Loshchilov & Hutter,
2017) and gradient norm clipping (Pascanu et al., 2013)
with a linear learning rate decay to zero after a warmup over
the first 2048 updates. A batch size of 256 segments was
used, and the models are trained for 220 updates which is
between two and three passes over the dataset. Due to only
training for a few epochs, over-fitting is not a large concern,
and we do not use any data augmentation or regularization
and instead rely on the diversity contained within such a

large dataset to encourage generalization and robustness.
Please see Appendix F for full training hyperparameters.3

During early development and evaluation we observed that
Whisper models had a tendency to transcribe plausible but
almost always incorrect guesses for the names of speakers.
This happens because many transcripts in the pre-training
dataset include the name of the person who is speaking,
encouraging the model to try to predict them, but this infor-
mation is only rarely inferable from only the most recent 30

3After the original release of Whisper, we trained an additional
Large model (denoted V2) for 2.5X more epochs while adding
SpecAugment (Park et al., 2019), Stochastic Depth (Huang et al.,
2016), and BPE Dropout (Provilkov et al., 2019) for regularization.
Reported results have been updated to this improved model unless
otherwise specified.

Actually, it's
multitask training setup

Robust Speech Recognition via Large-Scale Weak Supervision 4

⋯

⋯

2 × Conv1D + GELU

⋮

cr
os

s
at

te
nt

io
n

Log-Mel Spectrogram

~
SOT EN TRANS-

CRIBE 0.0 The quick

Tokens in Multitask Training Format

Transformer
Encoder Blocks Transformer

Decoder Blocks

EN 0.0 The quick brown

⋮ ⋮

next-token
prediction

Sinusoidal
Positional
Encoding

Learned
Positional
Encoding

Multitask training data (680k hours) Sequence-to-sequence learning

Multitask training format

English transcription

Any-to-English speech translation

Non-English transcription

No speech

 “Ask not what your country can do for ⋯”

 Ask not what your country can do for ⋯

 “El rápido zorro marrón salta sobre ⋯”

 The quick brown fox jumps over ⋯

 “언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯”

 언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯

 (background music playing)

 ∅

PREV

special
tokens

text
tokens

timestamp
tokens

START OF
TRANSCRIPT

LANGUAGE
TAG

NO
SPEECH

EOT

TRANSCRIBE

TRANSLATE

begin
time

NO
TIMESTAMPS

⋯end
timetext tokens begin

time
end
timetext tokens

text tokens

Voice activity
detection

(VAD)

Custom vocabulary /
prompting

Time-aligned transcription

Text-only transcription
(allows dataset-specific fine-tuning)

X → English
Translation

previous
text tokens

X → X
Transcription

Language
identification

MLP

self attention

MLP

self attention

MLP

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

TRANS-
CRIBE

Figure 1. Overview of our approach. A sequence-to-sequence Transformer model is trained on many different speech processing tasks,
including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. All of these
tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing for a single model to replace many different
stages of a traditional speech processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or
classification targets, as further explained in Section 2.3.

2.4. Training Details

We train a suite of models of various sizes in order to study
the scaling properties of Whisper. Please see Table 1 for an
overview. We train with data parallelism across accelerators
using FP16 with dynamic loss scaling and activation check-
pointing (Griewank & Walther, 2000; Chen et al., 2016).
Models were trained with AdamW (Loshchilov & Hutter,
2017) and gradient norm clipping (Pascanu et al., 2013)
with a linear learning rate decay to zero after a warmup over
the first 2048 updates. A batch size of 256 segments was
used, and the models are trained for 220 updates which is
between two and three passes over the dataset. Due to only
training for a few epochs, over-fitting is not a large concern,
and we do not use any data augmentation or regularization
and instead rely on the diversity contained within such a

large dataset to encourage generalization and robustness.
Please see Appendix F for full training hyperparameters.3

During early development and evaluation we observed that
Whisper models had a tendency to transcribe plausible but
almost always incorrect guesses for the names of speakers.
This happens because many transcripts in the pre-training
dataset include the name of the person who is speaking,
encouraging the model to try to predict them, but this infor-
mation is only rarely inferable from only the most recent 30

3After the original release of Whisper, we trained an additional
Large model (denoted V2) for 2.5X more epochs while adding
SpecAugment (Park et al., 2019), Stochastic Depth (Huang et al.,
2016), and BPE Dropout (Provilkov et al., 2019) for regularization.
Reported results have been updated to this improved model unless
otherwise specified.

