
Contextual
Embeddings

Contextual Embeddings

6 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

good
nice

bad
worst

not good

wonderful
amazing

terrific

dislike

worse

very good incredibly good
fantastic

incredibly badnow

youi
that

with

byto
’s

are

is

a
than

Figure 6.1 A two-dimensional (t-SNE) projection of embeddings for some words and
phrases, showing that words with similar meanings are nearby in space. The original 60-
dimensional embeddings were trained for sentiment analysis. Simplified from Li et al. (2015)
with colors added for explanation.

The fine-grained model of word similarity of vector semantics offers enormous
power to NLP applications. NLP applications like the sentiment classifiers of Chap-
ter 4 or Chapter 5 depend on the same words appearing in the training and test sets.
But by representing words as embeddings, classifiers can assign sentiment as long as
it sees some words with similar meanings. And as we’ll see, vector semantic models
can be learned automatically from text without supervision.

In this chapter we’ll introduce the two most commonly used models. In the tf-idf
model, an important baseline, the meaning of a word is defined by a simple function
of the counts of nearby words. We will see that this method results in very long
vectors that are sparse, i.e. mostly zeros (since most words simply never occur in
the context of others). We’ll introduce the word2vec model family for construct-
ing short, dense vectors that have useful semantic properties. We’ll also introduce
the cosine, the standard way to use embeddings to compute semantic similarity, be-
tween two words, two sentences, or two documents, an important tool in practical
applications like question answering, summarization, or automatic essay grading.

6.3 Words and Vectors

“The most important attributes of a vector in 3-space are {Location, Location, Location}”
Randall Munroe, https://xkcd.com/2358/

Vector or distributional models of meaning are generally based on a co-occurrence
matrix, a way of representing how often words co-occur. We’ll look at two popular
matrices: the term-document matrix and the term-term matrix.

6.3.1 Vectors and documents
In a term-document matrix, each row represents a word in the vocabulary and eachterm-document

matrix
column represents a document from some collection of documents. Fig. 6.2 shows a
small selection from a term-document matrix showing the occurrence of four words
in four plays by Shakespeare. Each cell in this matrix represents the number of times
a particular word (defined by the row) occurs in a particular document (defined by
the column). Thus fool appeared 58 times in Twelfth Night.

The term-document matrix of Fig. 6.2 was first defined as part of the vector
space model of information retrieval (Salton, 1971). In this model, a document isvector space

model

Reminder: Static word embeddings (GLoVe or word2vec)
Meaning defined as a point in space based on distribution
• Each word = one fixed (static) vector
Similar words are "nearby in semantic space"
• Learned by seeing which words are nearby in text

Static embeddings

Each word is represented by a fixed vector (same in all contexts)

We had a picnic on the grassy river bank
Bank = [35, -1.8, 22, 0.006,…]

I went to the bank and withdrew some cash.
Bank = [35, -1.8, 22, 0.006,…]

In static embeddings, we get a fixed dictionary

So we get our embeddings from
• a Dict
• that maps each string ("bank")
• to an np.array of length 50

Each word in context is represented by a vector (different in
every context)

We had a picnic on the grassy river bank
Bank = [1.11, -1.7, -205, 0.006,…]

I went to the bank and withdrew some cash.
Bank = [-42.7, 9.8, -0.88, -2.559,…]

Contextual embeddings

Each word in context is represented by a vector
1 point for each sentence!

We had a picnic on the grassy river bank
I went to the bank and withdrew some cash.
My friend works at the local branch of the bank
I sat on the damp bank and watched the river

Contextual embeddings

Contextual Embedding for "die"

Figure 4: Embeddings for the word "die" in different contexts, visualized with UMAP. Sample points
are annotated with corresponding sentences. Overall annotations (blue text) are added as a guide.

4.1 Visualization of word senses

Our first experiment is an exploratory visualization of how word sense affects context embeddings.
For data on different word senses, we collected all sentences used in the introductions to English-
language Wikipedia articles. (Text outside of introductions was frequently fragmentary.) We created
an interactive application, which we plan to make public. A user enters a word, and the system
retrieves 1,000 sentences containing that word. It sends these sentences to BERT-base as input, and
for each one it retrieves the context embedding for the word from a layer of the user’s choosing.

The system visualizes these 1,000 context embeddings using UMAP [15], generally showing clear
clusters relating to word senses. Different senses of a word are typically spatially separated, and
within the clusters there is often further structure related to fine shades of meaning. In Figure 4, for
example, we not only see crisp, well-separated clusters for three meanings of the word “die,” but
within one of these clusters there is a kind of quantitative scale, related to the number of people
dying. See Appendix 6.4 for further examples. The apparent detail in the clusters we visualized raises
two immediate questions. First, is it possible to find quantitative corroboration that word senses are
well-represented? Second, how can we resolve a seeming contradiction: in the previous section, we
saw how position represented syntax; yet here we see position representing semantics.

4.2 Measurement of word sense disambiguation capability

The crisp clusters seen in visualizations such as Figure 4 suggest that BERT may create simple,
effective internal representations of word senses, putting different meanings in different locations. To
test this hypothesis quantitatively, we test whether a simple classifier on these internal representations
can perform well at word-sense disambiguation (WSD).

We follow the procedure described in [20], which performed a similar experiment with the ELMo
model. For a given word with n senses, we make a nearest-neighbor classifier where each neighbor is
the centroid of a given word sense’s BERT-base embeddings in the training data. To classify a new
word we find the closest of these centroids, defaulting to the most commonly used sense if the word
was not present in the training data. We used the data and evaluation from [21]: the training data was
SemCor [17] (33,362 senses), and the testing data was the suite described in [21] (3,669 senses).

The simple nearest-neighbor classifier achieves an F1 score of 71.1, higher than the current state of
the art (Table 1), with the accuracy monotonically increasing through the layers. This is a strong
signal that context embeddings are representing word-sense information. Additionally, an even higher
score of 71.5 was obtained using the technique described in the following section.

6

Most modern models are multilingual!
Contextual Embedding for "die" including German!

Figure 4: Embeddings for the word "die" in different contexts, visualized with UMAP. Sample points
are annotated with corresponding sentences. Overall annotations (blue text) are added as a guide.

4.1 Visualization of word senses

Our first experiment is an exploratory visualization of how word sense affects context embeddings.
For data on different word senses, we collected all sentences used in the introductions to English-
language Wikipedia articles. (Text outside of introductions was frequently fragmentary.) We created
an interactive application, which we plan to make public. A user enters a word, and the system
retrieves 1,000 sentences containing that word. It sends these sentences to BERT-base as input, and
for each one it retrieves the context embedding for the word from a layer of the user’s choosing.

The system visualizes these 1,000 context embeddings using UMAP [15], generally showing clear
clusters relating to word senses. Different senses of a word are typically spatially separated, and
within the clusters there is often further structure related to fine shades of meaning. In Figure 4, for
example, we not only see crisp, well-separated clusters for three meanings of the word “die,” but
within one of these clusters there is a kind of quantitative scale, related to the number of people
dying. See Appendix 6.4 for further examples. The apparent detail in the clusters we visualized raises
two immediate questions. First, is it possible to find quantitative corroboration that word senses are
well-represented? Second, how can we resolve a seeming contradiction: in the previous section, we
saw how position represented syntax; yet here we see position representing semantics.

4.2 Measurement of word sense disambiguation capability

The crisp clusters seen in visualizations such as Figure 4 suggest that BERT may create simple,
effective internal representations of word senses, putting different meanings in different locations. To
test this hypothesis quantitatively, we test whether a simple classifier on these internal representations
can perform well at word-sense disambiguation (WSD).