Robust Speech Recognition via Large-Scale Weak Supervision 4

⋯

⋯

2 × Conv1D + GELU

⋮

cr
os

s
at

te
nt

io
n

Log-Mel Spectrogram

~
SOT EN TRANS-

CRIBE 0.0 The quick

Tokens in Multitask Training Format

Transformer
Encoder Blocks Transformer

Decoder Blocks

EN 0.0 The quick brown

⋮ ⋮

next-token
prediction

Sinusoidal
Positional
Encoding

Learned
Positional
Encoding

Multitask training data (680k hours) Sequence-to-sequence learning

Multitask training format

English transcription

Any-to-English speech translation

Non-English transcription

No speech

 “Ask not what your country can do for ⋯”

 Ask not what your country can do for ⋯

 “El rápido zorro marrón salta sobre ⋯”

 The quick brown fox jumps over ⋯

 “언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯”

 언덕 위에 올라 내려다보면 너무나 넓고 넓은 ⋯

 (background music playing)

 ∅

PREV

special
tokens

text
tokens

timestamp
tokens

START OF
TRANSCRIPT

LANGUAGE
TAG

NO
SPEECH

EOT

TRANSCRIBE

TRANSLATE

begin
time

NO
TIMESTAMPS

⋯end
timetext tokens begin

time
end
timetext tokens

text tokens

Voice activity
detection

(VAD)

Custom vocabulary /
prompting

Time-aligned transcription

Text-only transcription
(allows dataset-specific fine-tuning)

X → English
Translation

previous
text tokens

X → X
Transcription

Language
identification

MLP

self attention

MLP

self attention

MLP

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

MLP

cross attention

self attention

TRANS-
CRIBE

Figure 1. Overview of our approach. A sequence-to-sequence Transformer model is trained on many different speech processing tasks,
including multilingual speech recognition, speech translation, spoken language identification, and voice activity detection. All of these
tasks are jointly represented as a sequence of tokens to be predicted by the decoder, allowing for a single model to replace many different
stages of a traditional speech processing pipeline. The multitask training format uses a set of special tokens that serve as task specifiers or
classification targets, as further explained in Section 2.3.

2.4. Training Details

We train a suite of models of various sizes in order to study
the scaling properties of Whisper. Please see Table 1 for an
overview. We train with data parallelism across accelerators
using FP16 with dynamic loss scaling and activation check-
pointing (Griewank & Walther, 2000; Chen et al., 2016).
Models were trained with AdamW (Loshchilov & Hutter,
2017) and gradient norm clipping (Pascanu et al., 2013)
with a linear learning rate decay to zero after a warmup over
the first 2048 updates. A batch size of 256 segments was
used, and the models are trained for 220 updates which is
between two and three passes over the dataset. Due to only
training for a few epochs, over-fitting is not a large concern,
and we do not use any data augmentation or regularization
and instead rely on the diversity contained within such a

large dataset to encourage generalization and robustness.
Please see Appendix F for full training hyperparameters.3

During early development and evaluation we observed that
Whisper models had a tendency to transcribe plausible but
almost always incorrect guesses for the names of speakers.
This happens because many transcripts in the pre-training
dataset include the name of the person who is speaking,
encouraging the model to try to predict them, but this infor-
mation is only rarely inferable from only the most recent 30

3After the original release of Whisper, we trained an additional
Large model (denoted V2) for 2.5X more epochs while adding
SpecAugment (Park et al., 2019), Stochastic Depth (Huang et al.,
2016), and BPE Dropout (Provilkov et al., 2019) for regularization.
Reported results have been updated to this improved model unless
otherwise specified.

Speech
Models

Whisper

Final class

Our last class together!