We follow the procedure described in [20], which performed a similar experiment with the ELMo
model. For a given word with n senses, we make a nearest-neighbor classifier where each neighbor is
the centroid of a given word sense’s BERT-base embeddings in the training data. To classify a new
word we find the closest of these centroids, defaulting to the most commonly used sense if the word
was not present in the training data. We used the data and evaluation from [21]: the training data was
SemCor [17] (33,362 senses), and the testing data was the suite described in [21] (3,669 senses).

The simple nearest-neighbor classifier achieves an F1 score of 71.1, higher than the current state of
the art (Table 1), with the accuracy monotonically increasing through the layers. This is a strong
signal that context embeddings are representing word-sense information. Additionally, an even higher
score of 71.5 was obtained using the technique described in the following section.

6

Word sense

Words are ambiguous
A word sense is a discrete representation of one aspect of
meaning

Contextual embeddings offer a continuous high-dimensional model
of meaning that is more fine grained than discrete senses.

10 CHAPTER 11 • MASKED LANGUAGE MODELS

polysemous (from Greek ‘many senses’, poly- ‘many’ + sema, ‘sign, mark’).2
A sense (or word sense) is a discrete representation of one aspect of the meaningword sense

of a word. We can represent each sense with a superscript: bank1 and bank2,
mouse1 and mouse2. These senses can be found listed in online thesauruses (or
thesauri) like WordNet (Fellbaum, 1998), which has datasets in many languagesWordNet
listing the senses of many words. In context, it’s easy to see the different meanings:

mouse1 : a mouse controlling a computer system in 1968.
mouse2 : a quiet animal like a mouse

bank1 : ...a bank can hold the investments in a custodial account ...
bank2 : ...as agriculture burgeons on the east bank, the river ...

This fact that context disambiguates the senses of mouse and bank above can
also be visualized geometrically. Fig. 11.6 shows a two-dimensional projection of
many instances of the BERT embeddings of the word die in English and German.
Each point in the graph represents the use of die in one input sentence. We can
clearly see at least two different English senses of die (the singular of dice and the
verb to die, as well as the German article, in the BERT embedding space.

Figure 4: Embeddings for the word "die" in different contexts, visualized with UMAP. Sample points
are annotated with corresponding sentences. Overall annotations (blue text) are added as a guide.

4.1 Visualization of word senses

Our first experiment is an exploratory visualization of how word sense affects context embeddings.
For data on different word senses, we collected all sentences used in the introductions to English-
language Wikipedia articles. (Text outside of introductions was frequently fragmentary.) We created
an interactive application, which we plan to make public. A user enters a word, and the system
retrieves 1,000 sentences containing that word. It sends these sentences to BERT-base as input, and
for each one it retrieves the context embedding for the word from a layer of the user’s choosing.

The system visualizes these 1,000 context embeddings using UMAP [15], generally showing clear
clusters relating to word senses. Different senses of a word are typically spatially separated, and
within the clusters there is often further structure related to fine shades of meaning. In Figure 4, for
example, we not only see crisp, well-separated clusters for three meanings of the word “die,” but
within one of these clusters there is a kind of quantitative scale, related to the number of people
dying. See Appendix 6.4 for further examples. The apparent detail in the clusters we visualized raises
two immediate questions. First, is it possible to find quantitative corroboration that word senses are
well-represented? Second, how can we resolve a seeming contradiction: in the previous section, we
saw how position represented syntax; yet here we see position representing semantics.

4.2 Measurement of word sense disambiguation capability

The crisp clusters seen in visualizations such as Figure 4 suggest that BERT may create simple,
effective internal representations of word senses, putting different meanings in different locations. To
test this hypothesis quantitatively, we test whether a simple classifier on these internal representations
can perform well at word-sense disambiguation (WSD).

We follow the procedure described in [20], which performed a similar experiment with the ELMo
model. For a given word with n senses, we make a nearest-neighbor classifier where each neighbor is
the centroid of a given word sense’s BERT-base embeddings in the training data. To classify a new
word we find the closest of these centroids, defaulting to the most commonly used sense if the word
was not present in the training data. We used the data and evaluation from [21]: the training data was
SemCor [17] (33,362 senses), and the testing data was the suite described in [21] (3,669 senses).

The simple nearest-neighbor classifier achieves an F1 score of 71.1, higher than the current state of
the art (Table 1), with the accuracy monotonically increasing through the layers. This is a strong
signal that context embeddings are representing word-sense information. Additionally, an even higher
score of 71.5 was obtained using the technique described in the following section.

6

Figure 11.6 Each blue dot shows a BERT contextual embedding for the word die from different sentences
in English and German, projected into two dimensions with the UMAP algorithm. The German and English
meanings and the different English senses fall into different clusters. Some sample points are shown with the
contextual sentence they came from. Figure from Coenen et al. (2019).

Thus while thesauruses like WordNet give discrete lists of senses, embeddings
(whether static or contextual) offer a continuous high-dimensional model of meaning
that, although it can be clustered, doesn’t divide up into fully discrete senses.

Word Sense Disambiguation

The task of selecting the correct sense for a word is called word sense disambigua-
tion, or WSD. WSD algorithms take as input a word in context and a fixed inventoryword sense

disambiguation
WSD of potential word senses (like the ones in WordNet) and outputs the correct word

sense in context. Fig. 11.7 sketches out the task.

2 The word polysemy itself is ambiguous; you may see it used in a different way, to refer only to cases
where a word’s senses are related in some structured way, reserving the word homonymy to mean sense
ambiguities with no relation between the senses (Haber and Poesio, 2020). Here we will use ‘polysemy’
to mean any kind of sense ambiguity, and ‘structured polysemy’ for polysemy with sense relations.

Summary: Static vs Contextual Embeddings

Static embeddings represent word types (dictionary entries)
• Look up a word in a Dict
• Returns a vector of shape (50,)
Contextual embeddings represent word instances (one for
each time the word occurs in any context/sentence)
• Pass a sentence through a language model
• Get out one vector of shape (768,) for each word in the

sentence

How do we compute contextual embeddings?

From internals of large language model!
The transformer networks (next week's lecture) will
have representations for each word at many
different layers
We'll be using BERT, which is a Masked Language
Model based on the transformer architecture
More of those details next week!

[CLS] So long and thanks for all

hL
1hL

CLS hL
2 hL

3 hL
4 hL

5 hL
6

E
i+

E
i+

E
i+

E
i+

E
i+

E
i+

E
i+

BERT contextual embeddings to represent words

[CLS] So long and thanks for all

hL
1hL

CLS hL
2 hL

3 hL
4 hL

5 hL
6

E
i+

E
i+

E
i+

E
i+

E
i+

E
i+

E
i+

768-dimensional embedding for "thanks" in "So long and thanks for all"

Stacked
Transformer
Layers

768

768

The stream of information in a feedforward neural network

U

W

x768x1

hidden units

Input layer
(vector d=768)

Output layer
(vector d=768)

𝜎	Could be ReLU
Or tanh

z = 𝜎	(𝑈ℎ)z1 z768

…

…

[CLS] So long and thanks for all

hL
1hL

CLS hL
2 hL

3 hL
4 hL

5 hL
6

E
i+

E
i+

E
i+

E
i+

E
i+

E
i+

E
i+

BERT contextual embeddings to represent words

[CLS] So long and thanks for all

hL
1hL

CLS hL
2 hL

3 hL
4 hL

5 hL
6

E
i+

E
i+

E
i+

E
i+

E
i+

E
i+

E
i+

768-dimensional embedding for "thanks" in "So long and thanks for all"

Stacked
Transformer
Layers

768

768

Contextual
Embeddings

Contextual Embeddings

Embeddings

Computing word and sentence
similarity with contextual
embeddings

Computing word similarity:
Reminder about dot product and cosine

Dot product between two vectors is a scalar:

Dot product is high when both vectors have large values in
same dimensions

92
0
40

35
2
85

= 92*35 + 0*2 + 40+85 = 3345

Reminder: cosine fixes problem with raw dot-product

Dot product is higher if a vector is longer, higher magnitude (has
higher values in many dimension)

Vector length:

Cosine normalizes for vector length:

10 CHAPTER 6 • VECTOR SEMANTICS AND EMBEDDINGS

6.4 Cosine for measuring similarity

To measure similarity between two target words v and w, we need a metric that
takes two vectors (of the same dimensionality, either both with words as dimensions,
hence of length |V |, or both with documents as dimensions as documents, of length
|D|) and gives a measure of their similarity. By far the most common similarity
metric is the cosine of the angle between the vectors.

The cosine—like most measures for vector similarity used in NLP—is based on
the dot product operator from linear algebra, also called the inner product:dot product

inner product

dot product(v,w) = v ·w =
NX

i=1

viwi = v1w1 + v2w2 + ...+ vNwN (6.7)

As we will see, most metrics for similarity between vectors are based on the dot
product. The dot product acts as a similarity metric because it will tend to be high
just when the two vectors have large values in the same dimensions. Alternatively,
vectors that have zeros in different dimensions—orthogonal vectors—will have a
dot product of 0, representing their strong dissimilarity.

This raw dot product, however, has a problem as a similarity metric: it favors
long vectors. The vector length is defined asvector length

|v| =

vuut
NX

i=1

v2
i (6.8)

The dot product is higher if a vector is longer, with higher values in each dimension.
More frequent words have longer vectors, since they tend to co-occur with more
words and have higher co-occurrence values with each of them. The raw dot product
thus will be higher for frequent words. But this is a problem; we’d like a similarity
metric that tells us how similar two words are regardless of their frequency.

We modify the dot product to normalize for the vector length by dividing the
dot product by the lengths of each of the two vectors. This normalized dot product
turns out to be the same as the cosine of the angle between the two vectors, following
from the definition of the dot product between two vectors a and b:

a ·b = |a||b|cosq
a ·b
|a||b| = cosq (6.9)

The cosine similarity metric between two vectors v and w thus can be computed as:cosine

cosine(v,w) =
v ·w
|v||w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from a byunit vector
dividing it by |a|. For unit vectors, the dot product is the same as the cosine.

12 CHAPTER 6 • VECTOR SEMANTICS

~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|

= cosq (6.9)

The cosine similarity metric between two vectors~v and ~w thus can be computedcosine

as:

cosine(~v,~w) =
~v ·~w
|~v||~w| =

NX

i=1

viwi

vuut
NX

i=1

v2
i

vuut
NX

i=1

w2
i

(6.10)

For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.

The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.

Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:

large data computer
apricot 2 0 0
digital 0 1 2

information 1 6 1

cos(apricot, information) =
2+0+0p

4+0+0
p

1+36+1
=

2
2
p

38
= .16

cos(digital, information) =
0+6+2p

0+1+4
p

1+36+1
=

8p
38
p

5
= .58 (6.11)

The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.

6.5 TF-IDF: Weighing terms in the vector

The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.

It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.

It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear

Reminder: Computing similarity between two words

1. Look up their static embedding vectors
2. Take the cosine between them

But how to take similarity of two sentences?

Two methods:
1. CLS token: a special token that represents the whole

sentence
2. Mean-pooling: Average the embeddings of all the

words!

[CLS] So long and thanks for all

hL
1hL

CLS hL
2 hL

3 hL
4 hL

5 hL
6

E
i+

E
i+

E
i+

E
i+

E
i+

E
i+

E
i+

BERT contextual embeddings to represent words

[CLS] So long and thanks for all

hL
1hL

CLS hL
2 hL

3 hL
4 hL

5 hL
6

E
i+

E
i+

E
i+

E
i+

E
i+

E
i+

E
i+

CLS is a special token that represents the meaning of the sentence

Stacked
Transformer
Layers

Take the cosine between the CLS tokens!