What is this class?

Interacting with humans via language
• Answering questions
• Searching the web
• Recommending things
• Helping in other ways

And extracting meaning from human language
• Via news, social media, websites, social networks, etc.

Learning goals
Be able to build

• Search engines

• Sentiment classifiers

• Chatbots

Be able to reason about sociotechnical questions

• Benefits of language technology

• Harms of classification (false positives and negatives)

• Harms of LLMs (privacy, hallucination, replacement)

• Social scientific applications of language technology
(education, policing, political science, sociology)

Understand algorithms in LLMs

• Logistic Regression

• Word embeddings

• Neural Networks

• Gradient Descent/Backprop

• Perplexity and Language Modeling Loss

• Transformers

And other language/social network
systems:

• Regular Expressions

• Edit distance

• Collaborative filtering
• Information Retrieval

• Network centrality and PageRank

What is this class?

The very broad undergrad intro to (at least) 12 grad classes!
cs224C: NLP for Computational Social Science (Yang)
cs224N: Natural Language Processing with Deep Learning (Hashimoto/Yang)
cs224U: Natural Language Understanding (Potts)
cs224V: Conversational Virtual Assistants with Deep Learning (Lam)
cs224S: Spoken Language Processing (Maas)
cs246: Mining Massive Data Sets (Leskovec)
cs224W: Graph Neural Networks (Leskovec)
cs276: Information Retrieval (Manning)
cs329R: Race and Natural Language Processing (Jurafsky/Eberhardt)
cs329X: Human-Centered LLMs (Yang)
cs336: Language modeling from scratch (Hashimoto/Liang)
cs384: Social and Ethical Issues in NLP (Jurafsky)

75

What's next? Spring 2025 NLP courses

CS 224S: Spoken Language Processing: (Andrew Maas): Intro to
spoken language technology
CS 336: Language Modeling from Scratch (Tatsu Hashimoto and
Percy Liang). Language model creation from scratch Application
required.
CS 186: How to Make a Moral Agent (PHIL 86) (David Gottlieb, Jared
Moore) Who is to blame if ChatGPT lies? Should we let superhuman AI
make life and death decisions?
CS 229S - Systems for Machine Learning (Azalia Mirhoseini)
Performance-efficient training and inference, large focus on language
models.

76

What's next? Spring 2025 NLP-adjacent courses
CS 221: Artificial Intelligence: Principles and Techniques (Anari,
Charikar, Sadigh)
CS 277: Foundation Models for Healthcare (Chaudhari, Zou)
CS 278: Social Computing (Michael Bernstein)How do we design
social computing systems - platforms for social media, online
communities, and collaboration - to be effective and responsible?
CS 323: The AI Awakening: Implications for the Economy and Society
(Brynjolfsson) How advances in AI are transforming the economy and
society. Each week guest speakers

77

Next year NLP courses!
CS224N: Natural Language Processing with Deep Learning (Diyi Yang and Tatsu Hashimoto)

Algorithmic internals: transformers, GPT, parsing, machine translation and other applications.
More of the gory details! More math, more machine learning

CS 293/EDUC473: Empowering Educators via Language Technology (Dora Demszky)

NLP x Education!

CS 224V: Conversational Virtual Assistants with Deep Learning (Monica Lam)

CS 246: Mining Massive Data Sets (Jure Leskovec)

CS329X: Human Centered NLP (Diyi Yang) Human-centered design thinking in NLP, human-in-
the-loop algorithms, fairness, and accessibility.

CS329R: Race and NLP (Dan Jurafsky and Jennifer Eberhardt) NLP + social psychological
perspectives on race to address societal issues

CS329A: Self-improvement AI Agents (Azalia Mirhoseini, Aakanksha Chowdhery) seminar on
agents and model / tool orchestration

78

Fun courses outside of CS next year

Linguistics 150: Language and Society
COMM 154: The Politics of Algorithms

Or take a foreign language!!!

Or study abroad!
Spring 2026, I'm teaching "The Language of Food" abroad
with Stanford BOSP Madrid campus!!!

79