14.2 • INFORMATION RETRIEVAL WITH DENSE VECTORS 11

the query and the document, and thus building a representation that is sensitive to
the meanings of both query and document. Then a linear layer can be put on top of
the [CLS] token to predict a similarity score for the query/document tuple:

z= BERT(q;[SEP];d)[CLS]
score(q,d) = softmax(U(z)) (14.17)

This architecture is shown in Fig. 14.7a. Usually the retrieval step is not done on
an entire document. Instead documents are broken up into smaller passages, such
as non-overlapping fixed-length chunks of say 100 tokens, and the retriever encodes
and retrieves these passages rather than entire documents. The query and document
have to be made to fit in the BERT 512-token window, for example by truncating
the query to 64 tokens and truncating the document if necessary so that it, the query,
[CLS], and [SEP] fit in 512 tokens. The BERT system together with the linear layer
U can then be fine-tuned for the relevance task by gathering a tuning dataset of
relevant and non-relevant passages.

Query Document

…

…

…

…

…

…

[sep]

s(q,d)

zCLS
U

Query

zCLS_Q zCLS_D

Document

…

…

…

…

…

…

•
s(q,d)

(a) (b)
Figure 14.7 Two ways to do dense retrieval, illustrated by using lines between layers to schematically rep-
resent self-attention: (a) Use a single encoder to jointly encode query and document and finetune to produce a
relevance score with a linear layer over the CLS token. This is too compute-expensive to use except in rescoring
(b) Use separate encoders for query and document, and use the dot product between CLS token outputs for the
query and document as the score. This is less compute-expensive, but not as accurate.

The problem with the full BERT architecture in Fig. 14.7a is the expense in
computation and time. With this architecture, every time we get a query, we have to
pass every single single document in our entire collection through a BERT encoder
jointly with the new query! This enormous use of resources is impractical for real
cases.

At the other end of the computational spectrum is a much more efficient archi-
tecture, the bi-encoder. In this architecture we can encode the documents in the
collection only one time by using two separate encoder models, one to encode the
query and one to encode the document. We encode each document, and store all
the encoded document vectors in advance. When a query comes in, we encode just
this query and then use the dot product between the query vector and the precom-
puted document vectors as the score for each candidate document (Fig. 14.7b). For
example, if we used BERT, we would have two encoders BERTQ and BERTD and

Sentence 1 Sentence 2

zCLS1 zCLS2
1. Run each sentence

through BERT
2. Take each CLS

token vector [768,]
3. Compute their

cosine

cosine

Mean pooling

14.2 • INFORMATION RETRIEVAL WITH DENSE VECTORS 11

the query and the document, and thus building a representation that is sensitive to
the meanings of both query and document. Then a linear layer can be put on top of
the [CLS] token to predict a similarity score for the query/document tuple:

z= BERT(q;[SEP];d)[CLS]
score(q,d) = softmax(U(z)) (14.17)

This architecture is shown in Fig. 14.7a. Usually the retrieval step is not done on
an entire document. Instead documents are broken up into smaller passages, such
as non-overlapping fixed-length chunks of say 100 tokens, and the retriever encodes
and retrieves these passages rather than entire documents. The query and document
have to be made to fit in the BERT 512-token window, for example by truncating
the query to 64 tokens and truncating the document if necessary so that it, the query,
[CLS], and [SEP] fit in 512 tokens. The BERT system together with the linear layer
U can then be fine-tuned for the relevance task by gathering a tuning dataset of
relevant and non-relevant passages.

Query Document

…

…

…

…

…

…

[sep]

s(q,d)

zCLS
U

Query

zCLS_Q zCLS_D

Document

…

…

…

…

…

…

•
s(q,d)

(a) (b)
Figure 14.7 Two ways to do dense retrieval, illustrated by using lines between layers to schematically rep-
resent self-attention: (a) Use a single encoder to jointly encode query and document and finetune to produce a
relevance score with a linear layer over the CLS token. This is too compute-expensive to use except in rescoring
(b) Use separate encoders for query and document, and use the dot product between CLS token outputs for the
query and document as the score. This is less compute-expensive, but not as accurate.

The problem with the full BERT architecture in Fig. 14.7a is the expense in
computation and time. With this architecture, every time we get a query, we have to
pass every single single document in our entire collection through a BERT encoder
jointly with the new query! This enormous use of resources is impractical for real
cases.

At the other end of the computational spectrum is a much more efficient archi-
tecture, the bi-encoder. In this architecture we can encode the documents in the
collection only one time by using two separate encoder models, one to encode the
query and one to encode the document. We encode each document, and store all
the encoded document vectors in advance. When a query comes in, we encode just
this query and then use the dot product between the query vector and the precom-
puted document vectors as the score for each candidate document (Fig. 14.7b). For
example, if we used BERT, we would have two encoders BERTQ and BERTD and

Sentence 1 Sentence 2

zCLS1 zCLS2
1. Run each sentence

through BERT
2. Average the vectors

for each sentence
3. Compute the

cosine

cosine

z1 zn

mean
1

mean
2

z1 zm

IR: classic tf-idf vs dense retrieval

14.2 • INFORMATION RETRIEVAL WITH DENSE VECTORS 11

the query and the document, and thus building a representation that is sensitive to
the meanings of both query and document. Then a linear layer can be put on top of
the [CLS] token to predict a similarity score for the query/document tuple:

z= BERT(q;[SEP];d)[CLS]
score(q,d) = softmax(U(z)) (14.17)

This architecture is shown in Fig. 14.7a. Usually the retrieval step is not done on
an entire document. Instead documents are broken up into smaller passages, such
as non-overlapping fixed-length chunks of say 100 tokens, and the retriever encodes
and retrieves these passages rather than entire documents. The query and document
have to be made to fit in the BERT 512-token window, for example by truncating
the query to 64 tokens and truncating the document if necessary so that it, the query,
[CLS], and [SEP] fit in 512 tokens. The BERT system together with the linear layer
U can then be fine-tuned for the relevance task by gathering a tuning dataset of
relevant and non-relevant passages.

Query Document

…

…

…

…

…

…

[sep]

s(q,d)

zCLS
U

Query

zCLS_Q zCLS_D

Document

…

…

…

…

…

…

•
s(q,d)

(a) (b)
Figure 14.7 Two ways to do dense retrieval, illustrated by using lines between layers to schematically rep-
resent self-attention: (a) Use a single encoder to jointly encode query and document and finetune to produce a
relevance score with a linear layer over the CLS token. This is too compute-expensive to use except in rescoring
(b) Use separate encoders for query and document, and use the dot product between CLS token outputs for the
query and document as the score. This is less compute-expensive, but not as accurate.

The problem with the full BERT architecture in Fig. 14.7a is the expense in
computation and time. With this architecture, every time we get a query, we have to
pass every single single document in our entire collection through a BERT encoder
jointly with the new query! This enormous use of resources is impractical for real
cases.

At the other end of the computational spectrum is a much more efficient archi-
tecture, the bi-encoder. In this architecture we can encode the documents in the
collection only one time by using two separate encoder models, one to encode the
query and one to encode the document. We encode each document, and store all
the encoded document vectors in advance. When a query comes in, we encode just
this query and then use the dot product between the query vector and the precom-
puted document vectors as the score for each candidate document (Fig. 14.7b). For
example, if we used BERT, we would have two encoders BERTQ and BERTD and

Query Document

Represent as
tf-idf vector

Represent as
tf-idf vector

s(q,d)

cosine

Classic tf-idf (PA4) Dense retrieval (PA5)

Embeddings

Computing word and sentence
similarity with contextual
embeddings

